
Physica D 197 (2004) 242–268

The Keplerian regime of charged particles in
planetary magnetospheres
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Abstract

The dynamics of a charged particle orbiting around a rotating magnetic planet is studied. The system is modelled by the
two-body Hamiltonian perturbed by an axially-symmetric function which goes to infinity as soon as the particle approaches
the planet. The perturbation consists in a magnetic dipole field and a corotational electric field. When it is weak compared to
the Keplerian part of the Hamiltonian, we average the system with respect to the mean anomaly up to first order in terms of a
small parameter defined by the ratio between the magnetic and the Keplerian interactions. After dropping higher-order terms,
we use invariant theory to reduce the averaged system by virtue of its continuous and discrete symmetries, determining also the
successive reduced phase spaces. Then, we study the flow of the resulting system in the most reduced phase space, describing
all equilibria and their stability, as well as the different classes of bifurcations. Finally, we connect the analysis of the flow on
these reduced phase spaces with the one of the original system.
© 2004 Published by Elsevier B.V.
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1. Introduction

The theoretical study of the motion of a charged particle in planetary magnetospheres has attracted the attention
of physicists and astronomers since the second middle of the last century. The pioneering model goes back to
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Størmer’s work in 1907 (see the papers[38] and the monography[39]), where the motion of a charge in a pure
magnetic dipole field (theStørmermodel) is considered. This model provides satisfactory results for the explanation
of the dynamics of light particles (ions or electrons) which are present in the radiation belts surrounding magnetized
planets[11,12]. However, when charged dust grains are considered, the ratio between the charge and the mass of
the particle is small and the purely magnetic model has to be improved. The reason is that one takes into account
the gravitational field created by the planet, as well as the corotational electric field due to the rotation of the planet
(see[20] and references therein). This is the so-calledgeneralised Størmermodel, which will be denoted from now
on by the acronymGS.

In a recent series of very interesting papers, theGSmodel has been revisited by Horányi, Howard and coworkers
[22,24,23,13]. The authors use aGSmodel that includes Keplerian gravity, a magnetic dipole aligned along the
axis of rotation of the planet and a corotational electric field. In this framework, due to the axial symmetry of the
system, the third component of the angular momentum is an integral, and the dynamics of the charged dust grain
is governed by a two-dimensional effective potential. This potential has been intensively explored. Specifically, the
above-mentioned authors achieve the following: (i) the global stability conditions of the grain are obtained as a
function of the parameters[24]; and (ii) the existence of non-equatorial halo orbits[23,13]for the grain is predicted.

Our aim is to describe the global dynamics of theGSproblem. It is a nice candidate to which apply the modern
analytic tools of nonlinear dynamics. However, the dynamics is highly nonlinear and it is extremely difficult to state a
global analytic model that explains the complete motion of the grain. Roughly speaking, in theGSproblem the grain
is subjected to gravitational and electromagnetic forces, which are in competition. The result of this fight depends on
the charge–mass ratio of the grain. So, the dynamics of the grain can be either gravitationally or electromagnetically
dominated[24].

If the dynamics of the grain is electromagnetically dominated, the Keplerian term in the effective potential
can be taken as a perturbation of the electromagnetic terms. The effective potential is very complex, and among
other things, it presents non-equatorial potential wells where halo orbits survive[24,23]. On the other hand, if the
Keplerian gravity dominates, we can argue the existence of a perturbed Keplerian potential well where the grain is
trapped. This is the situation we deal with in this paper.

The study is mainly performed from an analytical point of view. We consider the Hamiltonian representing the
GSproblem as a sum of a pure Keplerian part and a perturbation describing the magnetic dipole field and the
corotational electric field. The basic idea is to transform our original system into an equivalent one, which is defined
through an integrable Hamiltonian function and is, therefore, easier to be studied. Moreover, the simplified system
contains the main features of the original one. Thus, we can extract dynamical information of the original system
from the integrable Hamiltonian.

We achieve the transformation to the new dynamical system in three steps. First, by assuming that the elec-
tromagnetic term is weak compared to the Keplerian one, we apply the Delaunay normalisation[10] up to first
order. From this transformation, we obtain the averaged (ornormalised) Hamiltonian with a new formal integralL
(theKeplerian symmetry) representing the positive square root of the semi-major axis of the perturbed Keplerian
ellipses, and where only two degrees of freedom remain in the Hamiltonian. Secondly, the axial symmetry of the
problem allows one to reduce to one the degrees of freedom of the system. This symmetry is also used to obtain the
two-dimensional phase space (the so-calledtwice-reduced phase space) related to the new system. Third, we exploit
the finite symmetries of the original Hamiltonian in order to simplify the appearance of the differential equations
and the shape of the two-dimensional phase space as much as possible. This last step is achieved through a new
reduction mapping which gives rise to the so-called fully-reduced Hamilton function defined in a new phase space,
called thefully-reduced phase space.

After this process is concluded, the reduced system is of one degree of freedom, hence integrable. Then, we anal-
yse, as a function of the parameters, the dynamical features of this system, calculating its equilibria and bifurcations.
An estimation of the error committed in the normalisation procedure allows us to conclude that our approach is
valid in a neighbourhood of the origin (e.g. the Keplerian regime). This is reinforced using some Poincaré surfaces
of section. Moreover, using reconstruction of the flow techniques, we infer that the bifurcations of the relative
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equilibria correspond to bifurcations of two-dimensional invariant tori and quasi-periodic orbits of the original
Hamiltonian.

Other studies on particles around planetary magnetospheres using the tools of nonlinear analysis were given
by Braun[2,3]. In particular, Braun dealt with the Størmer problem and introducing high-order normal forms
combined with KAM theory, he was able to find out some two-dimensional invariant tori and quasi-periodic orbits.
Our approach is in the same spirit as Braun’s work. However, our model is different as we use theGSHamiltonian
in the Keplerian regime. Besides, we achieve a global analysis of the system resulting after normalisation and
reduction, using for that an appropriate parameterization of the reduced phase space.

As stated by Howard et al[23], it is very important to understand the nonlinear dynamics of the orbital motion
of charged particles around magnetic planets. Furthermore, it is indeed a live issue, as it is shown by some projects
as the Cassini mission on tour around Saturn to perform detailedin situ measurements of charged dust grains,
which arrived on July 1, 2004, or the Bepi-Colombo mission to explore Mercury’s magnetosphere, supposed to be
launched by ESA in 2008[19].

The paper is structured as follows. The problem is formulated inSection 2. In Section 3, we apply the Delaunay
normalisation. InSection 4, the Keplerian, the axial symmetries as well as the finite symmetries allow us to obtain
the different reduced phase spaces of the normalised system. The dynamics in the fully-reduced phase space is
the subject ofSection 5. It involves the determination of equilibria, bifurcations and the analysis of the stability.
The phase flow of the reduced system is described inSection 6. In Section 7, we establish the connection between
the reduced and the original systems, estimating the error related to the averaging process. Poincaré surfaces of
section are provided in order to validate the error estimations and our results. Moreover, some periodic orbits are
approximated from the set of quasi-periodic trajectories, using the finite symmetries of the problem. The conclusions
appear inSection 8.

2. The problem

In the problem at hand, we assume that a particle of massm and chargeq is orbiting around a rotating magnetic
planet of massM and radiusR. The general Hamiltonian of this particle in Gaussian units is then expressed as:

H = 1

2m

(
P− q

c
A
)2 + U(x), (1)

wherec is the speed of the light in the vacuum,x = (x, y, z) corresponds to the Cartesian coordinates andP =
(Px, Py, Pz) represents the conjugate momenta ofx. Besides,A represents the vector potential describing the
magnetic forces andU(x) is the scalar potential accounting for the electric and gravitational interactions. The
magnetic fieldB of the planet is supposed to be a perfect magnetic dipole of strengthµ aligned along the north–
south poles of the planet (thez-axis). Thus, ifr =

√
x2 + y2 + z2 stands for the distance of the charged particle to

the centre of mass of the planet, the vectorsA andB are:

A = µ

r3
(−y, x,0), B = ∇ × A. (2)

If we assume that the planet’s magnetosphere is a rigid conducting plasma which rotates with the same angular
velocity� = (0,0, ω) as the planet, the chargeq is subjected to a corotational electric fieldE of the form:

E = −1

c
(�× x) × B = −µω

c
∇Ψ, where Ψ = x2 + y2

r3
. (3)

The combined Keplerian and electrostatic forces give the potential:

U(x) = −Mm

r
+ qµω

c
Ψ. (4)
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By introducing the expressions(2) and (4)into (1), we get the Hamiltonian:

H = 1

2m
(P2

x + P2
y + P2

z ) − Mm

r
− µq

mc

H

r3
+ µ2q2

2mc2

x2 + y2

r6
+ qµω

c
Ψ, (5)

whereH = xPy − yPx is thez-component of the angular momentum.
Since the above Hamiltonian is invariant under rotations around thez-axis,H is an integral and cylindrical

variables (ρ, z, φ, Pρ, Pz,H) arise in a natural way. Hence, in these variables(5) reads:

H = 1

2m

(
P2
ρ + P2

z + H2

ρ2

)
− Mm

r
− ωcR

3H

r3
+ mω2

cR
6

2

ρ2

r6
+ mωωcR

3

c

ρ2

r3
. (6)

The parameterωc = (qB0)/(mc) stands for thecyclotron frequency, whereB0 = µ/R3 designates the magnetic
field strength at the planetary equator.

In order to analyse the dynamics, it is convenient to use dimensionless coordinates and momenta. Firstly, we
define the new coordinates as functions of the planet radiusR, e.g.x′ = x/R,P′ = P/(mRωK). As well we define a
new (dimensionless) timet′ = ωK t, whereωK =

√
M/R3 is theKeplerian frequency. After introducing the above-

mentioned transformations in(6) and dropping primes in coordinates and momenta, we arrive at the following
dimensionless Hamiltonian:

H′ = H

mR2ω2
K

= 1

2

(
P2
ρ + P2

z + H2

ρ2

)
− 1

r
− δ

H

r3
+ δβ

ρ2

r3
+ δ2

2

ρ2

r6
. (7)

To avoid tedious notation, from now on we also drop the prime of the previous Hamiltonian. In(7), we have defined
the parametersδ = ωc/ωK andβ = ω/ωK, which indicate, respectively, the ratio between the magnetic and the
Keplerian interactions and the ratio between the electrostatic and Keplerian interactions. For a given planetB0, ω
andωK are constant and hence the problem depends on three parameters. On the one hand, on the internal parameters
H andH = E (the energy), and on the other hand, on the external parameterδ which indicates the charge–mass
ratioq/m of the particle.

As stated inSection 1, the goal of this paper is to study the dynamics of the system when the main effect on the
particle is assumed to be the Keplerian gravity. In other words, we are interested in those cases where the motion
takes place inside of a Keplerian potential well. Moreover, this potential well must be located outside the planetary
region in order to consider realistic orbits. In this way, we introduce the effective potentialUeff from (7) as:

Ueff = H2

2ρ2
− 1

r
− δ

H

r3
+ δβ

ρ2

r3
+ δ2

2

ρ2

r6
.

In the pure Keplerian case (δ = 0), the functionUeff has a minimum atz = 0 andρ = H2 (forH �= 0). The pointsr+
andr−, where the particle’s velocity is zero (the turning points), tend monotonically toH2/2 and+∞, respectively,
asUeff tends to 0. In this way, only values of|H | > √

2 guarantee thatr− andr+ are outside the planet. For a
planet like Saturn, the spin rate isω ≈ 1.64× 10−4 rad/s, and the parameterβ ≈ 0.4 (see Murray and Dermott
[33]). Hence, if|δ| 
 1 andβ < 1, we can assume that the Keplerian potential well is only slightly affected by the
terms depending on the electromagnetic interactions. This fact can be observed inFig. 1a, from which we infer
that a deformed Keplerian well exists for|δ| ≤ 0.01. Other values ofδ andβ should be used if we considered the
magnetospheres of other giant planets. From now on we shall considerδ andβ as parameters, so that our analysis
could be used for other planets although we shall allow thatδ varies in [−0.01,0.01] whereasβ will be between 0
and 0.5, which includes Saturn’s value. For more details on the ranges ofβ andδ, see[33,18].

The critical points (ρ0, z0) of Ueff are the solutions of the system of equations: (∂Ueff/∂ρ, ∂Ueff/∂z) = (0,0).
In order to analyse how the presence of the perturbations distorts the Keplerian well, we study analytically the
evolution of the roots located at theρ-axis. Forz = 0, ∂Ueff/∂z = 0, and the first equation (forH �= 0) gives the
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Fig. 1. (a) Effective potentialUeff defined in the planez = 0 for δ = 0 (solid line), forδ = 0.01 (dashed line) andδ = −0.01 (pointed line).
In all curves, the values forH andβ areH = 1.5 andβ = 0.4. (b) Evolution of the critical points (ρ0, z0) of the effective potentialUeff in the
intervalδ ∈ [−0.5,0.5] for β = 0.4,H = −1.5 (red line) andH = 1.5 (black line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

following third-degree polynomial equation:

P(ρ) = −2δ2 + 3δHρ −H2ρ2 + ρ3 − βδρ3 = 0.

ForH = ±1.5 andβ = 0.4, the evolution of the roots ofP as a function ofδ is shown inFig. 1b. ForH = −1.5,
we observe thatP has only one root forδ > 0, while for δ < 0 it has either one or three roots. ForH = 1.5, we
find the same qualitative behaviour, but for opposite sign ofδ. In both situations, the smallest root corresponds to
an inner minimum, whereas the middle one to a saddle point and the biggest one to the Keplerian minimum. The
disappearance of the Keplerian well occurs when the saddle and the Keplerian minimum tend one to the other giving
rise to a double root and disappearing thereafter. Only the inner minimum remains. Note that ifδ ∈ [−0.1,0.1], the
Keplerian well is far enough from the saddle. This is why the well is only slightly deformed by the electromagnetic
perturbations.

3. Delaunay normalisation

3.1. Canonical variables

Hamiltonian(7) can be seen as a perturbed Kepler problem. There are certain sets of variables well suited to deal
with this type of systems. As we will make an extensive use of them, we describe briefly their main features.

Polar-nodal variables: (r, ϑ, ν, Pr,Θ,N) were introduced by Jacobi, but used explicitly later by Whittaker[41].
The actionΘ designates the modulus of the angular momentum vectorG = x× P in the synodic frame. The angle
conjugate toΘ is the argument of the latitude 0≤ ϑ < 2π through the radial direction. Besides,r, has already
been introduced and its conjugate momentumPr denotes the radial velocity in the synodic frame. The angle of the
node,ν, is the variable conjugate toN. In the region of the phase space whereG does not vanish, we decompose
it uniquely asG = Θn with Θ > 0 and‖n‖ = 1. The vectorn indicates the normal direction and is orthogonal to
the plane spanned byx andP: the instantaneous orbital plane. Its inclination with respect to the equatorial plane
is given by the angleI ∈ (0, π) with N = Θ cosI andN is the third component ofG in the synodic frame. Some
types of trajectories cannot be studied with these variables. They are not useful for collision (r ≡ 0), rectilinear
(Θ ≡ 0) or equatorial orbits (Θ ≡ |N|).
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Delaunay variables: (&, g, h, L,G,H) are a set of action-angle variables defined through polar-nodal variables
by means of a generating function built with the “mixed" set of variables (r, ϑ, ν, L, G, H). We do not detail the
construction of these variables, but we address the reader to references[9,10] for that.

If H0 stands for the Hamiltonian of the two-body problem, the actionL is related to the two-body energy by the
identityH0 = −1/(2L2). The actionG is the modulus of the angular momentum, thusG ≡ Θ. The third component
of G is H , i.e.H ≡ N. The angle& is named the mean anomaly. The eccentricity of the orbit is designated bye,
which in terms of Delaunay actions readse =

√
1 −G2/L2; ase ∈ (0,1) thenG ∈ (0, L). Circular orbits are not

accessible in Delaunay variables in order to ensure that& would be well defined. The true anomalyf is expressed
as:r(1 + e cosf ) = G2. The semi-major axisa of the ellipse is related withL by the identityL2 = a. The angle
g is the argument of the pericentre. It is reckoned from the ascending node of the orbit in the instantaneous orbital
plane, theng = ϑ − f . The angleh is the argument of the node, i.e.h ≡ ν. Relations among all quantities can be
looked up in[4].

Delaunay variables are not valid for circular, collision, rectilinear and equatorial orbits. Polar-nodal and Delaunay
variables will be used to normalise the two-degree-of-freedom Hamiltonian(7) and reduce it to another one of one
degree of freedom. This will be accomplished inSection 4.

Hamiltonian(7) in “mixed" Delaunay and polar-nodal variables reads as:

H = − 1

2L2
− δH

r3
+ δ(δ+ 2βr3)

4r4
[1 + cos2 I + sin2 I cos(2ϑ)], (8)

where cosI refers to the quotientH/G.
Now, in order to apply a perturbation theory, we splitH into two pieces. As−1/(2L2) is the leading term ofH

we identify it with the unperturbed part of the Hamiltonian, that is, withH0. Hence, the rest ofH is placed at first
order, so we makeH1 = H+ 1/(2L2). Thus, our system can be considered a perturbation of the two-body problem
since we have|H1| 
 |H0|. We could have put the terms factored byδ2 at second order and perform a second-order
theory. However, we have preferred to achieve a first-order theory as the formulae are not so cumbersome.

3.2. Normalisation through first-order averaging

The goal of this subsection is to transform Hamilton function(8) into another HamiltonianK = K0 +K1, such
thatK0 ≡ H0 via a formal symplectic change of coordinatesΦ : (&, g, h, L,G,H) −→ (&′, g′, h′, L′,G′, H ′) and
a generating functionW =W1. Up to first order the transformation is given by:

&′ = &+ ∂W1

∂L
, g′ = g+ ∂W1

∂G
, h′ = h+ ∂W1

∂H
,

L′ = L− ∂W1

∂&
, G′ = G− ∂W1

∂g
, H ′ = H − ∂W1

∂h
,

(9)

whereW1 is written in terms of the old variables (without primes). This is indeed the so-called inverse change of
variables truncated at order one.

The direct changeα : (&′, g′, h′, L′,G′, H ′) −→ (&, g, h, L,G,H) puts the old variables as functions of the new
ones throughW1 written in terms of the new variables. We remark thatΦ is the inverse change ofα and vice versa.
If we push the computation to a certain orderM, after truncation of higher-order terms, the new Hamiltonian will
be independent of the mean anomaly and subsequently,K will enjoy the actionL as a new integral. The process to
perform this transformation is calledDelaunay normalisation(see[9,10]); the steps to get the averaged (normalised)
Hamiltonian are summarized next.

Let n = 1/L3 be the mean motion of the infinitesimal body orbiting the planet, thus the physical dimensions
of n are [1/time]. So, the Lie operator associated withH0 is n ∂(·)/∂&. Our interest is to perform a first-order
theory calculatingK1 andW1. The reason for not pushing the calculations to higher orders is that the first-order
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Hamiltonian retains all qualitative information we need, as all the equilibrium points we shall get out of the analysis
of the reduced equations will be isolated, in order words, the first-order reduced system will be structurally stable
(see[31]). This will be seen in full detail inSection 5.

From now on we drop the primes of the variables so as to avoid tedious notation. At first order, the transformed
Hamiltonian is going to beK = K0 +K1, whereK1 must be independent of&. Thus,K will define a system of two
degrees of freedom ing, h, G andH . We will have that the Poisson bracket{Ki, H0 } = 0 for i = 0,1.

The Delaunay normalisation is carried out straightforwardly and in closed form for the eccentricity and for the
mean anomaly, although some difficulties arise when doing the computations. This is circumvented using some
adequate changes of variables defined through the eccentric and the true anomalies[34,35].

We identifyH0 ≡ K0 and solve the homology equation:

n
∂W1

∂&
+K1 = H1,

by taking

K1 = (2π)−1
∫ 2π

0
H1 d& and W1 = n−1

∫
(H1 −K1) d&.

Thus, we arrive at the Hamiltonian:

K = K0 +K1, with K0 = − 1

2L2
,

K1 = δ

16L5G7(L+G)
[2(L+G)(4βL3G7 + 4βL3G5H2 − δG4 − 8L2G4H − δG2H2

+ 3δL2G2 + 3δL2H2) + (L−G)(G2 −H2)(8βL3G5 + δG2 + 2δLG+ δL2) cos(2g)], (10)

together with its generating function defined up to first order,W =W1:

W1 = δ

48L2G7(L2 −G2)r2
{6(L2 −G2)r3(−8L2G4Hϕr − δG4ϕr − δG2H2ϕr + 3δL2G2ϕr

+ 3δL2H2ϕr + δL2G5Pr + δL2G3H2Pr − 8L2G5HrPr + 3δL2G3rPr + 3δL2GH2rPr

+ 4βL2G7r2Pr + 4βL2G5H2r2Pr) + (G2 −H2)r(−48βL4G6ϕr3 + 3δG4ϕr3 − 6δL2G2ϕr3

+ 3δL4ϕr3 + 6δL4G7Pr − 2δL4G5rPr − 3δL2G5r2Pr + δL4G3r2Pr + 48βL4G7r3Pr

− 5δL2G3r3Pr + 3δL4Gr3Pr + 24βL2G7r4Pr + 24βL4G5r4Pr)cos(2g) + 2L4G6(G2 −H2)

× [3δG2 − 4δr + 24βG2r3 − 24βr4 log(G2/r)] sin(2g)},
whereϕ = f − &. In our computations, we have not used techniques based on Fourier expansions in the mean,
eccentric or true anomaly, neither Taylor expansions in the eccentricity. So, as we are working with compact
expressions we can analyse any type of elliptic motion, and we do not care if a trajectory is highly eccentric.
Moreover, polylogarithmic functions would be introduced in the generating functions of the corresponding orders
bigger than one due to the appearance ofϕ and log (G2/r) at first order, see for example[34].

The construction ofKi andWi for i ≥ 1 is required to compute the expressions of the invariant manifolds related
to the original Hamiltonian vector field with high accuracy. Besides, if we stop at order one, the explicit formula of
W1 is used to build the direct and inverse change of coordinates, which is essential to estimate the error committed
after truncating the averaged Hamiltonian. Moreover, it is also required that the error committed after truncation
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be maintained controlled in a certain domain of the Delaunay variables, see also[36] and the example therein. We
shall come back to this inSection 7, when reconstructing the flow of the original Hamiltonian system.

Note thatK andW are well defined whether 0< G < L andr > 0. So rectilinear, circular and collision orbits
should be excluded from the study. However, circular trajectories will be considered as a limit situation of our
approach using appropriate variables.

4. Reductions and reduced phase spaces

4.1. Passage toS2
L × S2

L

The next step of our approach consists in expressingK in terms of the appropriate invariants associated with the
symmetries of the problem.

The integrals associated withK are the functions which are constant on the solutions of the system defined
byH0. All these integrals can be expressed as functions ofL, the components of the angular momentum vector
G = (G1,G2,G3) (we remark thatG3 ≡ H) and the Laplace vectorAL = (A1, A2, A3), i.e. the vector defined as
AL = P×G− x/‖x‖. Note that‖G‖ = G, ‖AL‖ = e andG · AL = 0. We consider the mapping:

ϕL : R6 \ ({0} × R3) −→ R6 : (x,P) �→ (a,b) ≡ (G+ LAL ,G− LAL),

with a = (a1, a2, a3) andb = (b1, b2, b3). Explicitly, the functionsai andbi can be given in terms of Delaunay
variables[6]. Henceforth, the quantitiesG, H, cosg, sin g, cosh, sin h, cosI and sinI can be easily expressed in
terms ofa andb and the positive constantL. Now, a Hamiltonian independent of& can be written as a function of
the invariantsa andb and the constantL > 0.

Now, fixing a value ofL > 0, the product of the two-sphere:

S2
L × S2

L = {(a,b) ∈ R6 | a2
1 + a2

2 + a2
3 = L2, b2

1 + b2
2 + b2

3 = L2} (11)

is the phase space associated with Hamiltonian systems of Keplerian type independent of&, that is, perturbed
Keplerian Hamiltonians for whichL is an integral. This result was first reported by Moser[32] using a regularisation
technique based on stereographic projections. Later, it has been described and used by Cushman[6]. Note that
S2
L × S2

L is a four-dimensional smooth space and therefore the reduction is regular[30]. The introduction of the
invariants extends the use of Delaunay and polar-nodal variables, as equatorial, circular and rectilinear orbits are
included[6,35].

4.2. Reduction of the axial symmetry

Now we briefly analyse what happens for systems invariant under the axial symmetry, that is, for Hamiltonians
independent ofh. We start by fixing a value ofH (with |H | ≤ G), this integralH can be understood as anS1-action,
or the action of the one-dimensional unitary groupU(1) over the space of coordinates and momenta such that:

5 : S1 × (R6 \ ({0} × R3)) −→ R3 × R3: (Rz(h), (x,P)) �→ (Rz(h)x, Rz(h)P), (12)

whereRz(h) is the matrix of a rotation by an angleh about thez-axis, with 0≤ h < 2π. This is a singular action
because there are non-trivial isotropy groups. Indeed,{(0,0, z) | z ∈ R} is invariant under all rotations around the
z-axis. Thus, the reduction due to the axial symmetry is singular, in contrast to the regular reduction obtained by
doingL an integral, where all the isotropy groups were trivial. Then, we have to apply a singular reduction treatment
[1].
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Fig. 2. Twice-reduced phase spacesTL,H andTL,0. On the leftL = 10 andH = 2, in this caseT10,2 is diffeomorphic to a two-sphere. On the
right, we have takenL = 11 andH = 0, henceT11,0 corresponds to a two-sphere with two singular points.

If we denoteτ = (τ1, τ2, τ3), we can define the mapping:

πH : S2
L × S2

L −→ {H} × R3 : (a,b) �→ (H, τ1, τ2, τ3) ≡ (H, τ), with

τ1 = 1
2 (a3 − b3), τ2 = a1 b2 − a2 b1, τ3 = a1 b1 + a2 b2. (13)

The corresponding phase space is defined as:

TL,H = πH (S2
L × S2

L) = {τ ∈ R3 | τ2
2 + τ2

3 = [(L+ τ1)2 −H2][(L− τ1)2 −H2]}, (14)

for 0 ≤ |H | ≤ L andL > 0. Note thatτ2 andτ3 always belong to the interval [H2 − L2, L2 −H2], whereasτ1
belongs to [|H | − L,L− |H |]. The two-dimensional phase spacesTL,H andTL,0 (the phase space forH = 0) are
plotted inFig. 2for fixed values of the parametersL andH .

In [6], it is proven that whether 0< |H | < L, TL,H is diffeomorphic to a two-sphereS2 and therefore the
reduction is regular in that region of the phase space. However, whenH = 0,TL,0 is a topological two-sphere with
two singular points: the vertices at (±L,0,0). The reason for the existence of these two points is that theS1-action
5 has two fixed points:L (±1,0,0,∓1,0,0) and consequently it is not free. Finally, when|H | = L the phase
spaceT±L,L gets reduced to a point. See also two applications on the reduction of perturbed Keplerian systems
in [8,37].

Rectilinear motions satisfyG = H = 0. Taking also into account the constraint(14), we conclude that they
are defined on the one-dimensional setReL,0 = {τ ∈ R3 | τ2 = 0, τ3 = τ2

1 − L2}. Thus, excepting orbits with
‖x‖ = 0 we could analyse rectilinear trajectories. Circular type of orbits are located on a unique point ofTL,H
with coordinates (0,0, L2 −H2)—or on a unique point ofTL,0 with coordinates (0,0, L2)—whereas equatorial
trajectories are represented in the negative extreme point ofTL,H with coordinates (0,0, H2 − L2) (respectively, at
the point (0,0,−L2) of TL,0).

It is not difficult to prove that Delaunay variables not involving the angles& andh can be expressed in terms
of τ [6,35]. So, the twice-reduced system is represented by a Hamiltonian expressed in terms ofτ. If we define

τ4 =
√
L2 +H2 − τ2

1 + τ3, after dropping constant terms, Hamiltonian(10) is written as the rational function:

K̄ = δ

4L5τ7
4[4Lτ4 + √

2(2L2 + τ2
4)]

{δ(2L2 + 2
√

2Lτ4 + τ2
4)[τ2

4(14L2 − 4τ2
1 − 3τ2

4) +H2(20L2 − 2τ2
4)]

+ 8L2τ4
4[−2H(2L2 + 2

√
2Lτ4 + τ2

4) + βLτ2
4(2H2L+

√
2(L2 +H2 − τ2

1)τ4 + Lτ2
4)]}. (15)
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4.3. Reduction of the finite symmetries

In the next paragraphs, we follow similar steps to those of Cushman and coworkers[8,15] in their treatment of
the Zeeman–Stark effect.

First, we notice that the original Hamilton functionH enjoys the following discrete symmetries:

R1 : (x, y, z, Px, Py, Pz) −→ (x,−y,−z,−Px, Py, Pz),
R2 : (x, y, z, Px, Py, Pz) −→ (x,−y, z,−Px, Py,−Pz),
R3 : (x, y, z, Px, Py, Pz) −→ (x, y,−z, Px, Py,−Pz).

(16)

It is clear thatR3 can be expressed as the combination ofR1 andR2. TheseZ2-symmetries are conserved through
the two previous reductions. Besides, in terms of theτ’s, the finite symmetries (reflections) read as follows:

R1 : (τ1, τ2, τ3) −→ (−τ1, τ2, τ3),

R2 : (τ1, τ2, τ3) −→ (τ1,−τ2, τ3),

R3 : (τ1, τ2, τ3) −→ (−τ1,−τ2, τ3).

Now K̄ ≡ K̄(τ2
1,−, τ3; δ, β, L,H) and therefore it enjoys the symmetriesR1,R2 andR3, as it should be expected.

Hence, it is possible to further reduce HamiltonianK̄. In this way, we introduce new functions with the aim of taking
advantage of these discrete symmetries. Indeed, we define:

σ1 = (L− |H |)2 − τ2
1, σ2 =

√
L2 +H2 − τ2

1 + τ3√
2

. (17)

We have chosen a different set of invariants from those selected by Cushman and coworkers[8,15], as we have
preferred to use the Delaunay variableG as one of the invariants (σ2 = G), so that we can interpret the results of
Sections 5–7in an easier manner.

The inverse change ofEq. (17) is given by:

τ1 = ±
√
L2 +H2 − 2L|H | − σ1, τ3 = −σ1 + 2σ2

2 − 2L|H |. (18)

The reduction process is now achieved by using a suitable map. We define:

σL,H : TL,H −→ UL,H : (τ1, τ2, τ3) �→ (σ1, σ2) for 0 ≤ |H | ≤ L,

such thatσ1 and σ2 are given through(17). The resulting space is the most reduced phase space, that is, the
fully-reduced phase space and is denoted byUL,H and, forH = 0, byUL,0.

The fully-reduced phase spaces forH �= 0 andH = 0 (seeFig. 3) are given, respectively, by:

UL,H = {(σ1, σ2) ∈ R2 | (σ2
2 − L|H |)2

σ2
2

≤ σ1 ≤ (L− |H |)2, |H | ≤ σ2 ≤ L},

UL,0 = {(σ1, σ2) ∈ R2 | σ2
2 ≤ σ1 ≤ L2, 0 ≤ σ2 ≤ L}. (19)

The constraints between the new invariants are deduced from(14)and define the boundaries ofUL,H andUL,0:

if |H | > 0 : σ1σ
2
2 = (σ2

2 − L|H |)2 and σ1 = (L− |H |)2,
if H = 0 : σ1 = σ2

2, σ2 = 0 and σ1 = L2.
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Fig. 3. On the left, fully-reduced phase space for|H | > 0. The coordinates of the extreme points ofUL,H are ((L− |H |)2, |H |) (equatorial
motions: blue) and ((L− |H |)2, L) (circular motions: green), whereas the space reaches its lowest point at (0,

√
L|H |). On the right, fully-

reduced phase space forH = 0. The coordinates of the extreme points ofUL,0 are (L2,0) (polar equatorial motions: blue), (L2, L) (polar
circular motions: green) and (0,0) (the non-spurious singular point ofUL,0: black). The red segment corresponds to rectilinear motions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Note thatσ1 andσ2, together with the constraints inherited fromτ, are used to define the spacesUL,H andUL,0 from
the reduction of the twice-reduced phase spacesTL,H andTL,0. First we note that the spacesUL,H andUL,0 are, as
TL,H andTL,0, two-dimensional since the reduction comes from discrete symmetries. However, we only need two
generators to defineUL,H andUL,0 instead of the three generators used to obtainTL,H andTL,0.

The spaceUL,H has two singular points: ((L− |H |)2, |H |) and ((L− |H |)2, L) while UL,0 has three singular
points: (L2,0), (L2, L) and (0,0). The singularities ofUL,H have been introduced through the mappingσL,H and are
indeed spurious. As well the singularities (L2,0), (L2, L) have been introduced by reducing out the discrete symme-
tries and they are spurious too. The point (0,0) is the singularity coming from the singular points (±L,0,0) ofTL,0.

We remark thatσ1 andσ2 are indeed invariants under the action of the three finite symmetriesR1,R2 andR3.
Moreover,σ1 is a function that depends on the modulus of the angular momentum and on the argument of pericentre,
whereasσ2 is exactly the modulus of the angular momentum vector. We have:

G = σ2, cosg = ±
√

L2H2 − 4σ1σ
2
2 + 4σ4

2 − 2L|H |(σ1 + 2σ2
2)

5L2H2 − 4(L2 +H2)σ2
2 + 4σ4

2 − 2L|H |(L2 +H2 − 2σ2
2)
,

sin g = ±
√

4L2H2 − 4(L2 +H2 − σ1)σ2
2 − 2L|H |(L2 +H2 − σ1 − 4σ2

2)

5L2H2 − 4(L2 +H2)σ2
2 + 4σ4

2 − 2L|H |(L2 +H2 − 2σ2
2)

. (20)

FromEq. (18) and the constraint(14), it is readily deduced that a single point in the interior ofUL,0 or UL,H is in
correspondence with four points in the spaceTL,0 or in TL,H , respectively. Besides, a single point in the regular
part of the boundaries of eitherUL,0 or UL,H is, respectively, related to two points ofTL,0 or of TL,H . In addition
to this, to each of the two singular points of the boundary ofUL,H , it corresponds one point ofTL,H . Finally, the
points ofUL,0 with coordinates (L2,0) and (L2, L) are related, respectively, to the points (0,0,−L2) and (0,0, L2)
onTL,0 whereas the point whose coordinate is (0,0) in UL,0 corresponds to the singular points (±L,0,0) of TL,0.
This remark will be taken into consideration inSection 5for discussing the number of critical points of the reduced
Hamiltonian under study and inSection 7for reconstructing the flow of the original system.

We remark that equatorial, rectilinear and circular type of motions are easily characterised in the fully-reduced
phase space. For locating circular “trajectories" we need thatσ2 = L, and so the set of circular “orbits" is zero-
dimensional and is defined by the point ((L− |H |)2, L) in UL,H and by (L2, L) in UL,0. For equatorial “orbits" we
makeσ2 = |H |, henceforth the set of equatorial “orbits" is defined by the points ((L− |H |)2, |H |) in UL,H and by
(L2,0) inUL,0. Finally, rectilinear “orbits" define a one-dimensional set inUL,0 that, sinceσ2 = 0, is simply charac-
terised by the segment ofUL,0 given by (σ1,0) with (0 ≤ σ1 ≤ L2). This type of special motions is depicted inFig. 3.
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4.4. The fully-reduced Hamilton function

From(17), we easily deduce thatτ2
1 = (L− |H |)2 − σ1 andτ4 = √

2σ2. Hence, Hamiltonian̄K can be expressed
in terms of the new invariantsσ1 andσ2 as:

¯̄K = δ

16L5σ7
2(L+ σ2)2

{δ(L+ σ2)2[5L2H2 − (3H2 − 4L|H | − 5L2 − 2σ1)σ2
2 − 3σ4

2]

+ 16L2σ4
2[−L2H − 2LHσ2 +H(−1 + βL2H)σ2

2 + βL(2L|H | + σ1)σ3
2 + βL2σ4

2]}. (21)

Notice that¯̄K is singular forσ2 = 0. It is not a surprise asσ2 is equivalent toG and the original Hamilton functionH
is not well defined for rectilinear trajectories. A way to circumvent this trouble is based on regularisation techniques,
but this is outside the purpose of the present paper. Nevertheless we need to be very careful when analysing orbits
with σ2 small, since the perturbation̄̄K could be bigger than the unperturbed part and therefore our study could
have no sense for almost rectilinear trajectories. InSections 5 and 7, we shall show how to avoid this problem by
controlling the size of| ¯̄K|.

5. Relative equilibria and bifurcations

5.1. Equilibrium points and bifurcation diagram

To analyse the equilibria of the system, we neglect those terms inδ2 in (21). Their influence modifies nor the
description of bifurcations neither the stability character of the equilibria of the Hamiltonian:

Z = βLσ2
2[σ1σ2 + L(|H | + σ2)2] −H(L+ σ2)2

L3σ3
2(L+ σ2)2

, (22)

obtained from¯̄K after dropping the common factorδ. This is because we do not take into account those points
corresponding to collision “orbits", which are not relevant from a physical point of view.

Equilibria are now determined by the extremum points of(22) on the reduced spaceUL,H . Taking into account
that∂Z/∂σ1 = β/[L2(L+ σ2)2] does not vanish for any value ofσ2, there is no equilibrium points in the interior
of UL,H and, consequently, they are located on the boundary.

Note that there always exist two equilibrium points, those points where the two curves delimiting the boundary
of UL,H meet. These are the points:

E1 ≡ ((L− |H |)2, |H |), E2 ≡ ((L− |H |)2, L),

corresponding to the class of equatorial and circular “orbits", respectively.
To determine the rest of the equilibria, if any, two cases must be considered:

(a) those equilibria located on the rectilinear part of the boundary given by the curveσ1 = (L− |H |)2, under the
restriction|H | ≤ σ2 ≤ L;

(b) those equilibria located on the curved part of the boundary defined byσ1σ
2
2 = (σ2

2 − L|H |)2 and |H | ≤ σ2
≤ L.
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5.1.1. Case (a)
If σ1 = (L− |H |)2, then(22) turns into the single real-valued function:

Z(σ2) = βLσ2
2(Lσ2 +H2) −H(L+ σ2)

L3σ3
2(L+ σ2)

. (23)

The extremum values are reached atσ2 = |H |, σ2 = L (discussed previously) and at those points satisfying:

dZ(σ2)

dσ2
= 3H(L+ σ2)2 − βLσ2

2(Lσ2
2 + 2H2σ2 + LH2)

L3σ4
2(L+ σ2)2

= 0.

In this case,σ2 must be a root in the interval (|H |, L) of the polynomial:

P(σ2) = 3H(L+ σ2)2 − βLσ2
2(Lσ2

2 + 2H2σ2 + LH2).

AsP(σ2) is a fourth-degree polynomial it is possible to derive explicitly the coordinates of the equilibria. However,
it is not easy to decide whether they are real or complex or they belong to the interval (|H |, L). For this reason, we
focus on the number of roots rather than on their explicit expressions.

By means of the Descartes rule of signs, we can decide on the number of positive real roots by counting the
number of sign changes in the coefficient sequence of polynomialP. For retrograde motions (H < 0) all coefficients
are positive andP has no positive real roots. In this case there are no equilibria.

On the other hand, for prograde “orbits" (H ≥ 0) the coefficients of the third and fourth powers ofσ2 are positive,
whereas the independent term as well as the first power ofσ2 are negative. Thus, no matter the sign of the second
power is, the total number of sign changes is one, andP has a unique real positive root. Bolzano’s theorem ensures
that the root is located in the interval (|H |, L) if and only ifP(|H |)P(L) < 0, i.e. when the following condition is
fulfilled:

(3βL2H2 + βL4 − 12H)[2βLH3 − 3(L+H)] < 0. (24)

If σ∗
2 is the root ofP satisfying(24), we have the equilibrium:

E3 ≡ ((L− |H |)2, σ∗
2).

Note thatE3 appears or disappears whenever one crosses the hypersurfaces:

Γ1 ≡ 3βL2H2 + βL4 − 12H = 0, Γ2 ≡ 2βLH3 − 3(L+H) = 0. (25)

5.1.2. Case (b)
If σ1σ

2
2 = (σ2

2 − L|H |)2, (22) turns into the single real-valued function:

Z(σ2) = βLσ2(σ3
2 + LH2) −H(L+ σ2)

L3σ3
2(L+ σ2)

. (26)

As in the previous case,σ2 = |H | andσ2 = L are extremum values and the rest are obtained from:

dZ(σ2)

dσ2
= 3H(L+ σ2)2 + βL2σ2(σ3

2 − 2LH2 − 3H2σ2)

L3σ4
2(L+ σ2)2

= 0.
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This equation is satisfied ifσ2 is a root of the fourth-degree polynomial:

Q(σ2) = 3H(L+ σ2)2 + βL2σ2(σ3
2 − 3H2σ2 − 2LH2).

The maximum number of sign changes in its coefficient list is two forH > 0. For retrograde orbits (H < 0), the
number of sign changes is one, provided that all coefficients are negative except that of the fourth power ofσ2.

Descartes rule of signs ensures the existence of a positive rootσ−
2 for retrograde motions and, thus, the existence

of a possible equilibrium point ifσ−
2 is located in the interval (|H |, L). This is the case ifQ(−H)Q(L) < 0. Since

Q(−H) = H(L−H)(2βL2H2 + 3L− 3H)

is sign-defined (negative) forH �= 0, we obtain an equilibrium point ifQ(L) > 0, that is, whether the condition

5βL2H2 − βL4 − 12H < 0 (27)

is fulfilled. This equilibrium point has coordinates:

E0 ≡
(

(σ−
2

2 + LH)2

σ−
2

2
, σ−

2

)

and appears or disappears as it is crossed the hypersurface obtained from(27):

Γ0 ≡ 5βL2H2 − βL4 − 12H = 0. (28)

For the case of prograde motions, we need further insight in order to determine the number of roots ofQ. We
take advantage of the resultant (see[5]) of a polynomial to compute the boundary between none and two positive
roots, which corresponds to the appearance of a double root. In this way:

Res

(
Q,

dQ

dσ2

)
= 432β3L8H3(L2 −H2)(3H − 8βL2H2 + 16βL4 + 6β2L4H3 − β4L8H5) = 0. (29)

Excluding the casesβ = 0, H = 0 andL = 0, (29) vanishes ifL2 −H2 = 0 or if its last factor vanishes. For
L = |H |,Q has a double root atσ2 = −L and then it is when the last factor of Res(Q,dQ/dσ2) vanishes whenQ
has a positive double root. Furthermore,Q has two positive real roots if

−3H + 8βL2H2 − 16βL4 − 6β2L4H3 + β4L8H5 > 0. (30)

Moreover, when(30) is satisfied then:

• if Q(H) > 0 andQ(L) > 0, thenQ has two roots in the interval (H,L),
• if Q(H) < 0 andQ(L) > 0, thenQ has a root in the interval (H,L),
• if Q(H) < 0 andQ(L) < 0, thenQ has no roots in the interval (H,L).

We note that it is not possible thatQ(H) > 0 andQ(L) < 0 at the same time, so the three items above are
exhaustive.

In short, for prograde “orbits" (H ≥ 0) two equilibria can be obtained:

E4 ≡
(

(σ2
20 − LH)2

σ2
20

, σ20

)
, E5 ≡

(
(σ2

21 − LH)2

σ2
21

, σ21

)
,
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Fig. 4. Plane of parameters (H,L) for β = 0.4. The number of equilibria in each region delimited by the curvesΓk appears encircled.

whereσ20 andσ21 are the two positive real roots ofQ. Moreover, these points appear or disappear when crossing
the hypersurfaces defined through:

Γ3 ≡ 2βL2H2 − 3(L+H) = 0, Γ4 ≡ βL2(L2 − 5H2) + 12H = 0,

Γ5 ≡ −3H + 8βL2H2 − 16βL4 − 6β2L4H3 + β4L8H5 = 0. (31)

From the discussion above it follows that, onceβ is fixed, the plane (H,L) is divided into different regions where the
number of equilibria changes. These regions are determined by the curves defined by(25), (28) and (31)together
with the constraint|H | ≤ L as it is depicted inFig. 4.

Some remarks of special interest must be noticed. The first one is thatΓ0 andΓ4 are defined by the same equation,
but they appear inFig. 4as two branches of the algebraic equation. The second one is that all curves are coincident
on the lineL = H , just on the boundary of the plane of parameters at:

P =
(

3

√
3

β
, 3

√
3

β

)
.

The third remark is that all linesΓk correspond to parametric bifurcations of pitchfork type except forΓ5 that
corresponds to a saddle-centre bifurcation. This conclusion follows from the number of equilibrium points involved
in the bifurcation together with the Index Theorem and a theorem on the multiplicity of a root for a vanishing
resultant.

5.2. Stability

The linear stability of the equilibria can be decided through their character as extremum points, not only relatively
to the boundary but to the whole fully-reduced phase space. In this sense, a relative maximum or minimum in
the boundary does not imply a stable equilibrium. It is necessary that it keeps its character with respect to a
neighbourhood containing points in the interior of the fully-reduced phase space. However, Hamiltonian(22) is an
increasing function ofσ1 for constantσ2. This means that, for constantσ2, the Hamiltonian ranges from a minimum
value in the lower bound of the reduced phase space (curved part of the boundary) to a maximum value in the upper
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bound (straight part of the boundary). Consequently, a local maximum in the straight part of the boundary is stable
whereas an unstable point corresponds to a minimum. The reverse situation is satisfied in the curved part of the
boundary, a minimum implies stability, while a maximum implies instability.

In the case of the extremum points of the boundary, i.e. the pointsE1 andE2, their stability can be discussed
by means of a similar argument. Considering the Hamiltonian restricted to the straight and curved parts of the
boundary, the two functions so defined must be increasing or decreasing at the same time. That is to say, the sign of
the derivatives of the two real-valued functions(23) and (26)must be the same. Thus,E1 is stable if

[2βLH3 − 3(L+H)][2βL2H2 − 3(L+H)] > 0. (32)

Note that the two factors in(32) are the polynomials definingΓ2 andΓ3. Then,E1 is stable except for the region
betweenΓ2 andΓ3.

In the same way,E2 is stable if the condition

(3βL2H2 + βL4 − 12H)(5βL2H2 − βL4 − 12H) > 0 (33)

is fulfilled. This is the case outside the region betweenΓ0, Γ1 andΓ4.
The pointE3 is stable if it is a maximum. A straightforward calculation yields:

d2Z

dσ2
2

∣∣∣∣∣
E3

≡ −βLσ∗
2

2(L2H2 + 3LH2σ∗
2 + 2L2σ∗

2
2 +H2σ∗

2
2 + Lσ∗

2
3) < 0,

since|H | ≤ σ∗
2 ≤ L. Consequently,E3 is stable when it exists.

An interesting consequence is the presence of a saddle-connection bifurcation. Note thatE3 appears after a pitch-
fork bifurcation involvingE1 and it disappears through a pitchfork bifurcation involvingE2. Then, the homoclinic
loops attached to equilibriaE1 andE2 eventually merge and then interchange the stable points they encircle. This
happens when the energy forE1 andE2 “orbits" is the same, that is, the saddle-connection takes place when:

Γ6 ≡ β L2 H2 (L+H) − 2 (L2 + LH +H2) = 0.

This equation defines the curveΓ6 in the plane of parameters, which is located in betweenΓ3 andΓ4 and is tangent
to them at the pointP .

Finally, the stability of the pointsE0, E4 andE5 in the curved part of the boundary of the phase space follows
from the sign of the second derivative of the Hamiltonian. This reduces to check the sign of the polynomial:

χ(σ2) = σ4
2 + 2Lσ3

2 − 2LH2σ2 − L2H2 (34)

evaluated at theσ2-coordinate of the equilibrium points:σ−
2 , σ20 andσ21. This polynomial has a root in the interval

(|H |, L). Let σ̄2 be such a root, then if theσ2-coordinate of an equilibrium satisfiesσ2 < σ̄2, it is unstable and stable
if σ2 > σ̄2. In the limit case,χ(σ2) = 0, σ2 must be a common root of the polynomialsQ(σ2) andχ(σ2) and then
the resultant of the two polynomials vanishes. The resultant reads now as:

Res(Q, χ) = −27L4H3(L−H)2(L+H)2 × (−3H + 8βL2H2 − 16βL4 − 6β2L4H3 + β4L8H5),

and it vanishes with Res(Q, dQ/dσ2) atΓ5. Then, the pointsE4 andE5 conserve their stability properties while
they exist. Moreover, the sign ofχ(σ2) is constant for a rootσ2 ofQ unlessΓ5 is reached. Thus, for prograde “orbits"
the lowest root, sayσ20, corresponds to an unstable equilibrium (eventually it becomes smaller thanH). On the
other hand, the equilibriumE5 is stable because the corresponding rootσ21 becomes bigger thanL.

For H < 0, the equilibriumE0 is stable, because itsσ2-coordinate becomes bigger thanL. Moreover, this
equilibrium only exists forH < 0. Thus,H = 0 defines another bifurcation line. We can understand that the point
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moves passing from the curved part of the boundary of the fully-reduced phase space (the pointE0 for H < 0) to
the straight part of the boundary (E3 for H > 0).

6. Phase flow evolution

A complementary information about the dynamics of the system(21) is given by the phase flow evolution. Since
the twice-reduced Hamiltonian̄K (or the fully-reduced onē̄K) defines a dynamical system of one degree of freedom,
the trajectories, after fixing a valueEof the energy, result as the intersections of the HamiltonianK̄ with the surface
(14), that is to say, they are the level curves of the equationK̄ = E on(14). Similarly, we can obtain the trajectories
of the system in the fully-reduced phase spacesUL,H andUL,0. It allows us to plot the phase flow of the system
quite rapidly and very accurately. In fact, we do not draw the level curves, but we assign to every point on the phase
space the value that Hamiltonian̄K or ¯̄K takes at it. Hence, those points associated with the same value belong to
the same level curvēK = E (or ¯̄K = E). This is the basic idea of the technique known aspainting by number(see
[21]).

Calculations involved in the determination of the phase flow are straightforward. First, we construct a two-
dimensional grid which is, either orthographically projected onTL,H or on TL,0, or directly constructed on the
fully-reduced phase spacesUL,H andUL,0. Then, the Hamiltonian is evaluated at the corresponding points according
to the grid we have chosen.

Thereafter, the resulting matrix is submitted as an input in the commercial software TRANSFORM[40], which
computes and draws the level curves on the selected orthographic projection or planar space. This technique has
been used to produce all the pictures appearing within this section.

Based on the bifurcation diagram obtained in the previous section, we study the phase flow evolution choosing a
“representative" path on the parametric plane (H,L) for which the stability and the number of equilibria change. This
path surrounds the special pointP where all the bifurcation linesΓi intersect. Most of the bifurcations experimented
by the fully-reduced system along this path will be shown only inTL,H , due to the difficulties of visualizing the
phase flow on the fully-reduced phase spaceUL,H . Here, all changes in the number and stability of equilibria occur
in a tiny region of the phase space, therefore it is almost impossible to appreciate the flow evolution.

Fig. 5shows the evolution of the system in both phase spacesTL,H andUL,H forH = 1.5 and increasingL from
1.75 to 1.9 along a path crossing the bifurcation lineΓ1. ForL = 1.75, the phase flow onT1.75,1.5 consists only
in rotations around the stable equilibriaE1 andE2. These rotations correspond to straight lines that surround the
equilibriaE1 andE2 in the fully-reduced phase spaceU1.75,1.5. When the system reaches the curveΓ1 a pitchfork
bifurcation takes place at equilibriumE2 which becomes unstable. A separatrix passing throughE2 surrounds two
new stable equilibria, namelyE3 andĒ3. This pitchfork bifurcation can also be observed in the fully-reduced phase
spaceUL,1.5, where the equilibriumE2 becomes unstable and a “semi-separatrix", asymptotic toE2, surrounds a
new stable equilibriumE3 located at the lineσ1 = (L− |H |)2. We remark that the two pointsE3 andĒ3 correspond
to the same equilibrium pointE3 in UL,H or UL,0. This duplication follows immediately fromEq. (18) and it is
consequence of the discrete symmetries of the problem.

Fig. 6represents the phase flow evolution of the system inTL,H along a path crossing the bifurcation linesΓ5,Γ3
andΓ6, forH = 1.5 and increasingL from 2 to 2.26. When the system reaches the curveΓ5, a closed orbit around
the equilibriumE1 experiences a double saddle-centre bifurcation in such a way that four new equilibria appear:
two of them unstable,E4 andĒ4, and the other two of stable character,E5 andĒ5. Besides, a new heteroclinic
orbit connectingE4 andĒ4 surrounds the centresE1,E5 andĒ5. As the system gets close to the bifurcation curve
Γ3, the equilibriaE1,E4 andĒ4 approach one each other in such a way that whenΓ3 is crossed, another pitchfork
bifurcation occurs: the equilibriaE1,E4 andĒ4 meet atΓ3 and after crossing it only the pointE1 survives becoming
unstable. A separatrix asymptotic toE1 keeps on surroundingE5 andĒ5. This bifurcation is not the typical pitchfork
bifurcation where two centres and a saddle merge in order to produce a centre, but in this case two saddles and a
centre merge to end up with a saddle point.
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Fig. 5. Phase flow evolution of the system forH = 1.5 asL increases from 1.75 to 1.9. The first and second columns correspond to orthographic
projections onto the plane (τ1, τ2) viewed fromτ3 > 0 and fromτ3 < 0, respectively, on the phase spaceTL,1.5. The third column corresponds
to the same evolution in the fully-reduced phase spaceUL,1.5. Besides,δ = 0.01 andβ = 0.4.

After this second pitchfork bifurcation takes place andL increases, the two separatrices atE1 andE2 get close
one each other, and when the curveΓ6 is reached, both orbits collapse and a saddle-connection bifurcation takes
place. After crossingΓ6, the two separatrices interchange the centres they surround.

Finally, the evolution of the phase flow on the phase spaceTL,H for fixedL = 2.5 andH increasing from 1.54
to 1.74 along a path crossing the bifurcation curvesΓ4 andΓ2 is shown inFig. 7. AsH increases and the system
approaches the curveΓ4, the pointsE2, E5 andĒ5 get closer and when the lineΓ4 is crossed, another pitchfork

Fig. 6. Phase flow evolution of the system forH = 1.5 asL increases from 2 to 2.26. The first and second rows correspond to orthographic
projections onto the plane (τ1, τ2) viewed fromτ3 > 0 and fromτ3 < 0, respectively, on the phase spaceTL,1.5. We have takenδ = 0.01 and
β = 0.4.
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Fig. 7. Phase flow evolution of the system forL = 2.5 asH increases from 1.54 to 1.74. The first and second rows correspond to orthographic
projections onto the plane (τ1, τ2) viewed fromτ3 > 0 and fromτ3 < 0, respectively, on the phase spaceT2.5,H . Besides, we takeδ = 0.01 and
β = 0.4.

bifurcation takes place: the equilibriaE2,E5 andĒ5 collapse, and after the bifurcation, onlyE2 survives becoming
stable.

The last bifurcation line, sayΓ2, is related to the appearance or disappearance of the equilibriaE1, E3 andĒ3,
and it corresponds to another pitchfork bifurcation. AsH increases, the pointsE1, E3 andĒ3 approach one each
other, and whenΓ2 is reached, all of the equilibria meet and onlyE1 survives after the bifurcation.

7. Connection with the original system

7.1. Reconstruction of the flow defined byH

Our next purpose is to approximate the invariant sets of the initial system from the critical points of the reduced
one. We know[36] that for the case of toroidal symmetries—as the ones due to the appearance of the integrals
L andH—we can generically continue a certainp-dimensional torus to a true (p+ n− s)-dimensional torus of
the initial Hamiltonian, wheren designates the number of degrees of freedom of the original system ands the
number of degrees of freedom of the reduced one. For our case,p = 0 (the only invariants determined in the fully-
reduced Hamiltonian are equilibrium points),n = 3 ands = 1. Thus, (regular) critical points of̄̄K correspond to
two-dimensional tori ofH. Once we have an equilibrium in the fully-reduced phase space, we can determine a
family (parameterized byL andH) of invariant two-dimensional tori of the original Hamiltonian.

The procedure is as follows. Sincē̄K has been obtained after three reduction steps (the Keplerian reduction related
to the first-order normalisation followed by the exact axial-symmetry reduction and the reduction by the discrete
symmetries), in order to pass to the original Hamiltonian we should attach either a family of two-dimensional
invariant tori (with parametersL andH) to any point ofTL,H if |H | > 0 or either a family of periodic orbits
(parameterized byL) to the singular points (±L,0,0) of TL,0. However, we notice that the points (±L,0,0) must
be discarded as all our Hamiltonians (perturbations of the two-body system) are singular for rectilinear orbits.
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We also need to discard those critical points whose linearisation has null eigenvalues. If|H | < G < L, the two-
dimensional tori are defined by the angles& andh. In case of equatorial (G = |H |) or circular motions (G = L) it is
still possible to define other action and angle variables and perform the reconstruction of the invariant tori similarly,
as we will see later on when trying to get closed orbits.

What we obtain about the original system are families of two-dimensional invariant tori depending on the
parametersL andH but also on the external parametersβ and δ. An equilibrium on the fully-reduced phase
spaces, whose linearisation has no null eigenvalue, must be in correspondence with one, two or four families of
two-dimensional invariant tori inR6, depending on where these points are placed in the fully-reduced phase space.
Moreover, an equilibrium in the fully-reduced phase space and its corresponding invariant torus share the same type
of stability (nonlinear in the hyperbolic case).

For those equilibria ofUL,H or ofUL,0 where the linearisation yields null eigenvalues, a specific analysis should
be performed. This situation occurs here only for the saddle-centre and pitchfork bifurcations. For a detailed analysis
and reconstruction of the flow for the former we refer to[7] whereas the latter have been studied in[17]. In both
cases, the degenerate points are of parabolic type and therefore unstable. So, the corresponding two-dimensional
tori are also parabolic as the fully-reduced system is structurally stable.

We can even compute the explicit formulae of the approximations of the two-dimensional invariant tori using the
direct change of the Delaunay normalisation, i.e. the transformationα, inserting thereafter the coordinates ofEi in
this change. However, on the one hand, we have detected families of quasiperiodic orbits of equatorial and circular
type. On the other hand, Delaunay coordinates are not defined for these orbits. Thus, we resort to a different set of
action and angle variables well defined for small inclinations and all eccentricitiese ∈ [0,1): the set of canonical
Poincaŕe elements[25]:

q1 = &+ g+ h, q2 = −√
2(L−G) sin(g+ h), q3 = &+ g,

p1 = L−G+H, p2 = √
2(L−G) cos(g+ h), p3 = G−H.

(35)

Now we construct the transformationα referred to the variables(35). This is achieved using the changeα and taking
into account the partial derivatives among the Poincaré and Delaunay elements. Besides, we need to express the
coordinates of the particular pointEi in terms of(35). Hence, an invariant torus related to a specific equilibrium
pointEi is defined through the anglesq1 andq3. Note thatG andg are functions of the parametersL andH and
consequently we have obtained a (two-parameter) family of two-dimensional tori for a given critical pointEi. In
this case, a first-order normalisation has been enough to study the qualitative dynamics of the original problem.
Nevertheless, provided that the global error after truncation be maintained small enough, the higher the order we
reach with the Lie transformation, the more accurate the invariant tori ofH are.

The approximated tori of the system defined byH are indeed approximations of true invariant tori. Their
existence can be guaranteed because the two continuous symmetries are action variables conjugated to angular
coordinates. Thus, we can define a suitable Poincaré mapping and apply the Implicit Function Theorem, details
appear in[36]. Generically the true tori can be refined using either analytical or numerical continuation tech-
niques. Next, bifurcations of relative equilibria are translated into bifurcations of families of two-dimensional
invariant tori or quasiperiodic orbits. The persistence of these bifurcations is guaranteed by the estimate of the next
subsections.

We do not give details about the reconstruction of the full system using KAM theory, as the analysis is analogous
to the ones performed in[7,17]. Instead, we illustrate the connection to the original system by using estimates of
the error for the transformationsΦ or α, as well as some surfaces of section.

7.2. Error estimation

We estimate the error to show the range of validity of the results obtained and consequently the reliability of the
conclusions on the original system. Estimates on the time validity of the Delaunay normalisation (at first order or
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at higher orders) can be directly derived from the generating function and the inverse change obtained inSection 3
throughEq. (9).

If we denotez= (&, g, h, L,G,H) andy = (&′, g′, h′, L′,G′, H ′), we know thatΦ(y) = z+O(δ2) andα(z) =
y+O(δ2). We can composeH with Φ orK with α getting:

H(z) −K(y) = H(α(y)) −K(y) = O(δ2),

K(y) −H(z) = K(Φ(z)) −H(z) = O(δ2).

The error termO(δ2) is a function ofy or of z and the parametersβ andδ. Moreover,δ acts as a small parameter.
We prefer to composeKwith α and work with the initial Delaunay coordinatesz, since we can make comparisons

with the original Hamiltonian. Now, the errorO(δ2) can be written as:

K(Φ(z)) −H(z) = ε(z),

whereε plays the role of the global error produced by truncating the computation at degree one. The maximum of
|ε(z)| evaluated for different values ofzwill give us the size of the error. This function depends on five coordinates—
h is not present in the formulae—plus the constantβ. Next we need to evaluateε(z) with the angles& andg allowed
to vary in [0,2π) whereasL, G andH satisfy 0≤ |H | ≤ G ≤ L. Besides, we takeβ ∈ [0,0.5] and build a grid of
1000 points. We have checked that max|ε(z)| < 2δ2 and consequently the theory can be considered of order one.

We can conclude that the composition given in the above paragraph is true on a time-scale of 1/δ, that is, the
transformation ofH intoK and the changes of coordinates are valid fort ∈ [0, C/δ] for some constantC > 0, see
reference[27] for details and workout examples. However, in practice it is not always easy to determine the majorant
C and this is usually done in every particular situation. Other upper bounds of the time validity could be obtained
using Nehorǒsev theory, though it is outside the scope of the present paper.

7.3. Poincaré surfaces of section

The analytical results obtained in the previous sections may be validated by means of Poincaré surfaces of section.
Even more, the results of this section are in agreement with the estimation of the error studied inSection 7.2.

To begin with, we recall that periodic orbits are reflected as fixed points on the Poincaré surfaces of section.
Thus, every fixed point on the surface of section can be associated with an equilibrium in the fully-reduced phase
space.

We define the surface of section asz = 0 andPz ≥ 0 from Hamiltonian(7). This surface appears as a closed
region in the plane (ρ, Pρ) bounded by:

Pρ = ±
√

2E − δ2

ρ4
+ 2δH

ρ3
− H2

ρ2
+ 2

ρ
− 2βδ

ρ
, (36)

for a fixed value of the energyE = H < 0. Note that the equatorial oscillation on theρ-axis, which always exists, is
tangent to the flow in this representation, and corresponds to the exterior limit of the Poincaré section. This periodic
orbit corresponds to the equilibrium pointE1 in the fully-reduced phase space. Besides, since this orbit does not
appear as a single fixed point, its stability cannot be determined directly by looking at the orbits around it. However,
the stability character can be inferred from the Index Theorem[26].

We setδ = 0.01 andβ = 0.4, whereas the energyE ≈ −1/(2L2) and thez-componentH of the angular mo-
mentum are conveniently varied in order to sweep out the different regions where changes in the dynamics are
expected.
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Fig. 8. Evolution of the surfaces of sectionz = 0 andPz ≥ 0 for δ = 0.01,β = 0.4,H = 1.5 and (a)L = 1.75, (b)L = 1.9 and (c)L = 2.23.

The first bifurcation we are looking for is a pitchfork one and it occurs whenΓ1 is crossed. This bifurcation
is depicted inFig. 8. For H = 1.5 andL = 1.75, the stable fixed point inFig. 8a is an almost circular orbit
which corresponds to the equilibriumE2 in the fully-reduced phase space. ForL = 1.9 (seeFig. 8b), the pitchfork
bifurcation takes place: the fixed pointE2 becomes unstable and the separatrix passing through it surrounds two
new stable fixed points, which correspond to the equilibriaE3 andĒ3 in the fully-reduced phase space. Besides,
E1 is stable for bothL = 1.75 andL = 1.9.

When the bifurcation lineΓ5 is crossed, a double saddle-centre bifurcation is expected. This bifurcation can be
seen inFig. 8c forL = 2.23. In the upper and lower corners of the section, there appear four new fixed points which
correspond to the two stable equilibriaE5 andĒ5 and to the two unstable equilibriaE4 andĒ4 in the twice-reduced
phase space.

A clearer vision of this bifurcation can be obtained by changing the definition of the surface of section to a new
one where the equatorial periodic orbitE1 is inside the surface of section. This can be achieved by defining the
surface as the sectionρ = ρo andPρ ≥ 0. This time the boundary of the surfaces of section is obtained by expressing
Pz in terms ofz in Eq. (7) after replacingρ = ρo andPρ = 0. We note that with this unusual surface of section,
we cannot guarantee that it will be crossed by most of the orbits[14]. In Fig. 9, a sequence of three surfaces of
section defined byρ = 4 andPρ ≥ 0 is shown. The double saddle-centre bifurcation may be observed comparing
the surfaces of section given inFig. 9a and b.

The next bifurcation is a pitchfork one and it takes place when the lineΓ3 is crossed (compareFig. 9b and c).

Fig. 9. Evolution of the surfaces of sectionρ = 4 andPρ ≥ 0 for δ = 0.01,β = 0.4,H = 1.5 and (a)L = 1.9, (b)L = 2.23, (c)L = 2.245.
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Fig. 10. Evolution of the surfaces of sectionz = 0 andPz ≥ 0 for δ = 0.01,β = 0.4 and (a)L = 2.28 andH = 1.5, (b)L = 2.5 andH = 1.7,
(c)L = 2.5 andH = 1.74.

The saddle-connection bifurcation is observed whenFig. 10a is compared toFig. 8b and c. Note that while in
Fig. 8b and c the separatrix passing throughE2 surrounds the fixed pointsE3 andĒ3, in Fig. 10a this separatrix
surroundsE5 andĒ5. Finally, in Fig. 10b and c, the last two pitchfork bifurcations—which take place when the
linesΓ4 andΓ2 are crossed—are reported.

It is worth mentioning that the values of the parameters for which the bifurcations are observed in the surfaces
of section are in very good agreement with the values of the parameters for the bifurcation lines ofSection 5.

7.4. Symmetric periodic orbits

Even though it is possible to determine periodic orbits from surfaces of section, now we see how some quasiperi-
odic orbits of the original system turn into periodic orbits under certain assumptions. Here, we determine families of
symmetric and doubly-symmetric periodic orbits. These doubly-symmetric orbits have been analysed in the context
of the restricted three-body problem by various authors, and we cite the recent reference[25]. Here, we follow the
steps of[37] adapted for our requirements.

As discussed already inSection 4, Hamilton function(5) is invariant under the reflections given in(16). We
chooseR1 andR2 as fundamental symmetries sinceR3 can be generated combiningR1 andR2. In Cartesian
coordinates,R1 andR2, respectively, fix the hyperplanesL1 andL2 defined by:

L1 = {(x,0,0,0, Py, Pz) | x, Py, Pz ∈ R},
L2 = {(x,0, z,0, Py,0) | x, z, Py ∈ R}.

Now we take advantage of the discrete symmetries with the aim of closing some of the quasiperiodic solutions
predicted inSection 7.1. Using Poincaŕe coordinates(35) the fixed hyperplanes read as:

L1 = {(q1,0, q3, p1, p2, p3) with q1 ≡ q3 ≡ 0 modπ},
L2 = {(q1,0, q3, p1, p2, p3) with q1 ≡ 0 modπ, q3 ≡ 1

2πmodπ}.

To get an approximation of a closed orbit of HamiltonianH we look for a linear relation between the anglesq1
andq3. Indeed, we use the hyperplanesL1 andL2 to pick some initial conditions, ensuring that a certain trajectory
starting atL1 will get closed at the same point ofL1 and the same applies for initial conditions inL2. Note that we
have a certain freedom since we have families of quasiperiodic trajectories parameterized byL andH . Thus, we
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setq3 = q0
3 + s(q1 − q0

1) for some initial conditionsq0
1 andq0

3 that we shall fix later on. The determination of the
slopes is made through the quotient

s = dq3

dq1
= dq3/dt

dq1/dt
.

In order to calculate it we go back to Hamiltonian(10). As we know that d&/dt = ∂K/∂L, dg/dt = ∂K/∂G
and dh/dt = ∂K/∂H , we get: dq3/dt = ∂K/∂L+ ∂K/∂G and dq1/dt = ∂K/∂L+ ∂K/∂G+ ∂K/∂H . Now, cosg,
sin g andG are written in terms of theσ’s usingEq. (20) and finally the coordinates of the equilibriaEi, say,
(σ1

0
i , σ2

0
i ), are substituted into the resulting expressions. Thus, we compute the possible slopess for all critical

pointsEi and conclude thats is a function of the four parametersδ, β, L andH .
Three possibilities are in order: periodic orbits intersectingL1, orL2, or both hyperplanes. They are symmetric

in the first two cases and doubly-symmetric in the last one. For instance, if one is interested in calculating the closed
orbits intersectingL1, we select initial conditionsq0

1 ≡ q0
3 ≡ 0 modπ andq0

2 = 0.
As an illustration, we detail how to obtain periodic orbits out of the quasiperiodic orbits related to the equilibria

E1 andE2. In both cases, using(20) we have that sing = 0, then we takeh0 = 0 andq0
2 = 0. Hence, choosing

&0 = 0 we getq0
1 = q0

3 = 0 and the relations among the angles yield:

q3 = epn

epd
q1 for G = H,

q3 = ern

erd
q1 for G = −H,

q3 = cn

cd
q1 for G = L,

(37)

where

epn = −8L3H6(L+H) + δ2(L+H)(35L3 − 7LH2 + 18L2H − 10H3)

+ 8δL2H3[−3H2 + 2LH(−3 + βH3) + L2(−3 + 4βH3)],

epd = 2(L+H)[−4L3H6 + δ2(15L3 − 5H3 − 3LH2 + 9L2H)

+ 4δL2H3(−2L− 3H + 2βLH3)],

and similar expressions hold forern, erd , cn andcd .
Next we go back to the (approximate) expressions obtained inSection 7.1for the families of two-dimensional

invariant tori associated with equatorial and circular motions of the original HamiltonianH. Then we express these
tori in Poincaŕe variables using(35). Thereafter, we make that the angular variables of the toriq3 andq1 satisfy one
of the conditions given through(37), obtaining (approximate) families of periodic orbits, parameterized byL and
H which are either nearly equatorial—both prograde and retrograde—or nearly circular.

Other approximations of periodic orbits for other critical points of¯̄K can be determined similarly. However, note
that we do not know the explicit form of the critical points (σ0

1i, σ
0
2i) excepting for equatorial and circular orbits.

Anyway one can give particular values forL andH in a specific region of the plane of parameters and proceed as in
the preceding paragraphs. We also encounter periodic orbits from the quasiperiodic orbits related toEi, but using
the symmetryR2. It is achieved by taking the corresponding slopess and initial conditionsq0

i andp0
i adequately.

This collection of closed trajectories are again generically parameterized byL andH.
Next we show how to get doubly-symmetric closed orbits. In order to do so we need that the trajectory touches the

two fixed hyperplanes. We start by taking initial conditions inL1, forcing the solution to pass throughL2 and ending
in L1 in the same initial conditions. So, we makeq0

2 = 0,q0
1 = jπ andq0

3 = kπ with j, k ∈ Z. Now we impose that
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our closed orbit reachesL2, i.e. we makeq1
2 = 0, q1

1 = mπ andq1
3 = π/2 + nπ, wherem, n ∈ Z. Observe now that

the equationq3 = q0
3 + s(q1 − q0

1) has to be satisfied by the pair (q1
3, q

1
1). Thence, we arrive at the relation:

k + s(m− j) − 1
2 − n = 0, (38)

where the slopes depends on the equilibrium point we choose. For instance, we start by giving the following values
for the external parameters:δ = 0.01 andβ = 0.4. Now we select the values of the integralsH andL doingH = 1
andL = 3. With these choices we compute the slopes through the quotientcn/cd , obtaining a rational value fors
which may be approximated by 0.999. . . . Next, we putm = n = 0 and try to adjust the integersj andk so thatEq.
(38) can be satisfied. After settingj = 65401001, we getk = 65337820. Thus, we have obtained a closed orbit of
circular type, which according to condition(33) is unstable. It is even unstable taking the whole¯̄K.

Other stable and unstable periodic trajectories ofH can be obtained in a similar way, taking appropriate initial
conditions in eitherL1 orL2 and passing either throughL2 or throughL1, respectively.

Proceeding as in the previous paragraphs, we have obtained single-symmetric and doubly-symmetric periodic
orbits ranking from circular (G = L) to almost rectilinear (G ≈ 0) and having inclinations varying from 0 to nearly
π. Besides, the stability of such orbits depends on the values ofL andH , according to the region of the plane of
parameters in correspondence with the fixed values ofL andH . We stress the importance of obtaining a closed-form
expression ofW1, as we have got formulae for all type of elliptic motions.

The approximate periodic orbits we have obtained can be refined either analytically or numerically. Numerical
strategies to continue periodic orbits of Hamiltonian problems can be looked up in[28], whereas analytical techniques
are based on the calculation of higher-order terms of HamiltonianK—or Hamiltonian¯̄K—using Lie transformations,
combined with the analytical approximation of the critical points of¯̄Kwhich are needed to get a good approximation
of a certain trajectory.

8. Conclusions

We have studied the dynamics of a charged particle that orbits a rotating magnetic planet. We have focused on
the Keplerian regime, i.e. on the case where the main force acting over the particle is the gravitational field created
by the planet. The main features of our work can be summarized as follows:

(i) We have made a rigorous analysis of theGSproblem, establishing two-dimensional invariant tori and quasiperi-
odic orbits together with their stability. The occurrence and type of stability of the invariant tori and quasiperi-
odic orbits depend on four parameters, two of them being of external nature:β andδ, and the other two of
internal character: the exact integral of the problemH and the approximate integralL. Besides, we have de-
termined analytically the bifurcation lines, i.e. the relations among the four parameters so that a change in the
number of invariant tori and stability happens. TheGSHamiltonian presents a very rich dynamics depending on
its parameters. Indeed, we have found a saddle-centre, five pitchfork as well as a saddle-connection bifurcation.
Besides, we have tested their existence using Poincaré surfaces of section.

(ii) The analysis has been possible through a simplification of the original Hamiltonian. First of all, a Delaunay
normalisation has been utilized to average the Hamilton function with respect to the mean anomaly. A method
for controlling the error related to the truncation of the averaged Hamiltonian has been used. Then, we have
applied reduction theory to express the averaged Hamiltonian, truncated at first order, in terms of functions
invariant with respect to the two continuous symmetries of the resulting problem: the axial one and the symmetry
induced by averaging. Next, we have taken advantage of the finite symmetries of the problem to construct the
fully-reduced Hamiltonian in its corresponding two-dimensional phase space.

(iii) The fully-reduced Hamiltonian defines a system of one degree of freedom and is therefore easier to be studied
than the original one. We have extracted the qualitative information about its critical points. This is translated
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to the original Hamiltonian using reconstruction of the flow techniques. Besides, we have plotted the flow of
the twice-reduced Hamiltonian and the one corresponding to the fully-reduced system. By doing so we have
verified the occurrence of all bifurcations found analytically.

(iv) Some true symmetric periodic orbits of the original Hamiltonian have been approximated to first order using
the finite symmetries of the problem. These periodic orbits can be either continued numerically using standard
methods or analytically approximated pushing the normalisation to higher orders. We plan to tackle this issue
in future.

(v) We have enlarged the study done in[24,23,13], finding a new collection of periodic trajectories crossing the
equatorial plane of the planet’s orbit.

The methodology used in this paper can be applied to other problems formulated as perturbations of the two-body
problem, enjoying an axial symmetry or not, but enjoying a set of discrete symmetries like those of(16). We cite
some problems related to the restricted three-body Hamiltonian (see[29,37]), an artificial satellite orbiting a planet
where the perturbation caused by the gravity field of the planet is taken into account (see also[9,6]), the hydrogen
atom under the influence of an electric and a magnetic crossed fields (see, for instance,[8,15]) or some problems
of physical chemistry, modelled by means of the so-called generalised van der Waals potential[16].
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