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Abstract

The dynamics of a charged particle orbiting around a rotating magnetic planet is studied. The system is modelled by the
two-body Hamiltonian perturbed by an axially-symmetric function which goes to infinity as soon as the particle approaches
the planet. The perturbation consists in a magnetic dipole field and a corotational electric field. When it is weak compared to
the Keplerian part of the Hamiltonian, we average the system with respect to the mean anomaly up to first order in terms of a
small parameter defined by the ratio between the magnetic and the Keplerian interactions. After dropping higher-order terms,
we use invariant theory to reduce the averaged system by virtue of its continuous and discrete symmetries, determining also the
successive reduced phase spaces. Then, we study the flow of the resulting system in the most reduced phase space, describi
all equilibria and their stability, as well as the different classes of bifurcations. Finally, we connect the analysis of the flow on
these reduced phase spaces with the one of the original system.
© 2004 Published by Elsevier B.V.
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1. Introduction

The theoretical study of the motion of a charged particle in planetary magnetospheres has attracted the attentior
of physicists and astronomers since the second middle of the last century. The pioneering model goes back tc
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Stgrmer’s work in 1907 (see the pap38] and the monographfd9]), where the motion of a charge in a pure
magnetic dipole field (th8tgrmer modégis considered. This model provides satisfactory results for the explanation

of the dynamics of light particles (ions or electrons) which are present in the radiation belts surrounding magnetized
planets[11,12] However, when charged dust grains are considered, the ratio between the charge and the mass of
the particle is small and the purely magnetic model has to be improved. The reason is that one takes into account
the gravitational field created by the planet, as well as the corotational electric field due to the rotation of the planet
(se€]20] and references therein). This is the so-cafjederalised Starmenodel, which will be denoted from now

on by the acronynGS

In arecent series of very interesting papers @ismnodel has been revisited by Huyi, Howard and coworkers
[22,24,23,13] The authors use @Smodel that includes Keplerian gravity, a magnetic dipole aligned along the
axis of rotation of the planet and a corotational electric field. In this framework, due to the axial symmetry of the
system, the third component of the angular momentum is an integral, and the dynamics of the charged dust grain
is governed by a two-dimensional effective potential. This potential has been intensively explored. Specifically, the
above-mentioned authors achieve the following: (i) the global stability conditions of the grain are obtained as a
function of the parametef24]; and (ii) the existence of non-equatorial halo orfi23,13]for the grain is predicted.

Our aim is to describe the global dynamics of G8problem. It is a nice candidate to which apply the modern
analytic tools of nonlinear dynamics. However, the dynamics is highly nonlinear and it is extremely difficult to state a
global analytic model that explains the complete motion of the grain. Roughly speaking@&gheblem the grain
is subjected to gravitational and electromagnetic forces, which are in competition. The result of this fight depends on
the charge—mass ratio of the grain. So, the dynamics of the grain can be either gravitationally or electromagnetically
dominated?24].

If the dynamics of the grain is electromagnetically dominated, the Keplerian term in the effective potential
can be taken as a perturbation of the electromagnetic terms. The effective potential is very complex, and among
other things, it presents non-equatorial potential wells where halo orbits s{@4i\28] On the other hand, if the
Keplerian gravity dominates, we can argue the existence of a perturbed Keplerian potential well where the grain is
trapped. This is the situation we deal with in this paper.

The study is mainly performed from an analytical point of view. We consider the Hamiltonian representing the
GSproblem as a sum of a pure Keplerian part and a perturbation describing the magnetic dipole field and the
corotational electric field. The basic idea is to transform our original system into an equivalent one, which is defined
through an integrable Hamiltonian function and is, therefore, easier to be studied. Moreover, the simplified system
contains the main features of the original one. Thus, we can extract dynamical information of the original system
from the integrable Hamiltonian.

We achieve the transformation to the new dynamical system in three steps. First, by assuming that the elec-
tromagnetic term is weak compared to the Keplerian one, we apply the Delaunay normalisatiap to first
order. From this transformation, we obtain the averageddomalised Hamiltonian with a new formal integrdl
(the Keplerian symmetjyrepresenting the positive square root of the semi-major axis of the perturbed Keplerian
ellipses, and where only two degrees of freedom remain in the Hamiltonian. Secondly, the axial symmetry of the
problem allows one to reduce to one the degrees of freedom of the system. This symmetry is also used to obtain the
two-dimensional phase space (the so-caléde-reduced phase spgaelated to the new system. Third, we exploit
the finite symmetries of the original Hamiltonian in order to simplify the appearance of the differential equations
and the shape of the two-dimensional phase space as much as possible. This last step is achieved through a nev
reduction mapping which gives rise to the so-called fully-reduced Hamilton function defined in a new phase space,
called thefully-reduced phase space

After this process is concluded, the reduced system is of one degree of freedom, hence integrable. Then, we anal-
yse, as a function of the parameters, the dynamical features of this system, calculating its equilibria and bifurcations.
An estimation of the error committed in the normalisation procedure allows us to conclude that our approach is
valid in a neighbourhood of the origin (e.g. the Keplerian regime). This is reinforced using some Esindaces
of section. Moreover, using reconstruction of the flow techniques, we infer that the bifurcations of the relative
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equilibria correspond to bifurcations of two-dimensional invariant tori and quasi-periodic orbits of the original
Hamiltonian.

Other studies on particles around planetary magnetospheres using the tools of nonlinear analysis were giver
by Braun[2,3]. In particular, Braun dealt with the Stgrmer problem and introducing high-order normal forms
combined with KAM theory, he was able to find out some two-dimensional invariant tori and quasi-periodic orbits.
Our approach is in the same spirit as Braun’s work. However, our model is different as we @&®Hheiltonian
in the Keplerian regime. Besides, we achieve a global analysis of the system resulting after normalisation and
reduction, using for that an appropriate parameterization of the reduced phase space.

As stated by Howard et 23], it is very important to understand the nonlinear dynamics of the orbital motion
of charged particles around magnetic planets. Furthermore, itis indeed a live issue, as it is shown by some project:
as the Cassini mission on tour around Saturn to perform detailedu measurements of charged dust grains,
which arrived on July 1, 2004, or the Bepi-Colombo mission to explore Mercury’s magnetosphere, supposed to be
launched by ESA in 200R.9].

The paper is structured as follows. The problem is formulat&giction 2 In Section 3we apply the Delaunay
normalisation. IrSection 4 the Keplerian, the axial symmetries as well as the finite symmetries allow us to obtain
the different reduced phase spaces of the normalised system. The dynamics in the fully-reduced phase space
the subject ofSection 5 It involves the determination of equilibria, bifurcations and the analysis of the stability.
The phase flow of the reduced system is describe®kiction 6 In Section 7 we establish the connection between
the reduced and the original systems, estimating the error related to the averaging process Baifazags of
section are provided in order to validate the error estimations and our results. Moreover, some periodic orbits are
approximated from the set of quasi-periodic trajectories, using the finite symmetries of the problem. The conclusions
appear inSection 8

2. The problem

In the problem at hand, we assume that a particle of maasd charge is orbiting around a rotating magnetic
planet of masg/ and radiusk. The general Hamiltonian of this particle in Gaussian units is then expressed as:

wherec is the speed of the light in the vacuum= (x, y, z) corresponds to the Cartesian coordinates Rnrd

(Px, Py, P;) represents the conjugate momentaxoBesides,A represents the vector potential describing the
magnetic forces and@(x) is the scalar potential accounting for the electric and gravitational interactions. The
magnetic fieldB of the planet is supposed to be a perfect magnetic dipole of strengligned along the north—
south poles of the planet (theaxis). Thus, ifr = \/x2 + y2 + z2 stands for the distance of the charged particle to
the centre of mass of the planet, the vectdrandB are:

n
A= r—3(—y,x, 0), B=VxA. (2)

If we assume that the planet's magnetosphere is a rigid conducting plasma which rotates with the same angulal
velocity @ = (0, 0, w) as the planet, the chargds subjected to a corotational electric fi&idbf the form:

x2+ 2
. 3)

The combined Keplerian and electrostatic forces give the potential:

1
E:——(Qxx)xB:—leI{ where ¥ =
Cc C r

U() = ——— + =W 4)



M. Iharrea et al. / Physica D 197 (2004) 242—-268 245
By introducing the expressior2) and (4)into (1), we get the Hamiltonian:

1 Mm H 2¢% x% 4+ y? )
H= oo (P2 PR+ P ——= - Lo 2 T2y (5)

r merd3  2mc2 8 c

whereH = x Py — yP; is thez-component of the angular momentum.
Since the above Hamiltonian is invariant under rotations around-tivés, H is an integral and cylindrical
variables p, z, ¢, P,, P;, H) arise in a natural way. Hence, in these varialffgseads:

1 2 5 H? Mm . H ma)gR6 0% mowcR® p?
?—l—zm(Pp+PZ+pz) R+ —— %+ = (6)
The parameten. = (¢Bo)/(mc) stands for thecyclotronfrequency, whereBg = 1/ R® designates the magnetic
field strength at the planetary equator.

In order to analyse the dynamics, it is convenient to use dimensionless coordinates and momenta. Firstly, we
define the new coordinates as functions of the planet ratliesy.x’ = x/R, P’ = P/(mRwg). As well we define a
new (dimensionless) timé = wk ¢, Wherewx = +/ M/ R3 is theKeplerian frequencyAfter introducing the above-
mentioned transformations i®) and dropping primes in coordinates and momenta, we arrive at the following
dimensionless Hamiltonian:

,  H 1 ( ., , H>\ 1 H _ p* &p?
H_mRza)ﬁ_2<Pp+PZ+,02> r 8r3+8'3r3+2r6' (7)

To avoid tedious notation, from now on we also drop the prime of the previous Hamiltoni@), We have defined

the parameter8 = w¢/wk and B = w/wk, Which indicate, respectively, the ratio between the magnetic and the

Keplerian interactions and the ratio between the electrostatic and Keplerian interactions. For a giveBgplanet

andwg are constant and hence the problem depends on three parameters. On the one hand, on the internal parametel

H andH = E (the energy), and on the other hand, on the external paradeieich indicates the charge—mass

ratio g/m of the particle.

As stated inSection 1the goal of this paper is to study the dynamics of the system when the main effect on the
particle is assumed to be the Keplerian gravity. In other words, we are interested in those cases where the motion
takes place inside of a Keplerian potential well. Moreover, this potential well must be located outside the planetary
region in order to consider realistic orbits. In this way, we introduce the effective pot&gfidtom (7) as:

H2 1 H ,02 52 ;02
Vet =5 =7 03 t¥ 3t 5
In the pure Keplerian casé & 0), the functiores has a minimum at = 0 andp = H? (for H # 0). The points,.
andr_, where the particle’s velocity is zero (the turning points), tend monotonicall?#2 and+oo, respectively,
as Ut tends to 0. In this way, only values off| > /2 guarantee that_ andr.. are outside the planet. For a
planet like Saturn, the spin rateds~ 1.64 x 10-*rad/s, and the parametgr~ 0.4 (see Murray and Dermott
[33]). Hence, if|§| « 1 andp < 1, we can assume that the Keplerian potential well is only slightly affected by the
terms depending on the electromagnetic interactions. This fact can be obsefigd ia, from which we infer
that a deformed Keplerian well exists f@t < 0.01. Other values of and g should be used if we considered the
magnetospheres of other giant planets. From now on we shall codsadeis as parameters, so that our analysis
could be used for other planets although we shall allowihaties in [-0.01, 0.01] wherea$s will be between 0
and 05, which includes Saturn’s value. For more details on the ranggswntls, see[33,18]
The critical points fo, zo) of Uest are the solutions of the system of equatiod&/d /o, dUeit/3z) = (O, O).
In order to analyse how the presence of the perturbations distorts the Keplerian well, we study analytically the
evolution of the roots located at theaxis. Forz = 0, 0Uefr/9z = 0, and the first equation (faf # 0) gives the
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Fig. 1. (a) Effective potential/et defined in the plane = 0 for § = 0 (solid line), fors = 0.01 (dashed line) andl= —0.01 (pointed line).

In all curves, the values fail andg are H = 1.5 andB = 0.4. (b) Evolution of the critical pointseg, zo) of the effective potential/eft in the
interval$ € [—0.5, 0.5] for § = 0.4, H = —1.5 (red line) andd = 1.5 (black line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

following third-degree polynomial equation:
P(p) = —28° + 35Hp — H?p? + p° — BSp° = 0.

For H = £1.5 andg = 0.4, the evolution of the roots @ as a function of is shown inFig. 1b. ForH = —1.5,

we observe thaP has only one root fo > 0, while for§ < 0 it has either one or three roots. FHdr= 1.5, we

find the same qualitative behaviour, but for opposite sigh ¢ri both situations, the smallest root corresponds to

an inner minimum, whereas the middle one to a saddle point and the biggest one to the Keplerian minimum. The
disappearance of the Keplerian well occurs when the saddle and the Keplerian minimum tend one to the other giving
rise to a double root and disappearing thereafter. Only the inner minimum remains. Noté &§ti0.1, 0.1], the
Keplerian well is far enough from the saddle. This is why the well is only slightly deformed by the electromagnetic
perturbations.

3. Delaunay normalisation
3.1. Canonical variables

Hamiltonian(7) can be seen as a perturbed Kepler problem. There are certain sets of variables well suited to deal
with this type of systems. As we will make an extensive use of them, we describe briefly their main features.
Polar-nodal variables(r, 9, v, P., ®, N) were introduced by Jacobi, but used explicitly later by Whitt4&éf.
The action® designates the modulus of the angular momentum vé&terx x P in the synodic frame. The angle
conjugate to® is the argument of the latitude € ¥ < 27 through the radial direction. Besides,has already
been introduced and its conjugate moment®ndenotes the radial velocity in the synodic frame. The angle of the
node,v, is the variable conjugate t¥. In the region of the phase space whéreloes not vanish, we decompose
it uniquely asG = @n with ® > 0 and||n|| = 1. The vecton indicates the normal direction and is orthogonal to
the plane spanned byandP: theinstantaneous orbital planéts inclination with respect to the equatorial plane
is given by the anglé < (0, 7) with N = ® cos andN is the third component d& in the synodic frame. Some
types of trajectories cannot be studied with these variables. They are not useful for coHisid),(rectilinear
(® = 0) or equatorial orbits® = |N|).
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Delaunay variables(¢, g, h, L, G, H) are a set of action-angle variables defined through polar-nodal variables
by means of a generating function built with the “mixed" set of variables,(v, L, G, H). We do not detail the
construction of these variables, but we address the reader to refef@ficg$or that.

If Ho stands for the Hamiltonian of the two-body problem, the acfias related to the two-body energy by the
identityHo = —1/(2 L?). The actiorG is the modulus of the angular momentum, tiius= . The third component
of Gis H, i.e. H = N. The anglef is named the mean anomaly. The eccentricity of the orbit is designated by
which in terms of Delaunay actions reads- \/1 — G2/L?; ase € (0, 1) thenG < (0, L). Circular orbits are not
accessible in Delaunay variables in order to ensurefthatuld be well defined. The true anomafyis expressed
as:r(1+ e cos f) = G2. The semi-major axis of the ellipse is related witli. by the identityL? = a. The angle
g is the argument of the pericentre. It is reckoned from the ascending node of the orbit in the instantaneous orbital
plane, therg = ¢ — f. The anglé is the argument of the node, i/e= v. Relations among all quantities can be
looked up in[4].

Delaunay variables are not valid for circular, collision, rectilinear and equatorial orbits. Polar-nodal and Delaunay
variables will be used to normalise the two-degree-of-freedom Hamiltdqr)aand reduce it to another one of one
degree of freedom. This will be accomplishedSeaction 4

Hamiltonian(7) in “mixed" Delaunay and polar-nodal variables reads as:

1 8H 56+26°)
2L2 r3 44

where cosl refers to the quotient’/ G.

Now, in order to apply a perturbation theory, we sgiinto two pieces. As-1/(2L2) is the leading term ok
we identify it with the unperturbed part of the Hamiltonian, that is, Wity Hence, the rest o is placed at first
order, so we mak@/; = # + 1/(2L?). Thus, our system can be considered a perturbation of the two-body problem
since we havét1| < |Ho|. We could have put the terms factored®8yat second order and perform a second-order
theory. However, we have preferred to achieve a first-order theory as the formulae are not so cumbersome.

H=— [1+ coS I+ sir? I cos()], (8)

3.2. Normalisation through first-order averaging

The goal of this subsection is to transform Hamilton func{@®yinto another Hamiltonia’C = Ko + K1, such
that Ko = Hg via a formal symplectic change of coordinates (¢, g, h, L, G, H) — (¢/, ¢, h', L', G', H') and
a generating functiohV = W;. Up to first order the transformation is given by:

WL WL W1
=04 22 JEPILAAL T vy Gl
* oL & =81 %56 t oH ©
9 9 9
e - M o M gy M
Y, o8 oh

whereW; is written in terms of the old variables (without primes). This is indeed the so-called inverse change of
variables truncated at order one.

Thedirectchange : (¢/, ¢, h', L', G', H) — (¢, g, h, L, G, H) puts the old variables as functions of the new
ones throughV; written in terms of the new variables. We remark tt#ais the inverse change afand vice versa.
If we push the computation to a certain ordér after truncation of higher-order terms, the new Hamiltonian will
be independent of the mean anomaly and subsequé&htlyll enjoy the actionL as a new integral. The process to
perform this transformation is call&@kelaunay normalisatiofse€9,10]); the steps to get the averaged (hormalised)
Hamiltonian are summarized next.

Letn = 1/L3 be the mean motion of the infinitesimal body orbiting the planet, thus the physical dimensions
of n are [L/time]. So, the Lie operator associated vith is n d(-)/d¢. Our interest is to perform a first-order
theory calculatingC1 andW;. The reason for not pushing the calculations to higher orders is that the first-order
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Hamiltonian retains all qualitative information we need, as all the equilibrium points we shall get out of the analysis
of the reduced equations will be isolated, in order words, the first-order reduced system will be structurally stable
(se€[31]). This will be seen in full detail irsection 5

From now on we drop the primes of the variables so as to avoid tedious notation. At first order, the transformed
Hamiltonian is going to béC = Ko + K1, whereXC1 must be independent éf Thus,KC will define a system of two
degrees of freedom ig, 2, G and H. We will have that the Poisson bracke€;, Ho} = 0fori =0, 1.

The Delaunay normalisation is carried out straightforwardly and in closed form for the eccentricity and for the
mean anomaly, although some difficulties arise when doing the computations. This is circumvented using some
adequate changes of variables defined through the eccentric and the true an@hags

We identifyHo = K and solve the homology equation:

Wy
— + K1 = Hq,
naz + K1 1

by taking
2
Ki= (271)_1/ Hid¢ and W1=n_1/(’Hl—IC1) de.
0

Thus, we arrive at the Hamiltonian:

1

}C:}C0+K1, W|th Koz_ﬁ,

K1 [2(L 4+ G)4BL3G" + 4BL3G°H? — sG* — 8L>G*H — 5G?H?

~ 16L5G'(L + G)
+38L2G? 4+ 38L%H?) + (L — G)(G? — H?)(8BL3G® + 8G? + 25LG + SL?) cos(%)], (10)
together with its generating function defined up to first ortlers= Wi

8
W= 48L2GT(L2 — Go)r2 {6(L? — G)r*(—8L*G" Hor — 8G*gr — 8G*Hr + 38L*G?¢r

+33L%H?pr + SL?>G°P, + SL°G3H?P, — 8L°G°HrP, + 35L?G>rP, + 3sL°G H*rP,
+4BL2Gr? P, + 4BL?>G°H?r? P,) + (G? — H?)r(—48BL*G®0r® + 35G4pr® — 68L2G%¢r®
+38L%r + 6SLAG” P, — 25L*G%r P, — 38L2G°r?P, + SL*G3r2 P, + 488L*G'rP,
—B8L2G3r3 P, 4+ 38L*Gr3P, + 24BL2G'r* P, 4+ 24BL*G°r* P,)cos(Z) + 2L*G8(G? — H?)
x [38G? — 48r + 248G2r® — 248r* 10g(G?/r)] sin(2g)},

wheregp = f — £. In our computations, we have not used techniques based on Fourier expansions in the mean,
eccentric or true anomaly, neither Taylor expansions in the eccentricity. So, as we are working with compact
expressions we can analyse any type of elliptic motion, and we do not care if a trajectory is highly eccentric.
Moreover, polylogarithmic functions would be introduced in the generating functions of the corresponding orders
bigger than one due to the appearance ahd log G2/r) at first order, see for examp|@4].

The construction of’; andW; fori > 1 is required to compute the expressions of the invariant manifolds related
to the original Hamiltonian vector field with high accuracy. Besides, if we stop at order one, the explicit formula of
Wi is used to build the direct and inverse change of coordinates, which is essential to estimate the error committed
after truncating the averaged Hamiltonian. Moreover, it is also required that the error committed after truncation
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be maintained controlled in a certain domain of the Delaunay variables, sd8@jlsmd the example therein. We
shall come back to this iBection 7when reconstructing the flow of the original Hamiltonian system.

Note that/C andW are well defined whether @ G < L andr > 0. So rectilinear, circular and collision orbits
should be excluded from the study. However, circular trajectories will be considered as a limit situation of our
approach using appropriate variables.

4. Reductions and reduced phase spaces
4.1. Passage t62 x §2

The next step of our approach consists in expressingterms of the appropriate invariants associated with the
symmetries of the problem.

The integrals associated wifi are the functions which are constant on the solutions of the system defined
by #Ho. All these integrals can be expressed as functions,ahe components of the angular momentum vector
G = (G1, G2, G3) (we remark thatGz = H) and the Laplace vectdk. = (A1, A2, A3), i.e. the vector defined as
AL =P x G —x/||x|l. Note that|G|| = G, |AL| = eandG - AL = 0. We consider the mapping:

oL 1RO\ ({0} x R} — RO : (x,P) > (a,b) = (G + LA_,G — LA,),

with a = (a1, a2, az) andb = (b1, b, b3). Explicitly, the functionss; andb; can be given in terms of Delaunay
variableg6]. Henceforth, the quantities, H, cosg, sin g, cosh, sin i, cosI and sin/ can be easily expressed in
terms ofa andb and the positive constaiit Now, a Hamiltonian independent éfcan be written as a function of
the invariantsaa andb and the constant > 0.

Now, fixing a value ofL. > 0, the product of the two-sphere:

§?2 x §2 ={(a,b) e R® | a2+ a5+ a5 =L? b2+ b5+ b5=L%> (11)

is the phase space associated with Hamiltonian systems of Keplerian type indepenéettitadfis, perturbed
Keplerian Hamiltonians for which is an integral. This result was first reported by Md824] using a regularisation
technique based on stereographic projections. Later, it has been described and used by (@]siNosan that

Si X Sf is a four-dimensional smooth space and therefore the reduction is régdjail he introduction of the
invariants extends the use of Delaunay and polar-nodal variables, as equatorial, circular and rectilinear orbits are
included[6,35].

4.2. Reduction of the axial symmetry

Now we briefly analyse what happens for systems invariant under the axial symmetry, that is, for Hamiltonians
independent ofi. We start by fixing a value ol (with |H| < G), this integralH can be understood as &h-action,
or the action of the one-dimensional unitary grdifl) over the space of coordinates and momenta such that:

0181 x (R®\ ({0} x R%) — R®x R (R.(h). (X, P)) > (R.(h)X, R;(h)P), (12)

whereR,(h) is the matrix of a rotation by an angleabout thez-axis, with 0< 4 < 2x. This is a singular action
because there are non-trivial isotropy groups. Ind§@dp, z) | z € R} is invariant under all rotations around the
z-axis. Thus, the reduction due to the axial symmetry is singular, in contrast to the regular reduction obtained by
doingL anintegral, where all the isotropy groups were trivial. Then, we have to apply a singular reduction treatment

[1].
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Ty

Fig. 2. Twice-reduced phase spadesy and7 o. On the leftL = 10 andH = 2, in this casé1 2 is diffeomorphic to a two-sphere. On the
right, we have take, = 11 andH = 0, henceT;1,0 corresponds to a two-sphere with two singular points.

If we denoter = (t1, 12, 73), We can define the mapping:

Ty 8% x 82 — (H) xR®: (a,b) — (H, 11, 12, 13) = (H, 7), with

71 = % (a3 — b3)’ T2 = aj b2 — a2 bl, T3 =a1 b]_ + az bz (13)
The corresponding phase space is defined as:
Ton=7n(S? x $2) ={r e R®| 3 + 15 = [(L + 11)? — H?|[(L — 1) — H?]}, (14)

for 0 < |H| < L andL > 0. Note thatr, and s always belong to the intervaH? — L2, L2 — H?], whereasr;
belongsto [H| — L, L — |H|]. The two-dimensional phase spadgsy and Ty o (the phase space féf = 0) are
plotted inFig. 2for fixed values of the parametetsand H.

In [6], it is proven that whether & |H| < L, T, g is diffeomorphic to a two-spher§? and therefore the
reduction is regular in that region of the phase space. However, Wher0, 7;. o is a topological two-sphere with
two singular points: the vertices at(, 0, 0). The reason for the existence of these two points is thaf'treetion
o has two fixed pointsL (+1, 0, 0, 1, 0, 0) and consequently it is not free. Finally, whighti| = L the phase
spaceTy . gets reduced to a point. See also two applications on the reduction of perturbed Keplerian systems
in [8,37].

Rectilinear motions satisf¢y = H = 0. Taking also into account the constra{ti4), we conclude that they
are defined on the one-dimensional ®&t; o = {t € R®| 1, = 0, 73 = 72 — L?}. Thus, excepting orbits with
x|l = O we could analyse rectilinear trajectories. Circular type of orbits are located on a unique p@jng of
with coordinates (00, L? — H?)—or on a unique point of; o with coordinates (00, L?)—whereas equatorial
trajectories are represented in the negative extreme paffit gfwith coordinates (00, H? — L?) (respectively, at
the point (Q0, —L?) of 77.0).

It is not difficult to prove that Delaunay variables not involving the anglemdh can be expressed in terms
of  [6,35]. So, the twice-reduced system is represented by a Hamiltonian expressed in ternifsved define

4= \/LZ + H? — rf + 13, after dropping constant terms, Hamiltoni@d®) is written as the rational function:

)

=
ALST[[ALta 4+ V2(2L2 + 72)]

{8(2L2 + 2v/2L 14 + t2)[t2(14L? — 472 — 3¢2) + H?(20L? — 212)]

+8L204[—2H(2L? + 2/2L14 + 13) 4+ BLTZ(2H2L + V2(L? + H? — t?)14 + L13)]}. (15)
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4.3. Reduction of the finite symmetries

In the next paragraphs, we follow similar steps to those of Cushman and cowf@Keérkn their treatment of
the Zeeman-Stark effect.
First, we notice that the original Hamilton functi@h enjoys the following discrete symmetries:
Ri:(x,y,2, Py, Py, P;) — (x, =y, =z, = Px, Py, P,),
RZ (x’ y7 Z, P)C7 Pya PZ) I (x9 _y5 <, _P)C7 Pya _PZ)5 (16)
R3 : (X,y,Z, PX? Pyv PZ) — (‘x’yv —Z, PXs Py3_PZ)'

Itis clear thatR3 can be expressed as the combinatioRefandR,. TheseZ,-symmetries are conserved through
the two previous reductions. Besides, in terms oftBethe finite symmetries (reflections) read as follows:

Ra:(t1, 12, 13) —> (=71, T2, 13),
R2 : (11, 12, 13) —> (11, — T2, T3),
R3: (11, 12, 13) —> (—T1, — 72, 13).

Now K = E(rf, —, 13;8, B, L, H) and therefore it enjoys the symmetrigg, R, andR3, as it should be expected.
Hence, itis possible to further reduce Hamiltonkarin this way, we introduce new functions with the aim of taking
advantage of these discrete symmetries. Indeed, we define:

\/L2+H2—rf+r3
- % .

We have chosen a different set of invariants from those selected by Cushman and coj@i&dras we have
preferred to use the Delaunay varialsleas one of the invariante{ = G), so that we can interpret the results of
Sections 5—1n an easier manner.

The inverse change &q. (17 is given by:

o1 = (L —|H|)? -2, 02 (17)

rlzj:\/L2+H2—2L|H|—01, r3:—01+2022—2L|H|. (18)

The reduction process is now achieved by using a suitable map. We define:
oLuTe.n — UL n (11,72, 13) > (01,02) for O<|H| <L,

such thato; and o> are given throughi17). The resulting space is the most reduced phase space, that is, the
fully-reduced phase space and is denotedfpy; and, forH = 0, byl o.
The fully-reduced phase spaces #r£ 0 andH = 0 (seeFig. 3) are given, respectively, by:

2 2
— L|H
(‘72 |HI) <

2 —
03

Upo=1{(01,02) eR? |02 <01 <L? 0<op<L}. (19)

Ur.n = {(01,02) € R? | o1 < (L —|H|, |H| <02 < L},
The constraints between the new invariants are deduced(frdyand define the boundaries@f n andi{;, o:

if |[H>0: o0102=(c%—LIH|)?> and o1=(L—|H|)?
if H=0: alzog, o =0 and o= L2
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>0, o —— > 0,

Fig. 3. On the left, fully-reduced phase space [} > 0. The coordinates of the extreme pointsf » are (L — |H|)?, |H|) (equatorial
motions: blue) and {( — |H|)2, L) (circular motions: green), whereas the space reaches its lowest point, AE[(@T). On the right, fully-
reduced phase space faf = 0. The coordinates of the extreme pointslof o are (L2, 0) (polar equatorial motions: blue)L.{, L) (polar
circular motions: green) and (0) (the non-spurious singular point & o: black). The red segment corresponds to rectilinear motions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Note thatoy ando?, together with the constraints inherited frafrare used to define the spaégsy andify. o from

the reduction of the twice-reduced phase spdges and7;, o. First we note that the spacks,  andi/;, o are, as

Tr.m and Ty o, two-dimensional since the reduction comes from discrete symmetries. However, we only need two
generators to defing; p andl{;, o instead of the three generators used to obfaiy and7z o.

The spacé{; y has two singular points: i(— |H|)?, |H|) and (L — |H|)?, L) while U; ¢ has three singular
points: (L2, 0), (L2, L) and (Q 0). The singularities di/; ; have been introduced through the mapping; and are
indeed spurious. As well the singularitigs?( 0), (L2, L) have been introduced by reducing out the discrete symme-
tries and they are spurious too. The point@pis the singularity coming from the singular pointsi(, 0, 0) of 77 o.

We remark that; ando» are indeed invariants under the action of the three finite symm&He®, andR3.
Moreovero is a function that depends on the modulus of the angular momentum and on the argument of pericentre,
whereasr; is exactly the modulus of the angular momentum vector. We have:

L2H? — 40105 + 403 — 2L|H|(01 + 202)
G =02, COSg== 5 ] 5o
5L2H? — 4(L? + H?)o% + 405 — 2L|H|(L? + H? — 203)

AL2H2 — A(L2 + H2 — 2 _2L|H|(L2 + H2? — oy — 402

5L2H2 — A(L2 + H?)o5 + 405 — 2L|H|(L2 + H2 — 202)

FromEqg. (1§ and the constrain(tl4), it is readily deduced that a single point in the interiotfo or i, g isin
correspondence with four points in the spgge or in 7. u, respectively. Besides, a single point in the regular
part of the boundaries of eithéf;, o or Uy g is, respectively, related to two points Bf o or of 7z g. In addition

to this, to each of the two singular points of the boundar#/ofy, it corresponds one point @f. g. Finally, the
points ofi4; o with coordinates?, 0) and .2, L) are related, respectively, to the points@0—L?) and (Q 0, L?)

on 7. o whereas the point whose coordinate isQPin ¢, o corresponds to the singular pointsk, 0, 0) of 7 o.
This remark will be taken into considerationSection Sor discussing the number of critical points of the reduced
Hamiltonian under study and fBection 7for reconstructing the flow of the original system.

We remark that equatorial, rectilinear and circular type of motions are easily characterised in the fully-reduced
phase space. For locating circular “trajectories" we needdhat L, and so the set of circular “orbits" is zero-
dimensional and is defined by the poink (¢ |H|)?, L) inU; .z and by €2, L) in Uy o. For equatorial “orbits" we
makeo, = |H|, henceforth the set of equatorial “orbits" is defined by the poirdts{(H|)?, |H|) in Uz and by
(L2, 0)inUy o. Finally, rectilinear “orbits" define a one-dimensional se#jno that, sincer, = 0, is simply charac-
terised by the segmenttff. o given by g1, 0) with (0 < o1 < L?). This type of special motions is depictediig. 3.
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4.4. The fully-reduced Hamilton function

From(17), we easily deduce thaf = (L — |H|)? — o1 andzq = v/20. Hence, HamiltoniaiC can be expressed
in terms of the new invariants; ando> as:

1)
B 16L504(L + 02)?

el

{8(L + 02)?[SL2H? — (3H? — 4L|H| — 5L? — 201)0% — 303
+16L%05[—L?H — 2L Ho: - 2H)o? 3 265
3 2+ H(=1+ BL?H)o3 4+ B L(2L|H| + 01)03 + BL%03]}. (21)

Notice thatlC is singular forop = 0. Itis not a surprise a® is equivalent tas and the original Hamilton functiok.

is not well defined for rectilinear trajectories. A way to circumvent this trouble is based on regularisation techniques,
but this is outside the purpose of the present paper. Nevertheless we need to be very careful when analysing orbits
with o2 small, since the perturbatidld could be bigger than the unperturbed part and therefore our study could
have no sense for almost rectilinear trajectoriesSéations 5 and, Ave shall show how to avoid this problem by
controlling the size ofKC|.

5. Relative equilibria and bifurcations
5.1. Equilibrium points and bifurcation diagram

To analyse the equilibria of the system, we neglect those ters&im(21). Their influence modifies nor the
description of bifurcations neither the stability character of the equilibria of the Hamiltonian:

_ BLo3[0102 + L(IH| + 02)%] — H(L + 02)?

Z
L363(L + 0)?

: (22)

obtained from/C after dropping the common factér This is because we do not take into account those points
corresponding to collision “orbits", which are not relevant from a physical point of view.

Equilibria are now determined by the extremum point$2®) on the reduced spaég. . Taking into account
thatdZ/d01 = B/[L(L + 02)?] does not vanish for any value of, there is no equilibrium points in the interior
of Uy, gy and, consequently, they are located on the boundary.

Note that there always exist two equilibrium points, those points where the two curves delimiting the boundary
of Uy w meet. These are the points:

Ev=((L —|H)? |H), E2=(L—|H)L),

corresponding to the class of equatorial and circular “orbits", respectively.
To determine the rest of the equilibria, if any, two cases must be considered:

(a) those equilibria located on the rectilinear part of the boundary given by the euevdL — |H|)2, under the
restriction|H| < o2 < L;

(b) those equilibria located on the curved part of the boundary definedd§y= (o5 — L|H|)?> and|H| < o>
<L.
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5.1.1. Case (a)
If o1 = (L — |H|)?, then(22) turns into the single real-valued function:

BLo5(Lo + H?) — H(L + 02)

23
LSO'S(L + 02) (23)

Z(02) =

The extremum values are reachedat= |H|, oo = L (discussed previously) and at those points satisfying:

dZ(02)  3H(L +02)? — BLo5(Lo5 + 2H%02 + LH?) 0
dop L363(L + 02)? -

In this caseg> must be a root in the interval#|, L) of the polynomial:
P(o2) = 3H(L + 02)? — BLo3(Lo2 + 2H%05 + LH?).

As P(0?) is a fourth-degree polynomial it is possible to derive explicitly the coordinates of the equilibria. However,
it is not easy to decide whether they are real or complex or they belong to the intéfyal.j. For this reason, we
focus on the number of roots rather than on their explicit expressions.

By means of the Descartes rule of signs, we can decide on the number of positive real roots by counting the
number of sign changes in the coefficient sequence of polyndmigdr retrograde motiongd{ < 0) all coefficients
are positive an@ has no positive real roots. In this case there are no equilibria.

On the other hand, for prograde “orbitg? (> 0) the coefficients of the third and fourth powersefare positive,
whereas the independent term as well as the first powes afe negative. Thus, no matter the sign of the second
power is, the total number of sign changes is one,7ahas a unique real positive root. Bolzano’s theorem ensures
that the root is located in the intervaH|, L) if and only if P(|H|)P(L) < 0, i.e. when the following condition is
fulfilled:

(3BL2H? + BL* — 12H)[2BLH® — 3(L + H)] < 0. (24)
If o5 is the root of P satisfying(24), we have the equilibrium:

E3=((L - |HI)?, 03).
Note thatE3 appears or disappears whenever one crosses the hypersurfaces:

I =3BL%?H? + BL* — 12H = 0, I =2BLH® —3(L + H) = 0. (25)

5.1.2. Case (b)
If 0102 = (02 — L|H|)?, (22)turns into the single real-valued function:

ﬁLaz(ag + LH?) — H(L + 02)

L363(L + 02) (20)

Z(02) =

As in the previous casey = |H| andoz = L are extremum values and the rest are obtained from:

dZ(02)  3H(L + 02)* + BL20s(03 — 2LH? — 3H?03)

0.
do2 L365(L + 02)?
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This equation is satisfied if, is a root of the fourth-degree polynomial:
Q(02) = 3H(L + 02)? + BL?02(03 — 3H?02 — 2LH?).

The maximum number of sign changes in its coefficient list is twoHof 0. For retrograde orbitsH{ < 0), the
number of sign changes is one, provided that all coefficients are negative except that of the fourth power of

Descartes rule of signs ensures the existence of a positivejdor retrograde motions and, thus, the existence
of a possible equilibrium point 5, is located in the interval |, L). This is the case i@(—H)Q(L) < 0. Since

O(—H) = H(L — H)(2BL?H? + 3L — 3H)

is sign-defined (negative) fad # 0, we obtain an equilibrium point ©(L) > 0, that is, whether the condition
5BL°H? — BL* — 12H < 0 (27)

is fulfilled. This equilibrium point has coordinates:

(057 + LH? _
Eo=\—""=—%

02
and appears or disappears as it is crossed the hypersurface obtainéa@om
Io=5BL?H? — BL* — 12H = 0. (28)

For the case of prograde motions, we need further insight in order to determine the number of @oWeof
take advantage of the resultant ($8p of a polynomial to compute the boundary between none and two positive
roots, which corresponds to the appearance of a double root. In this way:

Res(Q, S—Q) = 4328318 H3(L? — H?)(3H — 8BL%H? + 168L* + 68°L*H® — B*L8H®) = 0. (29)
lop3

Excluding the caseg =0, H = 0 andL = 0, (29) vanishes ifL2 — H? = 0 or if its last factor vanishes. For
L = |H]|, @ has adouble root ab = —L and then it is when the last factor of R&s(dQ/do>) vanishes wher®
has a positive double root. Furthermoghas two positive real roots if

—3H + 88L%H? — 168L* — 68°L*H® + g*LBH® > 0. (30)

Moreover, wher(30)is satisfied then:

e if Q(H) > 0andQ(L) > 0, thenQ has two roots in the intervaH, L),
e if Q(H) < 0andQ(L) > 0, thenQ has aroot in the interval, L),
e if Q(H) < 0andQ(L) < 0, then@ has no roots in the intervaH L).

We note that it is not possible th@(H) > 0 and Q(L) < 0 at the same time, so the three items above are
exhaustive.
In short, for prograde “orbits"H > 0) two equilibria can be obtained:

(02, — LH)? (02, — LH)?
Eq = (20—2,020 ; Es = 21—2,021 ;

920 021
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Fig. 4. Plane of parameterf/(L) for 8 = 0.4. The number of equilibria in each region delimited by the cutNeappears encircled.

whereop ando21 are the two positive real roots @. Moreover, these points appear or disappear when crossing
the hypersurfaces defined through:

I3 =2BL°H? — 3(L + H) = 0, I'y = BL?(L? —5H?) + 12H = 0,
Is=—3H +8BL?H? — 168L* — 68°L*H° + B*LE8H® = 0. (31)

From the discussion above it follows that, orftis fixed, the plane#{, L) is divided into different regions where the
number of equilibria changes. These regions are determined by the curves def{@&)l, §28) and (31)ogether
with the constraintH| < L as it is depicted irig. 4.

Some remarks of special interest must be noticed. The first one iEghatl; are defined by the same equation,
but they appear ifig. 4as two branches of the algebraic equation. The second one is that all curves are coincident
on the lineL = H, just on the boundary of the plane of parameters at:

_ ﬁ J3)
p\B
The third remark is that all lineg}, correspond to parametric bifurcations of pitchfork type exceptripthat
corresponds to a saddle-centre bifurcation. This conclusion follows from the number of equilibrium points involved

in the bifurcation together with the Index Theorem and a theorem on the multiplicity of a root for a vanishing
resultant.

5.2. Stability

The linear stability of the equilibria can be decided through their character as extremum points, not only relatively
to the boundary but to the whole fully-reduced phase space. In this sense, a relative maximum or minimum in
the boundary does not imply a stable equilibrium. It is necessary that it keeps its character with respect to a
neighbourhood containing points in the interior of the fully-reduced phase space. However, Ham{2@yiaran
increasing function of for constant». This means that, for constast, the Hamiltonian ranges from a minimum
value in the lower bound of the reduced phase space (curved part of the boundary) to a maximum value in the uppe
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bound (straight part of the boundary). Consequently, a local maximum in the straight part of the boundary is stable
whereas an unstable point corresponds to a minimum. The reverse situation is satisfied in the curved part of the
boundary, a minimum implies stability, while a maximum implies instability.

In the case of the extremum points of the boundary, i.e. the péinend E>, their stability can be discussed
by means of a similar argument. Considering the Hamiltonian restricted to the straight and curved parts of the
boundary, the two functions so defined must be increasing or decreasing at the same time. That is to say, the sign of
the derivatives of the two real-valued functidi28) and (26)must be the same. ThuB; is stable if

[2BLH® — 3(L + H)][2BL?>H? — 3(L + H)] > O. (32)

Note that the two factors i(82) are the polynomials defininfl, and I's. Then, E; is stable except for the region
between» and 3.
In the same wayE is stable if the condition

(3BL2H? + BL* — 12H)(58L?>H? — BL* — 12H) > 0 (33)

is fulfilled. This is the case outside the region betwégnly andI'y.
The pointE3 is stable if it is a maximum. A straightforward calculation yields:

— 207252 2 2 _x2 2 _x2 3
ch%E = —BLoy(L°H*+ 3LH%05 + 2L“05° + H 05" + Lo;”) < 0,
3

since|H| < o5 < L. ConsequentlyEs is stable when it exists.

An interesting consequence is the presence of a saddle-connection bifurcation. NBteahadars after a pitch-
fork bifurcation involvingE1 and it disappears through a pitchfork bifurcation involviig Then, the homoclinic
loops attached to equilibri; and E» eventually merge and then interchange the stable points they encircle. This
happens when the energy B and E “orbits" is the same, that is, the saddle-connection takes place when:

=B L2H?(L+H)—2(L?+ LH+ H?) =0.

This equation defines the curyg in the plane of parameters, which is located in betwEgand; and is tangent
to them at the poinP.

Finally, the stability of the point&o, E4 and E5 in the curved part of the boundary of the phase space follows
from the sign of the second derivative of the Hamiltonian. This reduces to check the sign of the polynomial:

x(02) = 05 + 2Lo3 — 2LH?0y — L?H? (34)

evaluated at the,-coordinate of the equilibrium points; , 020 ando2s. This polynomial has a root in the interval
(IH|, L). Leto, be such aroot, then if the-coordinate of an equilibrium satisfies < o7, it is unstable and stable
if o2 > o7. In the limit casex(o2) = 0, o2 must be a common root of the polynomi&l$o») and x(o2) and then
the resultant of the two polynomials vanishes. The resultant reads now as:

ResQ, x) = —27L*H3(L — H)*(L + H)? x (—3H + 88L%>H? — 168L* — 6°L*H°> + g*L8H),

and it vanishes with Re§), dQ/do?) at I's. Then, the points, and E5 conserve their stability properties while
they exist. Moreover, the sign gfo?) is constant for a roat, of Q unlessls is reached. Thus, for prograde “orbits”
the lowest root, sayzg, corresponds to an unstable equilibrium (eventually it becomes smallethadn the
other hand, the equilibriurf’s is stable because the corresponding matbecomes bigger thah.

For H < 0, the equilibriumgEy is stable, because itg-coordinate becomes bigger th@n Moreover, this
equilibrium only exists forH < 0. Thus,H = 0 defines another bifurcation line. We can understand that the point
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moves passing from the curved part of the boundary of the fully-reduced phase space (th& foint’ < 0) to
the straight part of the boundarg{ for H > 0).

6. Phase flow evolution

A complementary information about the dynamics of the syg@&hjis given by the phase flow evolution. Since
the twice-reduced Hamiltonida (or the fully-reduced onk) defines a dynamical system of one degree of freedom,
the trajectories, after fixing a valleof the energy, result as the intersections of the Hamiltoitiavith the surface
(14), that is to say, they are the level curves of the equdfiea E on(14). Similarly, we can obtain the trajectories
of the system in the fully-reduced phase spdégs; andi{; o. It allows us to plot the phase flow of the system
quite rapidly and very accurately. In fact, we do not draw the level curves, but we assign to every point on the phase
space the value that Hamiltoni@hor K takes at it. Hence, those points associated with the same value belong to
the same level curvk = E (orIC E). This is the basic idea of the technique knowmpasting by numbe(see
[21]).

Calculations involved in the determination of the phase flow are straightforward. First, we construct a two-
dimensional grid which is, either orthographically projected7an; or on 7 o, or directly constructed on the
fully-reduced phase spadds y andl{;, o. Then, the Hamiltonian is evaluated at the corresponding points according
to the grid we have chosen.

Thereafter, the resulting matrix is submitted as an input in the commercial software TRANSHDRMhich
computes and draws the level curves on the selected orthographic projection or planar space. This technigue ha
been used to produce all the pictures appearing within this section.

Based on the bifurcation diagram obtained in the previous section, we study the phase flow evolution choosing a
“representative” path on the parametric plaHeX) for which the stability and the number of equilibria change. This
path surrounds the special poidtvhere all the bifurcation lines; intersect. Most of the bifurcations experimented
by the fully-reduced system along this path will be shown onl¥jing, due to the difficulties of visualizing the
phase flow on the fully-reduced phase spdge;. Here, all changes in the number and stability of equilibria occur
in a tiny region of the phase space, therefore it is almost impossible to appreciate the flow evolution.

Fig. 5shows the evolution of the system in both phase spégcesandl{;, y for H = 1.5 and increasing. from
1.75 to 19 along a path crossing the bifurcation lihg. For L = 1.75, the phase flow 0ff1 7515 consists only
in rotations around the stable equilibi#g and E>. These rotations correspond to straight lines that surround the
equilibria E1 and E» in the fully-reduced phase spal#g 75.1.5. When the system reaches the cufyea pitchfork
bifurcation takes place at equilibriufip which becomes unstable. A separatrix passing thrdtigburrounds two
new stable equilibria, namelys andE3. This pitchfork bifurcation can also be observed in the fully-reduced phase
spacé{; 15, where the equilibriunE, becomes unstable and a “semi-separatrix”, asymptotiytsurrounds a
new stable equilibriunks located at the line; = (L — | H|)?. We remark that the two poinSg and E3 correspond
to the same equilibrium points in U,z or Uy o. This duplication follows immediately frorkq. (1§ and it is
consequence of the discrete symmetries of the problem.

Fig. 6represents the phase flow evolution of the systeff.iy along a path crossing the bifurcation lings I3
andls, for H = 1.5 and increasind. from 2 to 226. When the system reaches the cufgea closed orbit around
the equilibriumE, experiences a double saddle-centre bifurcation in such a way that four new equilibria appear:
two of them unstable£4 and E4, and the other two of stable charactEs and Es. Besides, a new heteroclinic
orbit connectingt4 and E4 surrounds the centrds,, Es andEs. As the system gets close to the bifurcation curve
I3, the equilibriaE1, E4 andE, approach one each other in such a way that wiigis crossed, another pitchfork
bifurcation occurs: the equilibrif, E4 andE4 meet atf 3 and after crossing it only the poify survives becoming
unstable. A separatrix asymptoticig keeps on surroundings andEs. This bifurcation is not the typical pitchfork
bifurcation where two centres and a saddle merge in order to produce a centre, but in this case two saddles and
centre merge to end up with a saddle point.
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FULLY REDUCED
PHASE SPACE Uy

REDUCED PHASE SPACE Ty

E3
H=1.5
L =

E3

Bifurcation line
I
T
T

H=1.5
L=1.75

E;

E;
NORTH POLE T3>0 SOUTH POLE T4<0

Fig. 5. Phase flow evolution of the system fér= 1.5 asL increases from.Z5 to 19. The first and second columns correspond to orthographic
projections onto the planey(, t2) viewed fromrz > 0 and fromrz < 0, respectively, on the phase spgge; 5. The third column corresponds
to the same evolution in the fully-reduced phase spéces. Besidesy = 0.01 andg = 0.4.

After this second pitchfork bifurcation takes place dnihcreases, the two separatricesatand E> get close
one each other, and when the cugis reached, both orbits collapse and a saddle-connection bifurcation takes
place. After crossind, the two separatrices interchange the centres they surround.

Finally, the evolution of the phase flow on the phase spacg for fixed L = 2.5 andH increasing from B4
to 1.74 along a path crossing the bifurcation curv@sand I> is shown inFig. 7. As H increases and the system
approaches the cun#g, the pointsE,, Es and Es get closer and when the ling,; is crossed, another pitchfork

_ H=15 H=15
= H=15 5
H=15 ) . ) Lo253 ) _ ) L=2245 N . . L=226
L=20 Bifurcation line Bifurcation line Bifurcation line
E3 E
Is 3 Ts
NORTH
POLE 130
E> Es
7l ]_32
T E3 E| Ei
Ey
SOUTH
POLE 130 -
E4
E; E3

Fig. 6. Phase flow evolution of the system fdr= 1.5 asL increases from 2 t0.26. The first and second rows correspond to orthographic

projections onto the plane, r2) viewed fromzz > 0 and fromrz < 0, respectively, on the phase spgGe; 5. We have takeid = 0.01 and
g =0.4.
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Fig. 7. Phase flow evolution of the system foe= 2.5 asH increases from .54 to 174. The first and second rows correspond to orthographic
projections onto the planey(, t2) viewed fromrz > 0 and fromrsz < 0, respectively, on the phase spgée 5. Besides, we také = 0.01 and
p=04.

bifurcation takes place: the equilibrizy, Es andEs collapse, and after the bifurcation, orffig survives becoming
stable.

The last bifurcation line, sayy, is related to the appearance or disappearance of the equilipriéi; and E3,
and it corresponds to another pitchfork bifurcation. A&sncreases, the point8;, E3 and E3 approach one each
other, and wher is reached, all of the equilibria meet and oillly survives after the bifurcation.

7. Connection with the original system
7.1. Reconstruction of the flow definedMy

Our next purpose is to approximate the invariant sets of the initial system from the critical points of the reduced
one. We know[36] that for the case of toroidal symmetries—as the ones due to the appearance of the integrals
L and H—we can generically continue a certgirdimensional torus to a truep(+ n — s)-dimensional torus of
the initial Hamiltonian, where: designates the number of degrees of freedom of the original system thed
number of degrees of freedom of the reduced one. For our pasd) (the only invariants determined in the fully-
reduced Hamiltonian are equilibrium points)= 3 ands = 1. Thus, (regular) critical points df correspond to
two-dimensional tori oft{. Once we have an equilibrium in the fully-reduced phase space, we can determine a
family (parameterized by. and /) of invariant two-dimensional tori of the original Hamiltonian.

The procedure is as follows. Sinkehas been obtained after three reduction steps (the Keplerian reduction related
to the first-order normalisation followed by the exact axial-symmetry reduction and the reduction by the discrete
symmetries), in order to pass to the original Hamiltonian we should attach either a family of two-dimensional
invariant tori (with parameterd and H) to any point of 7, g if |H| > 0 or either a family of periodic orbits
(parameterized by) to the singular pointsfL, 0, 0) of 71, o. However, we notice that the point& [, 0, 0) must
be discarded as all our Hamiltonians (perturbations of the two-body system) are singular for rectilinear orbits.
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We also need to discard those critical points whose linearisation has null eigenvalués<IfG < L, the two-
dimensional tori are defined by the angteend’. In case of equatorialf = |H|) or circular motionsG = L) itis

still possible to define other action and angle variables and perform the reconstruction of the invariant tori similarly,
as we will see later on when trying to get closed orbits.

What we obtain about the original system are families of two-dimensional invariant tori depending on the
parameterd. and H but also on the external parametgrsand 5. An equilibrium on the fully-reduced phase
spaces, whose linearisation has no null eigenvalue, must be in correspondence with one, two or four families of
two-dimensional invariant tori iR®, depending on where these points are placed in the fully-reduced phase space.
Moreover, an equilibrium in the fully-reduced phase space and its corresponding invariant torus share the same type
of stability (nonlinear in the hyperbolic case).

For those equilibria of(;, 5 or of Uy, o where the linearisation yields null eigenvalues, a specific analysis should
be performed. This situation occurs here only for the saddle-centre and pitchfork bifurcations. For a detailed analysis
and reconstruction of the flow for the former we refeTp whereas the latter have been studiefilifi. In both
cases, the degenerate points are of parabolic type and therefore unstable. So, the corresponding two-dimensiona
tori are also parabolic as the fully-reduced system is structurally stable.

We can even compute the explicit formulae of the approximations of the two-dimensional invariant tori using the
direct change of the Delaunay normalisation, i.e. the transformatiovserting thereafter the coordinatesifin
this change. However, on the one hand, we have detected families of quasiperiodic orbits of equatorial and circular
type. On the other hand, Delaunay coordinates are not defined for these orbits. Thus, we resort to a different set of
action and angle variables well defined for small inclinations and all eccentrieitig®, 1): the set of canonical
Poincaé element$25]:

qgu=L+g+h, g2 = —+/2(L — G) sin(g + h), g3=~{+g,
pir=L—-—G+ H, p2 = /2(L — G) cos(g + h), p3=G— H.

Now we construct the transformatiomeferred to the variablg85). This is achieved using the changand taking

into account the partial derivatives among the Poiacard Delaunay elements. Besides, we need to express the
coordinates of the particular poid; in terms of(35). Hence, an invariant torus related to a specific equilibrium
point E; is defined through the angles andgs. Note thatG andg are functions of the parametetsand H and
consequently we have obtained a (two-parameter) family of two-dimensional tori for a given criticaEpdimt

this case, a first-order normalisation has been enough to study the qualitative dynamics of the original problem.
Nevertheless, provided that the global error after truncation be maintained small enough, the higher the order we
reach with the Lie transformation, the more accurate the invariant tGti arfe.

The approximated tori of the system defined Hyare indeed approximations of true invariant tori. Their
existence can be guaranteed because the two continuous symmetries are action variables conjugated to angula
coordinates. Thus, we can define a suitable Poozapping and apply the Implicit Function Theorem, details
appear in[36]. Generically the true tori can be refined using either analytical or numerical continuation tech-
niques. Next, bifurcations of relative equilibria are translated into bifurcations of families of two-dimensional
invariant tori or quasiperiodic orbits. The persistence of these bifurcations is guaranteed by the estimate of the next
subsections.

We do not give details about the reconstruction of the full system using KAM theory, as the analysis is analogous
to the ones performed ii7,17]. Instead, we illustrate the connection to the original system by using estimates of
the error for the transformatior® or «, as well as some surfaces of section.

(35)

7.2. Error estimation

We estimate the error to show the range of validity of the results obtained and consequently the reliability of the
conclusions on the original system. Estimates on the time validity of the Delaunay normalisation (at first order or
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at higher orders) can be directly derived from the generating function and the inverse change obBéautidim3
throughEg. (9.

If we denotez = (¢, g, h, L, G, H)andy = (¢, ¢/, h', L', G’, H'), we know thatb(y) = z + O(5%) anda(2) =
y + O(8%). We can composg with @ or K with o getting:

H(2) — K(y) = H(a(y)) - K(y) = O(5),
K(y) — H(2) = K(®(2)) — H(2) = O(5).

The error term?(82) is a function ofy or of z and the parametefsands. Moreover,s acts as a small parameter.
We prefer to composk with « and work with the initial Delaunay coordinatgsince we can make comparisons
with the original Hamiltonian. Now, the err@(52) can be written as:

K(2(2)) — H(2) = €(2).

wheree plays the role of the global error produced by truncating the computation at degree one. The maximum of
le(z)| evaluated for different values oiwill give us the size of the error. This function depends on five coordinates—
his not present in the formulae—plus the consiatiext we need to evalua&€z) with the angleg andg allowed

to vary in [0, 27) wheread., G andH satisfy O< |H| < G < L. Besides, we takg < [0, 0.5] and build a grid of

1000 points. We have checked that neé®)| < 252 and consequently the theory can be considered of order one.

We can conclude that the composition given in the above paragraph is true on a time-s¢adleiudtlis, the
transformation of{ into X and the changes of coordinates are validsfar[0, C/§] for some constant > 0, see
referencg27] for details and workout examples. However, in practice itis not always easy to determine the majorant
C and this is usually done in every particular situation. Other upper bounds of the time validity could be obtained
using Nehor&ev theory, though it is outside the scope of the present paper.

7.3. Poincag surfaces of section

The analytical results obtained in the previous sections may be validated by means oféPminfzaes of section.
Even more, the results of this section are in agreement with the estimation of the error stigketon 7.2

To begin with, we recall that periodic orbits are reflected as fixed points on the Roiswdaces of section.
Thus, every fixed point on the surface of section can be associated with an equilibrium in the fully-reduced phase
space.

We define the surface of section-as- 0 and P, > 0 from Hamiltonian(7). This surface appears as a closed
region in the planed, P,) bounded by:

82 28H H? 2 288
szi\/ZE——Jr———Jr——i (36)

ot e 02 p p’]

for a fixed value of the energy = H < 0. Note that the equatorial oscillation on th@xis, which always exists, is
tangent to the flow in this representation, and corresponds to the exterior limit of the Raiaction. This periodic
orbit corresponds to the equilibrium poify in the fully-reduced phase space. Besides, since this orbit does not
appear as a single fixed point, its stability cannot be determined directly by looking at the orbits around it. However,
the stability character can be inferred from the Index Thed&sh

We sets = 0.01 andg = 0.4, whereas the energy ~ —1/(2L?) and thez-componentH of the angular mo-
mentum are conveniently varied in order to sweep out the different regions where changes in the dynamics are
expected.
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Fig. 8. Evolution of the surfaces of sectipr= 0 andP, > 0for§ = 0.01,8 =04, H = 1.5and (a)L = 1.75, (b)L = 1.9 and (c)L = 2.23.

The first bifurcation we are looking for is a pitchfork one and it occurs wheis crossed. This bifurcation
is depicted inFig. 8 For H = 1.5 and L = 1.75, the stable fixed point ifrig. 8a is an almost circular orbit
which corresponds to the equilibriuRy in the fully-reduced phase space. Foe 1.9 (seeFig. &), the pitchfork
bifurcation takes place: the fixed poiBb becomes unstable and the separatrix passing through it surrounds two
new stable fixed points, which correspond to the equilitiiieand E3 in the fully-reduced phase space. Besides,
E1 is stable for both. = 1.75 andL = 1.9.

When the bifurcation linds is crossed, a double saddle-centre bifurcation is expected. This bifurcation can be
seen irFig. & for L = 2.23. In the upper and lower corners of the section, there appear four new fixed points which
correspond to the two stable equilibifig and Es and to the two unstable equilibrizy andE4 in the twice-reduced
phase space.

A clearer vision of this bifurcation can be obtained by changing the definition of the surface of section to a new
one where the equatorial periodic orlali is inside the surface of section. This can be achieved by defining the
surface as the sectign= p, andP, > 0. This time the boundary of the surfaces of section is obtained by expressing
P in terms ofz in Eq. (7) after replacingo = p, and P, = 0. We note that with this unusual surface of section,
we cannot guarantee that it will be crossed by most of the ofbis In Fig. 9, a sequence of three surfaces of
section defined by = 4 andP, > 0 is shown. The double saddle-centre bifurcation may be observed comparing
the surfaces of section givenig. 9a and b.

The next bifurcation is a pitchfork one and it takes place when theltirie crossed (compareig. % and c).

Pz

() (b) (c)

Fig. 9. Evolution of the surfaces of sectipn= 4 andP, > 0for§ = 0.01, =04,H =15and (a)L = 1.9, (b)L = 2.23, (c)L = 2.245.
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Fig. 10. Evolution of the surfaces of sectipe= 0 andP, > 0 for§ = 0.01,8 = 0.4 and (a)L = 2.28 andH = 1.5, (b)L = 2.5andH = 1.7,
(c)L =25andH = 1.74.

The saddle-connection bifurcation is observed whign 10a is compared téig. 8 and c. Note that while in
Fig. 80 and c the separatrix passing throughsurrounds the fixed point8z and E3, in Fig. 10a this separatrix
surroundsEs and Es. Finally, in Fig. 1 and c, the last two pitchfork bifurcations—which take place when the
linesI'; and Iy are crossed—are reported.

It is worth mentioning that the values of the parameters for which the bifurcations are observed in the surfaces
of section are in very good agreement with the values of the parameters for the bifurcation Beesioh 5

7.4. Symmetric periodic orbits

Even though itis possible to determine periodic orbits from surfaces of section, now we see how some quasiperi-
odic orbits of the original system turn into periodic orbits under certain assumptions. Here, we determine families of
symmetric and doubly-symmetric periodic orbits. These doubly-symmetric orbits have been analysed in the context
of the restricted three-body problem by various authors, and we cite the recent ref@gntkere, we follow the
steps of37] adapted for our requirements.

As discussed already iBection 4 Hamilton function(5) is invariant under the reflections given ([(h6). We
chooseR, and R, as fundamental symmetries sinRg can be generated combinifigy andR,. In Cartesian
coordinatesR1 andR,, respectively, fix the hyperplangg and L, defined by:

L1 =1{(x.0,0,0, Py, P.) | x, P, P. € R},
L2 ={(x,0,z,0, Py,0) | x,z, Py € R}.

Now we take advantage of the discrete symmetries with the aim of closing some of the quasiperiodic solutions
predicted inSection 7.1Using Poinca& coordinate$35) the fixed hyperplanes read as:

L1 =1{(q1,0, g3, p1, p2, p3) Wwith q1 = g3 =0modr},
L2 = {(q1. 0. g3, p1. p2, p3) With g1 =O0modr, g3 = 37 modxr}.

To get an approximation of a closed orbit of Hamiltoniinwe look for a linear relation between the angigs
andgs. Indeed, we use the hyperplangsandL; to pick some initial conditions, ensuring that a certain trajectory
starting atC; will get closed at the same point gf and the same applies for initial conditionsgdn. Note that we
have a certain freedom since we have families of quasiperiodic trajectories parameterizeahdy’. Thus, we



M. Iharrea et al. / Physica D 197 (2004) 242—-268 265

setgs = g3 + s(q1 — ¢°) for some initial conditiongY andq3 that we shall fix later on. The determination of the
slopes is made through the quotient

o % _ dgs/dt
dg1  dgp/dr

In order to calculate it we go back to HamiltonighO). As we know that d/dr = 9K/dL, dg/dr = 0K/0G
and di/dr = 0K /0H, we get: d3/dr = 0KC/0L + 9K /9G and dy1/dr = 0KC/0L + 0K /9G + 0K /dH. Now, cosg,
sin g and G are written in terms of the’s using Eq. (20 and finally the coordinates of the equilibrig, say,
(ol?, 02?), are substituted into the resulting expressions. Thus, we compute the possiblessiopal critical
pointsE; and conclude thatis a function of the four parametessg, L andH.
Three possibilities are in order: periodic orbits intersectingor L, or both hyperplanes. They are symmetric
in the first two cases and doubly-symmetric in the last one. For instance, if one is interested in calculating the closed
orbits intersecting1, we select initial conditiongd = ¢3 = 0 modr andgd = 0.
As an illustration, we detail how to obtain periodic orbits out of the quasiperiodic orbits related to the equilibria
E1 and E5. In both cases, usin(0) we have that sig = 0, then we takdig =0 andqg = 0. Hence, choosing

¢o = 0 we getg) = ¢3 = 0 and the relations among the angles yield:

g3=Prg for G=H,
epd
ery
93 =" d1 for G=-H, (37)

C
q3:—nq1 for G=1L,
Cd

where

epn = —8L3HS(L + H) + 8(L + H)(35L3 — 7LH? + 18L°H — 10H°)
+88L2H3[—3H? + 2LH(—3+ BH®) + L?(—3+ 48H3)],

epa = 2(L + H)[—4L3H® + §%(15L% — 5H® — 3L H? + 9L?H)
+45L%H3(—2L — 3H + 2BLH?)],

and similar expressions hold fer,, ery, ¢, andc,.

Next we go back to the (approximate) expressions obtain&kation 7.1for the families of two-dimensional
invariant tori associated with equatorial and circular motions of the original HamiltGgiditnen we express these
tori in Poincae variables usin¢B5). Thereafter, we make that the angular variables of thejtaindg; satisfy one
of the conditions given througl87), obtaining (approximate) families of periodic orbits, parameterized layd
H which are either nearly equatorial—both prograde and retrograde—or nearly circular.

Other approximations of periodic orbits for other critical point&afan be determined similarly. However, note
that we do not know the explicit form of the critical points‘fl(, agi) excepting for equatorial and circular orbits.
Anyway one can give particular values fbrand H in a specific region of the plane of parameters and proceed as in
the preceding paragraphs. We also encounter periodic orbits from the quasiperiodic orbits refafdulitaising
the symmetryR,. It is achieved by taking the corresponding slopesd initial conditionsq? andpgJ adequately.
This collection of closed trajectories are again generically parameterizecbgH.

Next we show how to get doubly-symmetric closed orbits. In order to do so we need that the trajectory touches the
two fixed hyperplanes. We start by taking initial condition£i forcing the solution to pass through and ending
in £1 in the same initial conditions. So, we mag®= 0,49 = jm andg3 = k= with j, k € Z. Now we impose that
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our closed orbit reache, i.e. we makey: = 0, g1 = mx andg} = 7/2 + nx, wherem, n € Z. Observe now that
the equationyz = qg + s(g1 — q(l)) has to be satisfied by the pa.i[%( q%). Thence, we arrive at the relation:

k—{—s(m—j)—%—n:O, (38)

where the slope depends on the equilibrium point we choose. For instance, we start by giving the following values
for the external parameters= 0.01 andg = 0.4. Now we select the values of the integralandL doingH = 1
andL = 3. With these choices we compute the sleplkrough the quotient, /¢4, obtaining a rational value for
which may be approximated byd®9.... Next, we put: = n = 0 and try to adjust the integejsandk so thateq.
(38) can be satisfied. After setting= 65401001, we get = 65337820. Thus, we have obtained a closed orbit of
circular type, which according to conditigB3) is unstable. It is even unstable taking the whisle

Other stable and unstable periodic trajectoried{afan be obtained in a similar way, taking appropriate initial
conditions in eithei’; or £, and passing either througlp or through£L1, respectively.

Proceeding as in the previous paragraphs, we have obtained single-symmetric and doubly-symmetric periodic
orbits ranking from circular@ = L) to almost rectilinear@ ~ 0) and having inclinations varying from 0 to nearly
7. Besides, the stability of such orbits depends on the valuésasfd H, according to the region of the plane of
parameters in correspondence with the fixed valuésarfd H. We stress the importance of obtaining a closed-form
expression o¥V1, as we have got formulae for all type of elliptic motions.

The approximate periodic orbits we have obtained can be refined either analytically or numerically. Numerical
strategies to continue periodic orbits of Hamiltonian problems can be looke24],iwhereas analytical techniques
are based on the calculation of higher-order terms of HamiltdGiasor Hamiltonian'C—using Lie transformations,
combined with the analytical approximation of the critical point&afhich are needed to get a good approximation
of a certain trajectory.

8. Conclusions

We have studied the dynamics of a charged patrticle that orbits a rotating magnetic planet. We have focused or
the Keplerian regime, i.e. on the case where the main force acting over the particle is the gravitational field created
by the planet. The main features of our work can be summarized as follows:

(i) We have made arigorous analysis of G8problem, establishing two-dimensional invariant tori and quasiperi-
odic orbits together with their stability. The occurrence and type of stability of the invariant tori and quasiperi-
odic orbits depend on four parameters, two of them being of external n#tamed s, and the other two of
internal character: the exact integral of the probl&nand the approximate integral Besides, we have de-
termined analytically the bifurcation lines, i.e. the relations among the four parameters so that a change in the
number of invariant tori and stability happens. Th8Hamiltonian presents a very rich dynamics depending on
its parameters. Indeed, we have found a saddle-centre, five pitchfork as well as a saddle-connection bifurcation
Besides, we have tested their existence using Pdmaraces of section.

(ii) The analysis has been possible through a simplification of the original Hamiltonian. First of all, a Delaunay
normalisation has been utilized to average the Hamilton function with respect to the mean anomaly. A method
for controlling the error related to the truncation of the averaged Hamiltonian has been used. Then, we have
applied reduction theory to express the averaged Hamiltonian, truncated at first order, in terms of functions
invariant with respectto the two continuous symmetries of the resulting problem: the axial one and the symmetry
induced by averaging. Next, we have taken advantage of the finite symmetries of the problem to construct the
fully-reduced Hamiltonian in its corresponding two-dimensional phase space.

(i) The fully-reduced Hamiltonian defines a system of one degree of freedom and is therefore easier to be studied
than the original one. We have extracted the qualitative information about its critical points. This is translated
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to the original Hamiltonian using reconstruction of the flow techniques. Besides, we have plotted the flow of
the twice-reduced Hamiltonian and the one corresponding to the fully-reduced system. By doing so we have
verified the occurrence of all bifurcations found analytically.

(iv) Some true symmetric periodic orbits of the original Hamiltonian have been approximated to first order using
the finite symmetries of the problem. These periodic orbits can be either continued numerically using standard
methods or analytically approximated pushing the normalisation to higher orders. We plan to tackle this issue
in future.

(v) We have enlarged the study dong24,23,13] finding a new collection of periodic trajectories crossing the
equatorial plane of the planet’s orbit.

The methodology used in this paper can be applied to other problems formulated as perturbations of the two-body
problem, enjoying an axial symmetry or not, but enjoying a set of discrete symmetries like tHa€g d¥e cite

some problems related to the restricted three-body Hamiltoniaid8¢37)), an artificial satellite orbiting a planet

where the perturbation caused by the gravity field of the planet is taken into account (§8e6dJsthe hydrogen

atom under the influence of an electric and a magnetic crossed fields (see, for iN&d&deor some problems

of physical chemistry, modelled by means of the so-called generalised van der Waals pdtéhtial
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