
PHYSICAL REVIEW E 66, 056614 ~2002!
Hydrogen atom in the presence of uniform magnetic and quadrupolar electric fields:
Integrability, bifurcations, and chaotic behavior
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We investigate the classical dynamics of a hydrogen atom in the presence of uniform magnetic and quadru-
polar electric fields. After some reductions, the system is described by a two degree of freedom Hamiltonian
depending on two parameters. On the one hand, it depends on thez component of the canonical angular
momentumPf , which is an integral because the system is axially symmetric; and on the other it also depends
on a parameter representing the relative field strengths. We note that this Hamiltonian is closely related to the
one describing the generalized van der Waals interaction. We report three cases of integrability. The structure
and evolution of the phase space are explored intensively by means of Poincare´ surfaces of section when the
parameters vary. In this sense, we find several bifurcations that strongly change the phase space structure. The
chaotic behavior of the system is studied and three order-chaos transitions are found when the system passes
through the integrable cases. Finally, the ionization mechanics is studied.
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I. INTRODUCTION

The hydrogen atom is a real integrable system. Howe
its integrability is frequently lost when the atom is subject
to external fields. The most famous example of this fac
the so-called Zeeman effect@1#, when the applied field is a
static magnetic field. In addition to the Zeeman effect, so
more external perturbations have been added. Among th
we can cite the constant electric field~the Stark effect! @2#,
the microwave electric field@3#, and the parallel@4# or
crossed@5# electric and magnetic fields. These systems h
been, during recent decades, unique laboratories where
aspects as the integrability and the quantum signature
classical chaotic dynamics have been investigated@6#. In re-
lation to the integrability, Alhassidet al. @7# introduced a
general perturbation called the generalized van der W
potential in which most of the cited static perturbations
represented. In atomic units and cylindrical coordina
(r,z,f,Pr ,Pz ,Pf), the Hamiltonian of a hydrogen atom
perturbed by a generalized van der Waals potential can
written as

H5
Pr

21Pz
2

2
1

Pf
2

2r2
2

1

Ar21z2
1

a

2
~r21b2z2!. ~1!

Owing to the axialz symmetry, thez componentPf of the
canonical angular momentum is conserved and this Ha
tonian defines a two degree of freedom dynamical syst
For b50 the Hamiltonian~1! is that of the hydrogen atom in
a constant magnetic field~the quadratic Zeeman effect!, for
b561 it is the spherical quadratic Zeeman effect, and wh
b56A2 the Hamiltonian~1! describes the instantaneou
van der Waals interaction between the atom and a metal
face @8#.
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One of the most important results of the study of th
system is that the problem is shown to be integrable for
special valuesb561/2,61,62 @9–11#. In this sense, for
these values ofb additional constants of the motion hav
been found@9–12#. However, while forb561,62 the sys-
tem is separable, respectively, into spherical and parab
coordinates, forb561/2 the system seems to be one of t
rare cases of an integrable but nonseparable system@12#. It is
also worth noticing that when the sign of the Coulomb te
is changed, the resulting Hamiltonian represents the mo
of two ions in a Paul trap@13,14#, and the cited integrable
limits also hold in this case. Finally, a semiclassical appro
@15# and the quantum manifestation of chaos@16# in this
system have been investigated by Ganesan and Lakshma
More recently, Beims and Gallas@17# introduced a more gen
eral system that includes the presence of a static ele
field, in such a way that two more cases of integrability a
reported.

At this point, the aim of this paper is to follow the idea o
Blümel and Reinhardt@18# that a generalb value in Eq.~1!
would correspond to a hydrogen atom in the presence
constant magnetic field and a quadrupolar electric fie
However, as we will see, this field configuration is not co
pletely described by the Hamiltonian~1!, but by a slightly
different one. Moreover, we emphasize that, while the s
tem ~1! can be used just as a theoretical toy, the system
we present in this work may be tested in the laboratory
cause, nowadays, almost perfect quadrupolar electric fi
are implemented, for example, in ion Penning traps.
leave a more deeper discussion about this important
complex question to experimentalists.

The paper is organized as follows. Section II is devoted
the posing of the problem. We show that the problem has
degrees of freedom and it depends on two parameters.
shape of the effective potential surface and its critical poi
are studied depending on the system parameters. In Se
©2002 The American Physical Society14-1
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we analyze the three integrable cases of the problem.
means of Levi-Civita´ regularizations, we study the separab
ity of the Hamiltonian system and find the global invaria
~integrals! of the problem in those cases. In Sec. IV we stu
the evolution of the phase space structure as the param
vary, and several bifurcations are found. In Sec. V we a
lyze the chaotic behavior and the ionization mechanics of
system. Finally, in Sec. VI the main results of the paper
summarized.

II. THE PROBLEM

Let us consider the motion of an electron of massm and
charge2q in a Coulomb field induced by an infinitely mas
sive nucleus of chargeq.0 at rest. On the central field,
uniform constant magnetic fieldB5Bẑ and a quadrupola
electric potential given by

VQ5m
wz

2

4
~2z22x22y2!

are superimposed.
As we noted in the Introduction, this field arrangemen

also used in ion Pennig traps, in such a way thatwz is the
axial frequency induced by the quadrupole electric field.
well as the dependence on the charge2q and on the massm
of the electron, this frequency depends on the experime
configuration of the electrodes that create the quadrup
electric potential@19,20#.

In cylindrical coordinates (r,z,f,Pr ,Pz ,Pf) and atomic
units (m5q51), it is quite simple to see that the classic
Hamiltonian of the system is given by

H5
Pr

21Pz
2

2
1

Pf
2

2r2
2

1

Ar21z2
2gPf

1
g2

2
r21

w2

2 S z22
r2

2 D , ~2!

where g5B/2B0 and w5wz /w0 are, respectively, the re
duced Larmor frequency (B0'2.353105 T) and the reduced
axial frequency (w0'2.06731016 s21).

Due to the axial symmetry, a time dependent canon
transformation allows us to formulate the problem in a fra
of reference rotating with angular velocityg. In this moving
frame the paramagnetic termgPf is not present, and the
Hamiltonian of the system is

H5
Pr

21Pz
2

2
1

Pf
2

2r2
2

1

Ar21z2
1

g2

2
r2

1
w2

2 S z22
r2

2 D . ~3!

This Hamiltonian depends on the four paramet
g, a, Pf , and the energyE5H. Following several au-
thors @1#, we can scale the coordinatesr5(r,z) and mo-
mentaP5(Pr ,Pz ,Pf) as
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r85g2/3r, P85g21/3P,

in such a way that, after dropping th primes in coordina
and momenta, the Hamiltonian~3! becomes

H85
H

g2/3
5e5

Pr
21Pz

2

2
1

Pf
2

2r2
2

1

Ar21z2

1
1

2 S 12
l2

2 D r21
l2

2
z2, ~4!

where the new dimensionless parameterl5w/g represents
the ratio between the strengths of the two external fie
Hence, the classical dynamics of the system does not dep
on those four parameters independently but only onl,Pf ,
and the new scaled energye5Eg22/3.

Note that whenl,A2 we can define the parametersa
andb as

a512
l2

2
, b5A 2l24

22l2
, ~5!

and the system~4! is equivalent to the Hamiltonian~1!.
However, the casel.A2 is not included in the generalize
van der Waals model~1!, and hence we will use the Hamil
tonian ~4!, because it represents the correct model to st
the considered system.

The effective potential

In order to see how the external fields modify the dyna
ics of the atom we have applied the common and use
method of studying the shape of the effective poten
U(r,z) in Eq. ~4!,

U~r,z!5
Pf

2

2r2
2

1

Ar21z2
1

1

2 S 12
l2

2 D r21
l2

2
z2, ~6!

as the parametersPf and l vary. The critical points of
U(r,z) as a function of the parametersPf andl are given
by the solutions of the equations

]U

]r
5Ur52

Pf
2

r3
1

r

~r21z2!3/2
1S 12

l2

2 D r

50, ~7!

]U

]z
5Uz5zF 1

~r21z2!3/2
1l2G50. ~8!

From Eq.~8! it follows that the critical points lie on the plan
z50. After introducingz50 in Eq. ~7!, we get

Ur~r,z50!52
Pf

2

r3
1

1

r2
1S 12

l2

2 D r50, ~9!

which gives rise to the following polynomial equation inr:
4-2
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P[S 12
l2

2 D r41r2Pf
2 50. ~10!

The right hand side of Eq.~10!, P, is a fourth degree poly-
nomial inr whose positive roots give ther coordinate of the
critical points. Although there is a general formula giving t
roots ofP in exact terms, we are more interested in knowi
their number, nature, and conditions of existence.

In order to know the number of positive roots ofP, we
use the criterion of Descartes@21#. The rule of Descartes
establishes that, ifp is the number of positive roots ands is
the number of sign changes in the coefficient sequence
polynomial, thens5p12k, wherek is a positive integer. By
virtue of this theorem, from the changes of sign in the
quence of coefficients ofP, we deduce that~1! for l,A2,
the polynomialP presents one change of sign, and thus it h
one root; ~2! for l.A2, the polynomialP presents two
changes of sign, and thus it has two or zero roots.

For Pf50, we can easily solve Eq.~10!, in such a way
that we find two solutions

r050, r15S 2

l222
D 1/3

. ~11!

Note that the first solution does not correspond to any crit
point because neither Eq.~7! nor Eq.~8! is satisfied. In fact,
they are not defined atz50, r50. However, forPf5” 0, by
means of the implicit function theorem, we find a root of E
~10! r0(Pf) which is no longer zero unlessPf50. Then we
obtain a proper critical point of coordinates (r0,0), that is
the unique critical point forl,A2. On the other hand, th
second solutionr1 only has sense forl.A2 and hence in
this case the number of critical points must be 2 instead
zero, namely,r0 ,r1.

To know the type of critical point at hand, we calcula
the determinantDH of the Hessian matrixH,

DH5detH, H5S Urr Urz

Urz Uzz
D . ~12!

For z50, the elements ofH are

Urz50,

Urr5
3Pf

2

r4
2

2

r3
112

l2

2
,

Uzz5l21
1

r3
. ~13!

BecauseUzz is a positive term, the nature of the critic
points is determined by the sign of the elementUrr . For
Pf50, we focus on the nature of (r1,0). By substitution in
Urr , we get that

Urr~P2!53S 12
l2

2 D,0,
05661
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becausel.A2. Hence, (r1,0) is always a saddle poin
whose energy isE2,

E252
3

2 S l222

2 D 1/3

,0.

In Fig. 1 we show the potential energy surfaceU(r,z) and
its equipotential curves forPf50 and both casesl,A2 and
l.A2. We have plotted these figures for positive and ne
tive values ofr because, although it is a cylindrical coord
nate, in the casePf50, r can also be considered as a Ca
tesian coordinate with positive and negative values in
orbital plane, which is always perpendicular to thex-y plane
@22#.

For the general casePfÞ0, the numerical resolution o
Eq. ~10! provides the same results, e.g., forl,A2 the effec-
tive potential shows only a minimum, and forl.A2 it
shows a minimum and a saddle point. These situations
depicted in Fig. 2.

We can conclude that forl,A2 the atom, even for posi
tive energies, cannot ionize. However, forl.A2 the elec-
tron has the possibility of escaping through the channel c
ated by the saddle point. This question will be studied in S
V.

III. INTEGRABLE CASES

As we said, forl,A2 the Hamiltonian~4! is formally
equivalent to the Hamiltonian~1! describing the generalize
van der Waals system. Hence, the integrable cases of Eq~1!
for b i5(61/2,61,62) must have their counterparts whe
the integrability of Eq.~4! is considered. In this way, we
obtain the corresponding values ofl i by solving the equation

b25
2l2

22l2
~14!

FIG. 1. Equipotential curves ofU(r,z) and potential energy
surfacesU(r,z) for Pf50, ~a! and ~b! l51, ~c! and ~d! l52.
4-3
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for b i5(61/2,61,62). We get, respectively, l i5
(6A2/3,6A2/3,62/A3). For each valueb i , the corre-
sponding third constant of the motion of the system~1! was
calculated for alla values andPf50 in @10# and for allPf
anda51 in @12#. However, because in the Hamiltonian~4!
the parametersa and b are both dependent onl @see Eq.
~5!# those three functions may not be the global invariants
Eq. ~4! in the casesl i . Hence, we have determined the co
rect integralsI (r,z) of Eq. ~4! for l i . This study can be
summarized as follows.

~1! For l56A2/3 and for allPf , the Hamiltonian~4! is
separable in spherical coordinates and the problem is a
degree of freedom system depending on the radial dista
In this case, we find the same integral as fora51 andb i
561,

I 15~rPz2zPr!21
Pf

2 z2

r2
. ~15!

~2! Whenl562/A3 and for allPf , the Hamiltonian~4!,
like the Hamiltonian~1! for b562 @12#, is separable in
semiparabolic coordinates (u,v),

r5uv, z5~u22v2!/2. ~16!

Expressed in those variables, the Hamiltonian~4! reads

K525
Pu

21Pv
2

2
1

Pf
2

2 S 1

u2
1

1

v2D 2e~u21v2!

1
1

2 S 12
l2

2 D ~u21v2!u2v2

1
1

8
l2~u22v2!2~u21v2!, ~17!

FIG. 2. Equipotential curves ofU(r,z) and potential energy
surfacesU(r,z) for Pf50.25, ~a! and ~b! l51, ~c! and ~d! l
52.
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where we have defined a new scaled timet5t/(u21v2) and
multiplied by u21v2. This procedure is the so-called Lev
Civitá regularization@23#. We observe that separability o
Eq. ~17! only takes place whenl562/A3. For thisl value,
the HamiltonianK is

K525
Pu

21Pv
2

2
1

Pf
2

2 S 1

u2
1

1

v2D
2e~u21v2!1

u6

6
1

v6

6
, ~18!

and its separability is clear. For this separable case, we
the following integral of motion in cylindrical coordinates:

I 252
Pf

2 z

r2
1

r2z

3
1Pr~Pzr2Prz!1

z

Ar21z2
. ~19!

Note that this invariant is different from that found for E
~1! whenb i562 @12#.

~3! For l56A2/3, as for the Hamiltonian~1! for b i5
62 @12#, we find that the problem separates only forPf
50 when a Levi-Civita´ regularization is applied using th
semiparabolic coordinates (u,v),

r5~u22v2!/2, z5uv. ~20!

Indeed, after the regularization, the Hamiltonian~4! results
in

K525
Pu

21Pv
2

2
1

Pf
2 ~u21v2!

~u22v2!2
2e~u21v2!

1
1

8 S 12
l2

2 D ~u22v2!2~u21v2!

1
l2

2
u2v2~u21v2!. ~21!

And for l56A2/3, it takes the form

K525
Pu

21Pv
2

2
1

Pf
2 ~u21v2!

~u22v2!2
2e~u21v2!

1
u6

9
1

v6

9
, ~22!

which separates only whenPf50. However, for allPf
we find the following invariant:

I 35
9Pf

2 ~Prr1Pzz!2

8r2
1Pf

2 ~r21z2!1S 3Pf
2

2A2r
2

rz2

3A2

1
3Pz~Pzr2Prz!

2A2
2

3r

2A2Ar21z2D 2

. ~23!

Again, this invariant is different from that found in the ge
eralized van der Waals problem whenb i561/2 @12#. As
4-4
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was pointed out by Farrelly and Uzer, this case is conside
in the literature a rare example of an integrable but nonse
rable system@12#.

IV. PHASE SPACE STRUCTURE

In this section we are interested in the study of the ph
space governed by the Hamiltonian~4!. As is well known,
the phase space structure is mainly characterized by the n
ber and stability of the periodic orbits existing in phase sp
@24#. When dealing with a system of two degrees of freedo
the computation of surfaces of section allows us to illustr
the phase space structure: in the regions of the phase s
where the motion is regular, periodic orbits are clearly ide
tified as fixed points of the Poincare´ map. With this tech-
nique, we explore the evolution of the phase space as
parameters (e,l,Pf) vary.

It is convenient to consider separately the casesPf50
and PfÞ0, because they require different formulations
order to carry out the corresponding Poincare´ map.

A. CasePfÄ0

WhenPf50, the orientation of the orbital plane (r,z) is
always perpendicular to thex-y plane. We recall that, al
thoughr is a cylindrical coordinate, in the casePf50, it
can be considered as a Cartesian coordinate in the or
plane with positive and negative values, and normal to thz
axis @22#. Moreover, because a centrifugal barrier is n
present, the electron can reach the origin and it is more
lustrative to work in coordinates (6r,z). However, we have
to take into account that when the electron reaches the o
r→0, the Hamiltonian~4! presents a singularity. The com
mon way to avoid the numerical problems involved with th
singularity is to apply a Levi-Civita´ regularization@23#. Be-
cause this procedure has already been applied twice to
~4! in the previous section, we will use one of the resulti
Hamiltonians. In particular, we will use the Hamiltonia
~21!.

For Pf50, the Hamilton equations of motion arisin
from Eq. ~21! are

u̇5Pu ,

Ṗu5
1

8
u@16e13~221d2!u412~229d2!u2v2

1~229d2!v4#,

v̇5Pv ,

Ṗv5
1

8
v@16e1~229d2!u412~229d2!

3u2v213~221d2!v4#. ~24!

In searching for particular solutions of Eq.~24!, we find
the following.
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d
a-

e

m-
e
,
e
ace
-

he

tal

t
il-

in

t

q.

~1! Rectilinear orbits along theu axis (v50) always ex-
ist. These orbits correspond to rectilinear orbits along
positiver axis. In the literature, these orbits are named asI 1
@1#.

~2! Rectilinear orbits along thev axis (u50) always ex-
ist. These orbits, namedI 18 , correspond to rectilinear orbit
along the negativer axis.

~3! Rectilinear orbitsv56u always exist, and correspon
to rectilinear orbits along thez axis. In the literature, these
orbits are namedI ` @1#.

~4! Rectilinear orbitsv5au exist for all a5” (0,61,6`)
only whenl5A2/3. These orbits correspond to rectiline
orbits z5@a/(12a)#r. Note that when these rectilinear o
bits appear, the system is integrable.

To look for additional periodic orbits, we compute th
surfaces of section by numerical integration of the equati
of motion ~24! by means of a Runge-Kutta algorithm of fift
order with fixed step@25#. We have defined the surface o
section projecting the phase space on theu50 plane with
Pu>0. Under these conditions, the available region on
surface of section is limited by the curves

Pv56A412ev22S 12
l2

2 D v6

4
. ~25!

It is worth noting that the curves defined by Eq.~25! corre-
spond to the rectilinear orbitI 18 , as can be checked in Eq
~21!. In order to study the evolution of the structure of th
phase space, several surfaces of section were generate
keeping the scaled energye constant while varying the pa
rameterl.

We begin the study by revising the quadratic Zeeman
fect case,l50. The corresponding surface of section
shown in Fig. 3~a!. We takee522 because for this energ
the system is still close to the integrable limite→2` @1#,
and all orbits are regular and confined to adiabatic invari
tori. This surface of section shows four important structur

~1! The stable~elliptic! fixed point located at (0,0) which
corresponds to the rectilinear orbitsI 1. The levels around
this point are quasiperiodic orbits with the same symme
pattern asI 1; that is to say, mainly localized along theu axis,
e.g., along the positiver axis @see Fig. 3~b!#.

~2! The two elliptic fixed points located at (0,6A2)
which correspond to the rectilinear orbitsI ` . We can ob-
serve in Fig. 3~b! that orbits around these fixed points a
quasiperiodic orbits mainly localized along thez axis.

~3! The two unstable~hyperbolic! fixed points of the sepa
ratrix which divides the previous regions of motion. The
hyperbolic points, namedC, correspond to almost circula
orbits located at (61/A2e, 0). They become circular orbit
when the energye→2`.

~4! Finally, and taking into account that the limit of th
surface of section corresponds to the rectilinear orbitI 18 (u
50), the levels above the separatrix are quasiperiodic or
mainly localized along thev axis, e.g., along the negativer
axis @see Fig. 3~b!#.

At this point, it is clear that the stability ofI 18 cannot be
determined by looking at the surface of section, because
4-5
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orbit does not appear as a single fixed point. However,
can determine its stability if we consider that the surface
section is homeomorphic to the quotient space obtained
identifying the points of the limit of the section@26#. Indeed,
the domainD of the surface of section is defined in the pla
(v,Pv) by the inequality

412ev22S 12
l2

2 D v6

4
2Pv

2>0,

the points of the border~25! being those that satisfy

G[412ev22S 12
l2

2 D v6

4
2Pv

250.

Now, we can define a continuous function that mapsD onto
the two-dimensional sphereS 2 in such a way that the borde
G is mapped to the north pole of the sphere. Letj(v,Pv) be
a non-negative function defined as

j~v,Pv!5A412ev22S 12
l2

2 D v6

4
2Pv

2. ~26!

This function, which acts as a radial distance on the dom
D, varies from 0 to 2, and it takes the maximum value
(0,0) and the minimum value at the borderG. Thus, the
function defined as

f : D→S 2,

FIG. 3. ~a! Surface of section (u50,Pu>0). ~b! Quasiperiodic
orbits aroundI 1 , I 18 , andI ` . Both figures fore522, Pf50, and
l50

FIG. 4. Transformation of the surface of section (u50,Pu>0)
onto the sphereS 2, l50, e522, andPf50, ~a! North view, ~b!
South view.
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~x,P!°~h1 ,h2 ,h3!,

~v,Pv!°~j cosu,j sinu,A12j2! if 0<j,1,

~v,Pv!°„~22j!cosu,~22j!sinu,

2A12~22j!2
… if 1<j<2, ~27!

where

FIG. 5. Evolution of the surfaces of section (u50,Pu>0) as a
function ofl for e522 andPf50. The firstoysterbifurcation is
observed between~a! and ~c!.

FIG. 6. Evolution of the surfaces of section (u50,Pu>0) as a
function ofl for e522 andPf50. The second oyster bifurcatio
is observed between~a! and ~c!.
4-6
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sinu5
Pv

Av21Pv
2

, cosu5
v

Av21Pv
2

,

mapsD onto the two-dimensional sphereS 2 of unit radius,

S 25$~h1 ,h2 ,h3!uh1
21h2

21h3
251%,

where the borderG is mapped to the north pole (1,0,0
Moreover, those points satisfying 0,j,1 are mapped to the
southern hemisphere, and those satisfying 1<j<2 to the
northern one.

The Euler characteristic ofS 2 is 2, and by virtue of the
index theorem@27# the sum of the indexes of the critica
points must be 2. Note that in our system the limit of t
surface of section (v,Pv) is the periodic orbitI 18 , and trans-
forms to an equilibrium at (1,0,0) inS 2. Because the surfac
of section shows two unstable fixed points~with index
21) and three stable fixed points~with index 1!, the fixed
point I 18 at the north pole must be stable~with index 1!. We
can observe this fact in Fig. 4 which shows the result
applying the above transformation~27! to the surface of sec
tion of Fig. 3~a!.

In general, when the domainD of the surface of section is
defined in a certain plane (x,P) by the inequality

D[g~x!2P2>0,

we can construct a homeomorphism fromD to the quotient
space resulting from the identification of the points of t
border

FIG. 7. Representation of the second oyster bifurcation on
sphereS 2. Upper row, north view. Lower row, south view.e5
22 andPf50.
05661
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G[g~x!2P250.

In this case it is possible to extend the transformation~27!,
defining a two-dimensional function

j5Ag~x!2P2,

which plays the role of a radius. It takes the minimum val
0 at the borderG and the maximum valuejM at (xM,0).
Now, the family of functions

f n : D→S 2,

~x,P!°~j1 cosu, j1 sinu, A12j1
2!

if 0 ,j,xM /n, ~28!

~x,P!°~j2 cosu, j2 sinu, 2A12j2!

if xM /n,j,xM ,

wherenPN and

j15
nj

xM
, j25

n

n21 S 12
j

xM
D ,

sinu5
P

A~x2xM !21P2
,

cosu5
x2xM

A~x2xM !21P2
,

mapsD onto the two-dimensional sphereS 2 of unit radius

S 25$~h1 ,h2 ,h3!uh1
21h2

21h3
251%.

Note that we can map on the northern or southern he
sphere then fraction of the surface of section in terms of th
radial functionj. However, if the level contours ofj in the
domainD are not smoothly distributed~‘‘concentric’’!, the
transformation deforms the aspect of the Poincare´ map, and
more complicated transformations must be performed.

In fact, let us note that in order to know the stability of th
periodic orbit represented by the limit of the surface of s
tion, it is not necessary to perform the transformation. Tak
into account that the Poincare´ index of the sphere is 2 an
that the limit of the surface of section is one of the critic
points onS 2, the sum of the indexes of the fixed points
the interior of the surface of section must be either 1 or 3
the first case, the periodic orbit represented by the borde

e

n

-

FIG. 8. Evolution of the surfaces of sectio
(u50,Pu>0) as a function ofl for e522 and
Pf50. A third oyster bifurcation is observed be
tween~a! and ~c!.
4-7
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the surface of section must be stable~index 1!, while in the
second one it must be unstable~index 21). In the case tha
the limit does not correspond to any periodic orbit, the s
of the indexes of the fixed points in the interior of the surfa
of section is always 2.

Let us now continue with the study of the evolution of t
surface of section as the parameterl increases. A first
change—bifurcation—occurs when the valuel5A2/3 is
reached ~see Fig. 5!: the two separatrix loops passin
through the fixed pointsC merge with each other, in such
way that a degenerate curve of fixed points appears jus
l5A2/3. This curve, as can be checked by substitutingl
5A2/3 into Eq.~24!, corresponds to a circle of radiusA2
when the scaled energye→2`. After this bifurcation, the
degenerate set of equilibria disappears and the two pair
fixed points I ` and C are created again with interchange
stability @see Fig. 5~c!#. In the literature, this bifurcation is
called the asoysterbifurcation@28#. As a consequence of thi
bifurcation, while the quasiperiodic orbits aroundI ` disap-
pear, a different kind of quasiperiodic orbit corresponding
the levels aroundC appears. These orbits always have t
same symmetry pattern asC, that is to say, they are mainl
localized aroundC.

As the parameterl increases, a secondoysterbifurcation
takes place. Indeed, the separatrix loop enclosing the ell
point I 1 shrinks @see Fig. 6~a!# in such a way that whenl
5A2/3 the separatrix loop becomes a degenerate straight
of fixed points at thePv axis @see Fig. 6~b!#. This set of fixed
points corresponds to the rectilinear orbitsv5au. Whenl
.A2/3, the fixed pointsI 1 and I ` appear again with inter
changed stability@see Fig. 6~c!#. Moreover, as can be ob
served clearly in Fig. 6~d!, the separatrix passing throughI 18
degenerates at the limit of the surface of section because
periodic orbit I 18 is now unstable. As a consequence of th
bifurcation, the levels—quasiperiodic orbits—aroundI 18 dis-
appear, while the quasiperiodic orbits aroundI ` appear
again.

In this second oyster bifurcation the periodic orbitI 18 ,
which is at the limit of the section, suffers a stability chang
For l,A2/3, as the index of the section is 1,I 18 is a stable
periodic orbit, whereas forl.A2/3, as the index of the sec
tion is 3, I 18 becomes unstable@see Figs. 6~a! and 6~c!#. This
stability change of orbitI 18 can be much better observed o
the sphereS 2. Figure 7 shows the evolution ofS 2 for the
samel values as in Fig. 6. In Fig. 7 can be seen the tra

FIG. 9. ~a! Surface of section (z50,Pz>0) for l50, e522
andPf50.2. ~b! Periodic orbits.
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formation of the periodic orbitI 18 from an elliptic fixed point
into a hyperbolic fixed point@see Figs. 7~a! and 7~c!#. For
l5A2/3, the separatrices collapse in a degenerate meri
of fixed points@see Fig. 7~b!#.

Finally, a third oyster bifurcation~see Fig. 8! takes place
when l.A2/3. The separatrix lobe enclosing the fixe
pointsI ` shrinks in such a way that whenl52/A3 a degen-
erate line of fixed points appears on thev axis. Whenl
.2/A3, the degenerate set of equilibria disappears and
fixed points I 1 and C are created, in such a way that th
phase space recovers the same structure as before the
bifurcation. Forl.2/A3 the structure of the surface of se
tion does not suffer any further significant change.

It is worth noting that at three integrable limits the syste
shows high degeneracy. This situation has also been note
Farrelly and Uzer@12# and by Elipe and Ferrer@28#.

B. Case„PfÄ” 0…

In this case, there is no need to perform any kind of re
larization for the Hamiltonian~4! because it does not prese
any singularity atr→0.

First, we identify the values of the parameters (l,Pf) for
which periodic analytical solutions exits. The Hamilto
equations of motion arising from Eq.~4! are

ṙ5Pr , Ṗr5
Pf

2

r3
2S 12

l2

2 D r2
r

~r21z2!3/2
,

ż5Pz , Ṗz52~l2z!2
z

~r21z2!3/2
. ~29!

At first glance, we detect a family of rectilinear equator
orbits along ther axis (z5Pz50). These orbits, namedI 1,
exist always for all value ofl. At this point, we generate
surfaces of section in the variables (r,z,Pr ,Pz) by means of
numerical integration of the equations of motion~29!. The
surface of section has been defined on thez50 plane with
Pz>0. Thus, the available region for the system on this s
face of section is bounded by the curves

FIG. 10. Surfaces of section (z50,Pz>0) for l50, e522,
andPf50.2.
4-8
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FIG. 11. Evolution of the surfaces of sectio
(u50,Pu>0) for e520.2 as a function ofl in
the casePf50.
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Pr56A2e2
Pf

2

r2
1

2

r
2S 12

l2

2 D r2. ~30!

It is important to note that these curves correspond to
rectilinear equatorial orbitsI 1.

We keep constant the energye522. In accordance with
several numerical and perturbative studies@29#, the phase
space of the quadratic Zeeman case (l50) presents two
different structures depending on whetherPf is bigger or
smaller than 1/A210e, and the transition from one to an
other takes place through apitchforkbifurcation. In this way,
we begin the study of the phase space evolution by fix
Pf50.2,1/A20, while varyingl from 0 to A2.

When the quadratic Zeeman effect (l50) is considered,
the corresponding surface of section reflects three peri
orbits corresponding to a hyperbolic fixed point and two
liptic fixed points @see Fig. 9~a!#. These periodic orbits
called, respectively,E1 , E2, andC, are depicted in Fig. 9~b!.

As in the casePf50, because the rectilinear equator
orbit I 1 corresponds to the limit of the surface of section,
stability cannot be determined at a glance. However, its
bility can be determined by applying the index theorem:
cause the index of the surface of section is 1~there are two
stable fixed points and one unstable!, the periodic orbitI 1 is
necessarily stable.

When the parameterl is turned on, the separatrix lobe
shrink; compare Fig. 9~a! to Fig. 10~a! for l50.2. The two
stable fixed pointsE1,2 and the unstable oneC come into
coincidence whenl'0.246 183 in such a way that onlyI 1
05661
e
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ic
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l

a-
-

survives, becoming stable@Fig. 10~b!#; a pitchfork bifurca-
tion takes place.

As l increases, two other stable fixed points~periodic
orbits! appear in the lower and upper corners of the limit
the surface of section@see Fig. 10~c!#. We call these equilib-
ria E1,28 . The appearance of these structures brings a cha
in the index of the surface of section, which is now 3. Hen
the periodic orbitsI 1 become unstable. In other words, a
additional pitchfork bifurcation has occurred.

A final change in the phase space structure is dete
when l increases. The separatrix lobes enclosing the fi
pointsE1,28 grow asl approaches 2/A3 @Fig. 10~d!#, in such
a way that they merge along thePr50 axis when l
52/A3, an integrable case. As a consequence, ther axis
becomes a degenerate straight line of fixed points@Fig.

FIG. 12. Evolution of the fraction of chaotic orbits in the surfa
of section as a function ofl for Pf50 ande520.2.
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FIG. 13. Evolution of the surfaces of sectio
(u50,Pu>0) for e520.5 as a function ofl in
the casePf50.
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10~e!#. When l.2/A3, from this degenerate straight lin
again the hyperbolic pointC is created@see Fig. 10~f!#. This
change can be explained in terms of an oyster bifurcat
and somehow we recover a similar situation to the one
had before the first pitchfork bifurcation. Forl.2/A3, the
phase space structure does not suffer any more signifi
change.

V. CHAOTIC BEHAVIOR AND IONIZATION DYNAMICS

In the previous sections, we studied the evolution of
structure of the phase space of the complete system, ma
use of surfaces of section. All these surfaces of section w
computed fore522. For this energy value, the phase spa
exhibits a global regular structure: all orbits are regular a
confined to adiabatic invariant tori. The reason that all
Poincare´ surfaces calculated in the previous section are
regular is that, for the range of values 0<l,A2 that we
have considered, the effective potential has no sad
point—the electron cannot ionize—and thus the valuee5
22 is small enough to consider the system as an infinit
mally perturbed hydrogen atom.

At this point, it is important to study the system behav
when its energy is much bigger. Hence, in this section,
analyze the effect of the parameterl on the dynamics of our
system when the scaled energye takes a fixed small negativ
value. In particular, we focus on the casePf50. Figure 11
shows a gallery of surfaces of section fore520.2 and in-
creasing values ofl.

The sequence begins withl50 @Fig. 11~a!#, the well-
known quadratic Zeeman effect. As can be seen, glo
chaos completely dominates the dynamics of the system
l varies between 0,l<1.4, we observe three chaos-orde
chaos transitions. Asl approaches each of the three int
grable limits l i5(A2/3,A2/3,2/A3), the stochastic motion
gradually disappears in such a way that at the correspon
integrablel i value the expected regularity is reached. On
other hand, whenl moves away from each integrable valu
the regions of stochastic motion grow in size. In particu
for l51.4 @Fig. 11~i!# the dynamics of the system is total
dominated by chaotic motion.

A clear way to illustrate the order-chaos transitio
showed in Fig. 11 is to measure the fraction of the ph
space where the trajectories are chaotic. To do this, fore5
20.2 and a givenl value, we have numerically calculate
the maximum Lyapunov exponent@30# of a large number of
orbits with initial conditions arranged on a fine grid th
covers the corresponding surface of section. In this way,
have been able to measure numerically, for each value ol,
05661
n,
e

nt

e
ing
re
e
d
e
o

le

i-

r
e

al
s

ng
e
,
,

e

e

the fraction of the area of the surface of section covered
chaotic trajectories.

In Fig. 12 we show the result of this procedure for 0<l
<1.4 ande520.2. This figure confirms the features of th
three consecutive chaos-order-chaos transitions observe
the sequence of surfaces of section shown in Fig. 11.

An interesting question appears when the ionization
namics is considered, e.g., whenl.A2. We have just noted
that for l51.4 ande520.2, the phase space is filled wit
chaotic orbits. Hence, whenl is further increased, and th
threshold ionization energyE2 becomes smaller thane5
20.2, all trajectories have access to the ionization chan
located along ther axis. However, for smaller values ofe,
the ionization mechanics is different. This fact can be o
served in the surfaces of section shown in Fig. 13 fore5
20.5. In Fig. 13~a! for l51.4, some regular orbits are iso
lated from the chaotic region by KAM tori located aroun
the periodic orbitsI ` and I 1. When l increases and the
ionization energy is below20.5 @Figs. 13~b! and ~c!#, the
islands aroundI ` survive, in such way that the orbits insid
them remain confined. All orbits outside these tori ioniz
and this is why the area between the islands is empty. N
that in Fig. 13~b! and Fig. 13~c! the surface of section is no
a bounded region because the rectilinear orbitI 18—which
corresponds to the limit of the surface of section—esca
through the ionization channel.

In fact, I 1 andI 18 are the first orbits that have access to t
ionization channel because they are rectilinear orbits al
the r axis. On the contrary, the islands around the perio
orbits I ` survive because the orbits inside remain isola
from this channel.

We can explain the different ionization behavior found f
e520.2 ande520.5 by calculating for these energies th
evolution of the~maximum! Lyapunov exponent ofI ` andI 1
as a function ofl. For e520.2, this evolution is shown in
Fig. 14~a!. We observe in this figure that, before the thres
old energy is reached forl'1.415 89, both periodic orbits
become chaotic, which explains why the surface of sect
for l51.4 is filled with chaotic orbits. Fore520.5 @see Fig.
14~b!#, while the Lyapunov exponent ofI 1 shows a similar
behavior as in the casee520.2, the periodic orbitI ` re-
mains regular for energies bigger than the ionization ene
for l'1.440 16. Hence, two islands of regular orbits arou
I ` persist, as shown in Fig. 13~b! and Fig. 13~c!.

Finally, because the ionization dynamics depends on
energye, this could lead to different ionization probabilitie
because, for a givenl value, the ionization threshold is th
same. A similar behavior was observed by Uzer and Farr
4-10
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FIG. 14. Lyapunov exponen
of the periodic orbitsI ` and I 1 as
a function ofl. ~a! e520.2. ~b!
e520.5.
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in the hydrogen atom in crossed electric and magnetic fie
@31#.

VI. CONCLUSIONS

We investigate the classical dynamics of a hydrogen a
in the presence of uniform magnetic and quadrupolar elec
fields. Owing to the axial symmetry, thez component of the
canonical angular momentumPf is conserved, and hence th
system, expressed in cylindrical coordinates, has two deg
of freedom. After scaling coordinates and momenta in
usual form, the Hamiltonian depends only on two para
eters. On the one hand, it depends onPf ; and on the other,
it also depends on a dimensionless parameterl that repre-
sents the relative field strengths. We note that whenl,A2
this Hamiltonian is equivalent to the Hamiltonian of the ge
eralized van der Waals interaction. The shape of the effec
potential surface and its critical points are studied depend
on the system parameters. This study shows that whel
,A2 the atom, even for positive energies, cannot ioni
However, forl.A2 the electron has the possibility of e
caping along the channel created by a saddle point locate
the r axis. We find that the three integrable casesb
5(61/2,61,62) of the generalized van der Waals proble
appear in our system forl5(6A2/3,6A2/3,62/A3), re-
spectively. In this sense, we have determined the three
responding integrals of motion. We note that, while the in
grals of motion corresponding tol56A2/3 andb561 are
the same, the integrals of motion forl5(6A2/3,62/A3)
are neither equal nor equivalent to the integrals forb
5(61/2,62). For l56A2/3 andl562/A3 the Hamil-
B

P
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tonian is separable in spherical and semiparabolic coo
nates, respectively, while forl56A2/3 we have not been
able to find any coordinate system as a function of which
Hamiltonian is separable. By means of Poincare´ surfaces of
section, the phase space evolution in the regular regim
studied as a function of the parametersPf andl. We study
separately the casesPf50 andPf5” 0. For Pf50, we find
that the system suffers three consecutive oyster bifurcat
at the integrable valuesl5(6A2/3,6A2/3,62/A3). In or-
der to better visualize these bifurcations, we have introdu
a transformation that maps the surface of section onto a t
dimensional sphere. ForPf50.2 we detect another three b
furcations; two of them are pitchfork bifurcations, while th
other is an oyster bifurcation at the integrable valuel5
62/A3. The chaotic behavior of the system is studied a
three order-chaos transitions are found when the sys
passes through the integrable cases. Finally, we find two
ferent behaviors in the ionization mechanics. In both cas
the ionization is explained in terms of the stability of th
periodic orbitsI 1 and I ` .

To conclude, as we remark in the Introduction, while t
generalized van der Waals problem has a real physical co
terpart only for certain values of the parameters, we re
that our problem always corresponds to a real physical s
tem that may be experimentally implemented.
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