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Hydrogen atom in the presence of uniform magnetic and quadrupolar electric fields:
Integrability, bifurcations, and chaotic behavior
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We investigate the classical dynamics of a hydrogen atom in the presence of uniform magnetic and quadru-
polar electric fields. After some reductions, the system is described by a two degree of freedom Hamiltonian
depending on two parameters. On the one hand, it depends ondbmponent of the canonical angular
momentumP , , which is an integral because the system is axially symmetric; and on the other it also depends
on a parameter representing the relative field strengths. We note that this Hamiltonian is closely related to the
one describing the generalized van der Waals interaction. We report three cases of integrability. The structure
and evolution of the phase space are explored intensively by means of Pandaees of section when the
parameters vary. In this sense, we find several bifurcations that strongly change the phase space structure. The
chaotic behavior of the system is studied and three order-chaos transitions are found when the system passes
through the integrable cases. Finally, the ionization mechanics is studied.
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[. INTRODUCTION One of the most important results of the study of this
system is that the problem is shown to be integrable for the
The hydrogen atom is a real integrable system. Howeveispecial valuesg=*=1/2,+1,+2 [9-11]. In this sense, for
its integrability is frequently lost when the atom is subjectedthese values of3 additional constants of the motion have
to external fields. The most famous example of this fact idbeen found9-12]. However, while for3=*+1,+2 the sys-
the so-called Zeeman effeft], when the applied field is a tem is separable, respectively, into spherical and parabolic
static magnetic field. In addition to the Zeeman effect, someoordinates, fo3= + 1/2 the system seems to be one of the
more external perturbations have been added. Among themare cases of an integrable but nonseparable systgmlt is
we can cite the constant electric figlithe Stark effegt[2], also worth noticing that when the sign of the Coulomb term
the microwave electric field3], and the paralle[4] or is changed, the resulting Hamiltonian represents the motion
crossed 5] electric and magnetic fields. These systems havef two ions in a Paul trap13,14], and the cited integrable
been, during recent decades, unique laboratories where sulimits also hold in this case. Finally, a semiclassical approach
aspects as the integrability and the quantum signatures ¢15] and the quantum manifestation of chdd$] in this
classical chaotic dynamics have been investigédin re-  system have been investigated by Ganesan and Lakshmanan.
lation to the integrability, Alhassict al. [7] introduced a More recently, Beims and Gall&$7] introduced a more gen-
general perturbation called the generalized van der Waalsral system that includes the presence of a static electric
potential in which most of the cited static perturbations arefield, in such a way that two more cases of integrability are
represented. In atomic units and cylindrical coordinateseported.
(p,z,¢,P,,P,,P,), the Hamiltonian of a hydrogen atom At this point, the aim of this paper is to follow the idea of
perturbed by a generalized van der Waals potential can bBlumel and Reinhardtl8] that a generaB value in Eq.(1)
written as would correspond to a hydrogen atom in the presence of a
constant magnetic field and a quadrupolar electric field.
However, as we will see, this field configuration is not com-
pletely described by the Hamiltonigii), but by a slightly
different one. Moreover, we emphasize that, while the sys-
tem (1) can be used just as a theoretical toy, the system that
we present in this work may be tested in the laboratory be-
Owing to the axialz symmetry, thez componentP,, of the  cause, nowadays, almost perfect quadrupolar electric fields
canonical angular momentum is conserved and this Hamilare implemented, for example, in ion Penning traps. We
tonian defines a two degree of freedom dynamical systemeave a more deeper discussion about this important and
For =0 the Hamiltoniar(1) is that of the hydrogen atom in  complex question to experimentalists.
a constant magnetic fieldhe quadratic Zeeman effgcfor The paper is organized as follows. Section Il is devoted to
B= =1 itis the spherical quadratic Zeeman effect, and whenhe posing of the problem. We show that the problem has two
B=+2 the Hamiltonian(1) describes the instantaneous degrees of freedom and it depends on two parameters. The
van der Waals interaction between the atom and a metal sushape of the effective potential surface and its critical points
face[8]. are studied depending on the system parameters. In Sec. Il
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we analyze the three integrable cases of the problem. By r'=y?%, P =5"1p,

means of Levi-Civitaegularizations, we study the separabil-

ity of the Hamiltonian system and find the global invariantin such a way that, after dropping th primes in coordinates
(integralg of the problem in those cases. In Sec. IV we studyand momenta, the Hamiltonia8) becomes

the evolution of the phase space structure as the parameters

vary, and several bifurcations are found. In Sec. V we ana- .M P>+P; P} 1
lyze the chaotic behavior and the ionization mechanics of the H'=— =€= 2 +F N 72
system. Finally, in Sec. VI the main results of the paper are Y p P
summarized. 1 N\, N
+ E 1- ? p + 72 s (4)

Il. THE PROBLEM
where the new dimensionless parameterw/y represents
: o P the ratio between the strengths of the two external fields.
charge—q in a Coulomb field induced by an infinitely mas- . .
. 4 Hence, the classical dynamics of the system does not depend
sive nucleus of chargg>0 at rest. On the central field, a .
) o - on those four parameters independently but onlyroR,,,
ulnlf(:r_m cotnsttar}t r_nagntt)anc fielB=Bz and a quadrupolar 544 the new scaled energy=Ey 22,
electric potential given by Note that whem\ <2 we can define the parametets
5 and B as

Wy

Vo=m—(222—x?>—y?)
e 4 S [2724 :
a=1-—, B= 2_—)\2 5

are superimposed.

As we noted in the Introduction, this field arrangement is . . L
also used in ion Pennig traps, in such a way thats the and the systen(4) is equivalent to the Hamiltoniarl).

axial frequency induced by the quadrupole electric field. AsHowever, the casg> /2 is not included in the generalized
well as the dependence on the chargg and on the mass ~ van der Waals modefl), and hence we will use the Hamil-
of the electron, this frequency depends on the experimentdPNian (4), because it represents the correct model to study
configuration of the electrodes that create the quadrupoldh® considered system.

electric potentia[19,20.

Let us consider the motion of an electron of masand

In cylindrical coordinatesgd,z,#,P,,P,,P,) and atomic The effective potential
units (m=q=1), it is quite simple to see that the classical | grder to see how the external fields modify the dynam-
Hamiltonian of the system is given by ics of the atom we have applied the common and useful
s ) method of studying the shape of the effective potential
oot Pe P 1 U(p.2) in Eq. (4),
2 2p%2 p?+ 722 ¢
2 5 p2 U( ) ng’ 1 +1 1 )\2 2+)\2 2 (6)
W p,z =5 A - 5 p _z L
+y7 24+ > 22— % , 2 2p* \p?+7" 2 2 2

) as the parameter®, and A vary. The critical points of
where y=B/2B, and w=w,/w, are, respectively, the re- y(p,z) as a function of the parametes, and\ are given
duced Larmor frequencyBp~2.35x 10° T) and the reduced by the solutions of the equations
axial frequency Wy~2.067x 101 s 1),

Due to the axial symmetry, a time dependent canonical 9U p2 A2
. . ¢ p
transformation allows us to formulate the problem in a frame —=U,= a0t ( —7) p
of reference rotating with angular velocify In this moving ap p° (p°+Z)
frame the paramagnetic termP, is not present, and the ~0 @
Hamiltonian of the system is '
P2+P2 P, 1 2 N ov—d— el
H=—L—Z4 L +7—p2 9z U=z (l[)2+22)3/2jL 0. ®
2 2p? \/pz-i— 22 2
W2 p? From Eq.(8) it follows that the critical points lie on the plane
+7 72— 7). (3)  z=0. After introducingz=0 in Eq.(7), we get
i iltoni P, 1 N2
This Hamiltonian depends on the four parameters U (p,z=0)=— T - A
— ; o(p,2=0) P 0, 9
v, a, Py, and the energfe="H. Following several au- P p 2
thors [1], we can scale the coordinates (p,z) and mo-
mentaP=(P,,P,,P,) as which gives rise to the following polynomial equation gn
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)\2
=|1— —|p%+p—P2= sl Y
P (1 z)p-+p P3=0. (10 (a e
02
The right hand side of Eq10), P, is a fourth degree poly- Z 0
nomial in p whose positive roots give thecoordinate of the -2
critical points. Although there is a general formula giving the e
roots of P in exact terms, we are more interested in knowing B8R /

their number, nature, and conditions of existence. A5 -1 050 05 1 LS
In order to know the number of positive roots Bf we

use the criterion of Descartd®1]. The rule of Descartes

establishes that, i is the number of positive roots arsds (c) os

the number of sign changes in the coefficient sequence of : Ei
polynomial, thers=p+ 2k, wherek is a positive integer. By 5 o
virtue of this theorem, from the changes of sign in the se- .3
quence of coefficients oP, we deduce thatl) for A< /2, 04 :
the polynomialP presents one change of sign, and thus ithas ~ 06fE——ss=——"
one root; (2) for A> /2, the polynomialP presents two 15105 0 05 1 1
changes of sign, and thus it has two or zero roots. P

For P‘f.’:o’ we Can. easily solve Eq10), in such a way FIG. 1. Equipotential curves ofJ(p,z) and potential energy
that we find two solutions surfacesU(p,z) for P,=0, (a) and(b) A=1, (c) and(d) A=2.

13
po=0, p1:< 2 ) ) (12) because\> 2. Hence, f;,0) is always a saddle point
A2—2 whose energy i€,

Note that the first solution does not correspond to any critical 3/ \2=2\13
point because neither EG7) nor Eq.(8) is satisfied. In fact, E,=— E( 2 ) 0

they are not defined a=0, p=0. However, forP ,#0, by
means of the implicit function theorem, we find a root of Eq.
(10) po(P ) which is no longer zero unles,=0. Then we
obtain a proper critical point of coordinatepy(0), that is
the unique critical point foh<2. On the other hand, the
second solutiorp; only has sense fok>+/2 and hence in

In Fig. 1 we show the potential energy surfddép,z) and

its equipotential curves fd? ,=0 and both cases< V2 and
A>/2. We have plotted these figures for positive and nega-
tive values ofp because, although it is a cylindrical coordi-

. - . . ate, in the cas® =0, p can also be considered as a Car-
this case the number of critical points must be 2 instead o esian coordinate with positive and negative values in the

zero, namelypo, ps. orbital plane, which is always perpendicular to tg plane
To know the type of critical point at hand, we calculate [22]. P ' ys perp §P

the determinanAH of the Hessian matrix, For the general case,+0, the numerical resolution of

U U Eq. (10) provides the same results, e.g., for \/2 the effec-
AH=detH, H:( P ”Z)_ (12)  tive potential shows only a minimum, and for>/2 it
Upz Uz shows a minimum and a saddle point. These situations are

depicted in Fig. 2.
We can conclude that for< 2 the atom, even for posi-
=0 tive energies, cannot ionize. However, for- 2 the elec-

For z=0, the elements ofl are

U
- tron has the possibility of escaping through the channel cre-
3P$, 5 \2 ated by the saddle point. This question will be studied in Sec.
Uu,=———+1-—=, V.
pp p4 p3 2
I1l. INTEGRABLE CASES
1
U,,=\2+ - (13 As we said, forh< 2 the Hamiltonian(4) is formally
p equivalent to the Hamiltoniafil) describing the generalized

van der Waals system. Hence, the integrable cases dfLEq.
for B;=(*1/2,+1,=2) must have their counterparts when
the integrability of Eq.(4) is considered. In this way, we
obtain the corresponding values)gfby solving the equation

BecauseU,, is a positive term, the nature of the critical
points is determined by the sign of the eleméhy,. For
P4=0, we focus on the nature op(,0). By substitution in

U,,, we get that

)\2

Upp(P2)=3( 1- ?) <0,

B 222

2
A 2—\?

(14)

056614-3



INARREA, SALAS, AND LANCHARES

0.6

(a] 0.4
02

F A

0.2

0.4

06

©

0t

Z g {
02
0.4

0.6

—

0,75

0.25 1.25

FIG. 2. Equipotential curves dfJ(p,z) and potential energy
surfacesU(p,z) for P,=0.25, (8 and (b) A=1, (c) and (d) A
=2.

for Bi=(x1/2,£1,=2). We get, respectively,\;=
(=213+2/3,£2/\/3). For each valueg;, the corre-
sponding third constant of the motion of the systéihwas
calculated for alle values and® ,=0 in[10] and for allP 4
anda=1 in[12]. However, because in the Hamiltoniéd)
the parametersr and 8 are both dependent an [see Eq.

PHYSICAL REVIEW E66, 056614 (2002

where we have defined a new scaled timet/(u?+v?) and
multiplied by u?+v?. This procedure is the so-called Levi-
Civita regularization[23]. We observe that separability of
Eq. (17) only takes place when= *2/\/3. For thisx value,
the Hamiltonian is

Pi+P; P3
T2 T2

1 1
_+_
w2 p2

K=2

u6 6

—e(u2+u2)+—+v— (18)
6 6

and its separability is clear. For this separable case, we find
the following integral of motion in cylindrical coordinates:

Piz pz
|2= - _2+T+ Pp(Pzp—PpZ)+
p

z

. (19
P (19
Note that this invariant is different from that found for Eq.
(1) whengj==2[12].

(3) For A= =*/2/3, as for the Hamiltoniaril) for B;,=
*+2 [12], we find that the problem separates only @y,
=0 when a Levi-Civitaregularization is applied using the
semiparabolic coordinatesiv),

p=(U?—v?)/2, z=uv. (20)

Indeed, after the regularization, the Hamiltonigh results
in

(5)] those three functions may not be the global invariants of

Eqg. (4) in the cases;. Hence, we have determined the cor-

rect integralsl (p,z) of Eq. (4) for \;. This study can be
summarized as follows.

(1) For A= =/2/3 and for allP,,, the Hamiltonian(4) is

separable in spherical coordinates and the problem is a one
degree of freedom system depending on the radial distance.

In this case, we find the same integral as for 1 and g;
==+1,

2.2
P¢z

2

I1=(pPZ—ZPp)2+ (15

(2) When\ = i2/\/§ and for allP ,, the Hamiltonian(4),
like the Hamiltonian(1) for B==*2 [12], is separable in
semiparabolic coordinatesi ),

p=uv, z=(u?—v?)/2. (16)

Expressed in those variables, the Hamilton{dnreads

P2+P2 P21
o ¢ 24, .2
=2=——+—| —+—|— +
K=2 > 2 2oz e(u“+v?)
2
— _ 2 2\(,2,,2
+2 1 5 (us+v°)u‘v

17

1
+§)\2(u2_02)2(u2+v2),

Pi+P.  Pi(u?+0?)
= +

K=2 2 (u2_v2)2

—e(u?+v?)
1 \?
+ g( 1— 7)(u2_02)2(l’|2_|_02)

2

A
+?u2v2(u2+v2). (21

And for A= */2/3, it takes the form
Pi+PS  Pi(uZ+0?)
) (U2—p2)2

ué o8

+§+§,

K=2 —e(U?+0?)

(22)

which separates only whelr,=0. However, for allP,
we find the following invariant:

9P%(P,p+P,2)? 3P;  pZ?
BZM'FP(Z{,(PZ"'ZZ)_’_ ¢ _P_
8p? 2J2p 3\2
2
3P,(P,p—P,2) B 3p 23
22 22\ p?+ 2]

Again, this invariant is different from that found in the gen-
eralized van der Waals problem wheh=*+1/2 [12]. As
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was pointed out by Farrelly and Uzer, this case is considered (1) Rectilinear orbits along tha axis (v =0) always ex-
in the literature a rare example of an integrable but nonsepdst. These orbits correspond to rectilinear orbits along the
rable systenj12]. positivep axis. In the literature, these orbits are namedl;as
[1].
(2) Rectilinear orbits along the axis (u=0) always ex-
ist. These orbits, nameld , correspond to rectilinear orbits
In this section we are interested in the study of the phaselong the negative axis.
space governed by the Hamiltonig). As is well known, (3) Rectilinear orbite = + u always exist, and correspond
the phase space structure is mainly characterized by the nurte rectilinear orbits along the axis. In the literature, these
ber and stability of the periodic orbits existing in phase spacerbits are namedl,, [1].
[24]. When dealing with a system of two degrees of freedom, (4) Rectilinear orbitsy =au exist for all a# (0,+1,+ )
the computation of surfaces of section allows us to iIIustratQ)my when\ =/2/3. These orbits correspond to rectilinear

the phase space structure: in the regions of the phase spagits z=[a/(1—a)]p. Note that when these rectilinear or-
where the motion is regular, periodic orbits are clearly iden-jts appear, the system is integrable.

IV. PHASE SPACE STRUCTURE

tified as fixed points of the Poincareap. With this tech-  To look for additional periodic orbits, we compute the
nique, we explore the evolution of the phase space as theurfaces of section by numerical integration of the equations
parameters§,\,P ;) vary. of motion (24) by means of a Runge-Kutta algorithm of fifth

It is convenient to consider separately the caBgs-0  order with fixed steff25]. We have defined the surface of
and P,#0, because they require different formulations insection projecting the phase space on tie0 plane with
order to carry out the corresponding Poincerap. P,=0. Under these conditions, the available region on the

surface of section is limited by the curves

A. CaseP,=0 s
. . . . A
WhenP =0, the orientation of the orbital plang z) is P,==* \/4+ 2ev?— ( 1-—|—. (25
always perpendicular to the-y plane. We recall that, al- 2/ 4

thoughp is a cylindrical coordinate, in the casg,=0, it ) ) .

can be considered as a Cartesian coordinate in the orbit#f|is worth noting that the curves defined by Eg5) corre-
plane with positive and negative values, and normal tazthe Spond to the rectilinear orblt;, as can be checked in Eq.
axis [22]. Moreover, because a centrifugal barrier is not(21). In order to study the evolution of the structure of the
present, the electron can reach the origin and it is more ilphase space, several surfaces of section were generated by
lustrative to work in coordinatest(p,z). However, we have keeping the scaled energyconstant while varying the pa-
to take into account that when the electron reaches the origif@metera.

r—0, the Hamiltonian(4) presents a singularity. The com- ~ We begin the study by revising the quadratic Zeeman ef-
mon way to avoid the numerical problems involved with thatfect case,A=0. The corresponding surface of section is
singularity is to apply a Levi-Civitaegularization[23]. Be-  shown in Fig. 83). We takee= —2 because for this energy
cause this procedure has already been applied twice to Etfie system is still close to the integrable lingit> — [1],

(4) in the previous section, we will use one of the resultingand all orbits are regular and confined to adiabatic invariant
Hamiltonians. In particular, we will use the Hamiltonian tori. This surface of section shows four important structures.

(22). (1) The stablgelliptic) fixed point located at (0,0) which
For P,=0, the Hamilton equations of motion arising corresponds to the rectilinear orbits. The levels around
from Eq.(21) are this point are quasiperiodic orbits with the same symmetry

pattern ad,; that is to say, mainly localized along theaxis,
u="P,, e.g., along the positive axis[see Fig. 80)].

(2) The two elliptic fixed points located at (8./2)

_ 1 which correspond to the rectilinear orbits. We can ob-
Py=gu[16e+ 3(—2+d?)u*+2(2—9d?)u?v? serve in Fig. &) that orbits around these fixed points are
quasiperiodic orbits mainly localized along thaxis.
+(2-9d?)v4], (3) The two unstablé¢hyperbolig fixed points of the sepa-

ratrix which divides the previous regions of motion. These
. hyperbolic points, name, correspond to almost circular
v="Py, orbits located at £ 1/\/— €, 0). They become circular orbits
when the energg— — .
(4) Finally, and taking into account that the limit of the
surface of section corresponds to the rectilinear drpifu
=0), the levels above the separatrix are quasiperiodic orbits

.1
P,= §v[16€+(2—9d2)u4+ 2(2—9d?)

X U2+ 3(—2+d?)v?]. (24 mainly localized along the axis, e.g., along the negatiye
axis[see Fig. 8o)].
In searching for particular solutions of E@4), we find At this point, it is clear that the stability df, cannot be
the following. determined by looking at the surface of section, because this
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FIG. 3. (a) Surface of sectionu=0,P,=0). (b) Quasiperiodic
orbits around, |1, andl... Both figures fore=—2, P,=0, and
A=0

orbit does not appear as a single fixed point. However, we
can determine its stability if we consider that the surface of
section is homeomorphic to the quotient space obtained by
identifying the points of the limit of the sectid26]. Indeed,

the domairD of the surface of section is defined in the plane

(v,P,) by the inequality FIG. 5. Evolution of the surfaces of section£0,P,=0) as a

B function of A for e=—2 andP ,=0. The firstoysterbifurcation is

4+ 2ep2— ( 1— )‘) v p2=0 observed betwee(a) and(c).

2) 4 ve

the points of the borde(25) being those that satisfy (X,P)=>(71,72,773),
A2\ 0® 5 . 5
I'=4+2ev?—|1— > |4 ~Pe=0. (v,P,)—>(£cosh,ésing,y1—-&%) if 0=<¢<1,
Now, we can define a continuous function that mBpsnto (v,P,)—((2—¢&)cosh,(2— ¢)sin g,
the two-dimensional sphet®? in such a way that the border .
I" is mapped to the north pole of the sphere. Egt,P,) be —V1-(2-¢)?) if 1=¢=2, (27)
a non-negative function defined as
, 77,6 where
&v,P,)= \/4+26v2— 1—2)4—P3. (26)

This function, which acts as a radial distance on the domain

D, varies from 0 to 2, and it takes the maximum value at

(0,0) and the minimum value at the border Thus, the Y
function defined as

FIG. 4. Transformation of the surface of sectian<0,P,=0) FIG. 6. Evolution of the surfaces of section£€0,P,=0) as a
onto the spher&?, A\=0, e=—2, andP ,=0, (&) North view, (b) function of\ for e=—2 andP ,=0. The second oyster bifurcation
South view. is observed betweefa) and(c).
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I'=g(x)—P?=0.

In this case it is possible to extend the transformatidn,
defining a two-dimensional function

E=g(x)—P?,

which plays the role of a radius. It takes the minimum value
0 at the bordel” and the maximum valu&,, at (Xy,0).
Now, the family of functions

fo: D—S2

(X,P)—>(&,cos0, & sinf, 1—&2)

FIG. 7. Representation of the second oyster bifurcation on the if 0<é&<xy/n (29)
sphereS?. Upper row, north view. Lower row, south view= M
~2 andP,=0. (X,P)—>(&,c080, &,sinf, —1—£&)
_ . v if  xy/n<é<xy,
SiNf= ————, C0SH=—F—F—;,
v’+P; Vol + Py wherene N and
mapsD onto the two-dimensional sphe& of unit radius, _né ~n 1- &
2 2, 2, 2 fl_x'\"’ fz—n_l Xm/'
S*={(n1,m2,m3)| M1+ 2+ n3=1},
i P
where the bordel” is mapped to the north pole (1,0,0). sing= o2 P
Moreover, those points satisfyingG¢<<1 are mapped to the M
southern hemisphere, and those satisfyingéx2 to the X— Xy
northern one. cosf= \/%
The Euler characteristic a$2 is 2, and by virtue of the (X=Xm)"+P

index theorem[27] the sum of the indexes of the critical
points must be 2. Note that in our system the limit of the
surface of sectiony,P,) is the periodic orbit;, and trans- 2_ 2, .2, . 2_

forms to an equilibrium at (1,0,0) if2. Because the surface S =AOmmz mo) ot o+ ms=1}.

of section shows two unstable fixed pointwith index  Note that we can map on the northern or southern hemi-
—1) and three stable fixed pointwith index 1), the fixed  sphere then fraction of the surface of section in terms of the
point 1} at the north pole must be stallith index 1. We  radial function£. However, if the level contours af in the

can observe this fact in Fig. 4 which shows the result ofdomainD are not smoothly distributedconcentric”), the
applying the above transformatié®?7) to the surface of sec- transformation deforms the aspect of the Poincaep, and

mapsD onto the two-dimensional sphe& of unit radius

tion of Fig. 3a). more complicated transformations must be performed.
In general, when the domalib of the surface of section is In fact, let us note that in order to know the stability of the
defined in a certain plane(P) by the inequality periodic orbit represented by the limit of the surface of sec-
tion, it is not necessary to perform the transformation. Taking
D=g(x)—P?=0, into account that the Poincamedex of the sphere is 2 and

that the limit of the surface of section is one of the critical
we can construct a homeomorphism fr@nto the quotient  points onS?, the sum of the indexes of the fixed points in
space resulting from the identification of the points of thethe interior of the surface of section must be either 1 or 3. In

border the first case, the periodic orbit represented by the border of
) A=21\3
) =L
1+ @ ¥ i i
Q FIG. 8. Evolution of the surfaces of section
Vo f (u=0,P,=0) as a function ol for e=—2 and
( \) P,=0. Athird oyster bifurcation is observed be-
-1 "‘~k@_‘;“ tween(a) and(c).
2 R
-1 05 0 05 1
v
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A=0 03 E; (b)
02
0.1 I
Zo
. 0.1 ¢
I 0.2 A
03 2
01 02 03 04
p

FIG. 9. (a) Surface of sectiona=0,P,=0) for A\=0, e=—2
andP,=0.2. (b) Periodic orbits.

the surface of section must be stakiledex 1), while in the
second one it must be unstalfledex —1). In the case that
the limit does not correspond to any periodic orbit, the sum FIG. 10. Surfaces of sectiorz€0,P,=0) for A=0, e=—2,

of the indexes of the fixed points in the interior of the surfaceandP 4=0.2.

of section is always 2.

Let us now continue with the study of the evolution of the formation of the periodic orbit; from an elliptic fixed point
surface of section as the parameterincreases. A first into a hyperbolic fixed poinfsee Figs. @) and dc)]. For
change—bifurcation—occurs when the valde=2/3 is A= V213, the separatrices collapse in a degenerate meridian
reached (see Fig. 5 the two separatrix loops passing of fixed points[see Fig. T)].
through the fixed point€ merge with each other, in such a  Finally, a third oyster bifurcatiotisee Fig. 8 takes place
way that a degenerate curve of fixed points appears just favhen A>/2/3. The separatrix lobe enclosing the fixed
\=/2/3. This curve, as can be checked by substituting pointsl., shrinks in such a way that whew= 2/\/3 a degen-
=/2/3 into Eq.(24), corresponds to a circle of radiu®@  erate line of fixed points appears on theaxis. When\
when the scaled energy— —. After this bifurcation, the >2/\/3, the degenerate set of equilibria disappears and the
degenerate set of equilibria disappears and the two pairs difked pointsl; and C are created, in such a way that the
fixed pointsl., and C are created again with interchanged phase space recovers the same structure as before the first
stability [see Fig. §)]. In the literature, this bifurcation is bifurcation. Forn >2/\/3 the structure of the surface of sec-
called the a®ysterbifurcation[28]. As a consequence of this tion does not suffer any further significant change.
bifurcation, while the quasiperiodic orbits arouhd disap- It is worth noting that at three integrable limits the system
pear, a different kind of quasiperiodic orbit corresponding toshows high degeneracy. This situation has also been noted by
the levels aroundC appears. These orbits always have theFarrelly and Uzef12] and by Elipe and Ferrd28].
same symmetry pattern &% that is to say, they are mainly
localized aroundC. B. Case(P ,#0)

As the parametex increases, a secorysterbifurcation ) ) .
takes place. Indeed, the separatrix loop enclosing the elliptic ' this case, there is no need to perform any kind of regu-
point I, shrinks[see Fig. 63)] in such a way that when Iarlza'qon for.the Hamiltoniari4) because it does not present
= 273 the separatrix loop becomes a degenerate straight lifd!Y_Singularity ar—0.
of fixed points at thd, axis[see Fig. 6)]. This set of fixed First, we identify the values of the parametexsR,,) for
points corresponds to the rectilinear orhits au. When which periodic analytical solutions exits. The Hamilton

> \/2/3, the fixed pointd; and|., appear again with inter- equations of motion arising from Eq) are
changed stabilitfsee Fig. €)]. Moreover, as can be ob-

2 2
served clearly in Fig. @), the separatrix passing through p= P, ppzﬁ_( — )‘_)p_;,
degenerates at the limit of the surface of section because the p? 2 (p*+2)%2
periodic orbitl; is now unstable. As a consequence of this
bifurcation, the levels—quasiperiodic orbits—arourddis- . .
i farindi i z=P,, P,=—(\2)———. (29
appear, while the quasiperiodic orbits arouhd appear z z (p2+22)3?

again.

In this second oyster bifurcation the periodic orbit, At first glance, we detect a family of rectilinear equatorial
which is at the limit of the section, suff.ers a s,tqb|llty change.qpits along thep axis (z=P,=0). These orbits, named,
For \<<\2/3, as the index of the section isIL,is a stable  eyist always for all value ok. At this point, we generate
periodic orbit, whereas fax > /2/3, as the index of the sec- surfaces of section in the variables,¢,P, ,P,) by means of
tion is 3,1; becomes unstablesee Figs. @) and G¢)]. This  numerical integration of the equations of motit@9). The
stability change of orbit; can be much better observed on surface of section has been defined on zked plane with
the sphereS?. Figure 7 shows the evolution &2 for the  P,=0. Thus, the available region for the system on this sur-
same\ values as in Fig. 6. In Fig. 7 can be seen the transface of section is bounded by the curves
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FIG. 11. Evolution of the surfaces of section
(u=0,P,=0) for e=—0.2 as a function ok in
the caseP ,=0.
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P2 o \2 survives, becoming stabld-ig. 10b)]; a pitchfork bifurca-
P,=*\/2e- Lz ( ) p? (30) tion takes place.
p® P 2 As \ increases, two other stable fixed poirfseriodic

orbits) appear in the lower and upper corners of the limit of
éhe surface of sectiofsee Fig. 1(c)]. We call these equilib-
ria E; ,. The appearance of these structures brings a change
in the index of the surface of section, which is now 3. Hence,
the periodic orbitsl; become unstable. In other words, an
additional pitchfork bifurcation has occurred.

A final change in the phase space structure is detected
when \ increases. The separatrix lobes enclosing the fixed

It is important to note that these curves correspond to th
rectilinear equatorial orbitk;.

We keep constant the energy=- —2. In accordance with
several numerical and perturbative studj@$], the phase
space of the quadratic Zeeman ca3e=(Q) presents two
different structures depending on whettey, is bigger or
smaller than 1J—10e, and the transition from one to an- . , = .
other takes place throughpitchfork bifurcation. In this way, PONtSE1, grow ask approaches 2B [Fig. 10d)], in such
we begin the study of the phase space evolution by fixing® Way that they merge along the,=0 axis wheni
P,=0.2< 1/,/20, while varying\ from 0 to 2. =2/\/3, an integrable case. As a .conseql_Jence,ptI’QGS

When the quadratic Zeeman effeat<0) is considered, becomes a degenerate straight line of fixed pojifig.
the corresponding surface of section reflects three periodic
orbits corresponding to a hyperbolic fixed point and two el- -
liptic fixed points [see Fig. ®a)]. These periodic orbits,
called, respectivel\i;, E,, andC, are depicted in Fig.(®).

As in the caseP =0, because the rectilinear equatorial
orbit I ; corresponds to the limit of the surface of section, its
stability cannot be determined at a glance. However, its stass
bility can be determined by applying the index theorem: be-
cause the index of the surface of section ig&Here are two
stable fixed points and one unstgbléne periodic orbit ; is
necessarily stable.

When the parametex is turned on, the separatrix lobes ] 02 04 o6 o5 . S 1.4 A
shrink; compare Fig. @) to Fig. 10a) for A=0.2. The two
stable fixed point€E, , and the unstable on€ come into FIG. 12. Evolution of the fraction of chaotic orbits in the surface
coincidence whem~0.246 183 in such a way that only  of section as a function of for P,=0 ande=—0.2.

s
i

chaotic orb

0.4

Fraction o
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A=14 (az

FIG. 13. Evolution of the surfaces of section
(u=0,P,=0) for e=—0.5 as a function ok in
the caseP ,=0.

10(e)]. When \>2/\/3, from this degenerate straight line the fraction of the area of the surface of section covered by
again the hyperbolic poirt is createdsee Fig. 1(f)]. This  chaotic trajectories.

change can be explained in terms of an oyster bifurcation, In Fig. 12 we show the result of this procedure foe R

and somehow we recover a similar situation to the one we<1.4 ande= —0.2. This figure confirms the features of the
had before the first pitchfork bifurcation. Far>2/\/3, the  three consecutive chaos-order-chaos transitions observed in
phase space structure does not suffer any more significattie sequence of surfaces of section shown in Fig. 11.

change. An interesting question appears when the ionization dy-
namics is considered, e.g., wher 2. We have just noted
V. CHAOTIC BEHAVIOR AND IONIZATION DYNAMICS that forA=1.4 ande=—0.2, the phase space is filled with

In the previous sections, we studied the evolution of thechaotlc orbits. Hence, whex is further increased, and the

structure of the phase space of the complete system, makifigreshold ionization energg, becomes smaller thae=
use of surfaces of section. All these surfaces of section were 0-2 all trajectories have access to the ionization channel
computed fore=—2. For this energy value, the phase spacdocated along the axis. However, for smaller values ef
exhibits a global regular structure: all orbits are regular andhe ionization mechanics is different. This fact can be ob-
confined to adiabatic invariant tori. The reason that all theserved in the surfaces of section shown in Fig. 13 der
Poincaresurfaces calculated in the previous section are so-0.5. In Fig. 13a) for A=1.4, some regular orbits are iso-
regular is that, for the range of valuess@ <2 that we lated from the chaotic region by KAM tori located around
have considered, the effective potential has no saddlghe periodic orbitsl,. and ;. When \ increases and the
point—the electron cannot ionize—and thus the vatge  ionization energy is below-0.5 [Figs. 13b) and (c)], the
—2 is small enough to consider the system as an infinitesiislands around.. survive, in such way that the orbits inside
mally perturbed hydrogen atom. them remain confined. All orbits outside these tori ionize,
At this point, it is important to study the system behaviorand this is why the area between the islands is empty. Note
when its energy is much bigger. Hence, in this section, wéhat in Fig. 13b) and Fig. 18c) the surface of section is not
analyze the effect of the paramedeon the dynamics of our a bounded region because the rectilinear otbit-which
system when the scaled energyakes a fixed small negative corresponds to the limit of the surface of section—escapes
value. In particular, we focus on the caBg=0. Figure 11  through the ionization channel.

shows a gallery of surfaces of section for —0.2 and in- In fact, 1, andl are the first orbits that have access to the
creasing values of. ionization channel because they are rectilinear orbits along
The sequence begins with=0 [Fig. 11(a@)], the well- the p axis. On the contrary, the islands around the periodic

known quadratic Zeeman effect. As can be seen, globabrbits I, survive because the orbits inside remain isolated
chaos completely dominates the dynamics of the system. Asom this channel.
\ varies between €\=<1.4, we observe three chaos-order- We can explain the different ionization behavior found for
chaos transitions. A& approaches each of the three inte- e=—0.2 ande=—0.5 by calculating for these energies the
grable limits \; = (y2/3,/2/3,2A/3), the stochastic motion evolution of the(maximum Lyapunov exponent df,, and| ;
gradually disappears in such a way that at the correspondings a function of\. For e=—0.2, this evolution is shown in
integrable\; value the expected regularity is reached. On theFig. 14@). We observe in this figure that, before the thresh-
other hand, wheh moves away from each integrable value, old energy is reached for~1.41589, both periodic orbits
the regions of stochastic motion grow in size. In particular,become chaotic, which explains why the surface of section
for A\=1.4[Fig. 11(i)] the dynamics of the system is totally for A =1.4 is filled with chaotic orbits. Fo¢= —0.5[see Fig.
dominated by chaotic motion. 14(b)], while the Lyapunov exponent df shows a similar

A clear way to illustrate the order-chaos transitionsbehavior as in the case=—0.2, the periodic orbit., re-
showed in Fig. 11 is to measure the fraction of the phasenains regular for energies bigger than the ionization energy
space where the trajectories are chaotic. To do thisgfor for A~1.440 16. Hence, two islands of regular orbits around
—0.2 and a given\ value, we have numerically calculated |, persist, as shown in Fig. #® and Fig. 13c).
the maximum Lyapunov exponefR0] of a large number of Finally, because the ionization dynamics depends on the
orbits with initial conditions arranged on a fine grid that energye, this could lead to different ionization probabilities
covers the corresponding surface of section. In this way, wéecause, for a givel value, the ionization threshold is the
have been able to measure numerically, for each valug of same. A similar behavior was observed by Uzer and Farrelly
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in the hydrogen atom in crossed electric and magnetic field®nian is separable in spherical and semiparabolic coordi-
[31]. nates, respectively, while for==/2/3 we have not been
able to find any coordinate system as a function of which the
VI. CONCLUSIONS Hamiltonian is separable. By means of Poincsuefaces of

) . . ) section, the phase space evolution in the regular regime is
We investigate the classical dynamics of a hydrogen atong; ,qied as a function of the paramet@s and\. We study

in the presence of uniform magnetic and quadrupolar eIeCtrigeparately the cas@%,=0 andP,#0. ForP,=0, we find
fields. Owing to the axial symmetry, ttrcomponent of the 4 the system suffers three consecutive oyster bifurcations
canonical angular momentuRy, is conserved, and hence the 4 4o integrable values=(+ \2/3.+ \2/3,+ 2/1/3). In or-
Sﬁtema exprzftsed n (I;yllndrlcacliF:o?rdlnatzs, has tWtO Qegtrﬁ r to better visualize these bifurcations, we have introduced
of Ireedom. Alter scaling coordinates and momenta In e, yansformation that maps the surface of section onto a two-
usual form, the Hamiltonian depends only on two param-yiyqngjona| sphere. Fét,=0.2 we detect another three bi-
_(ite:s. C()jn thedone hang_, It deper;dSR’<5" andEct)dr;ntf}[e other, furcations; two of them are pitchfork bifurcations, while the

It alSo depends on a dimensioniess parametenal repre- oo 5 an oyster bifurcation at the integrable value
sents the relative field strengths. We note that wheny/2 +2/\/3. The chaotic behavior of the system is studied and

thls_Ham|Iton|an IS equalent to the Hamiltonian of the 9€N"three order-chaos transitions are found when the system
eralized van der Waals interaction. The shape of the eﬁectlvge

ial surf di tical Do died d di asses through the integrable cases. Finally, we find two dif-
potential surface and ts critica pomts are studied depending, o\« hehaviors in the ionization mechanics. In both cases,
on the system parameters. This study shows that when

o X =" the ionization is explained in terms of the stability of the
<2 the atom, even for positive energies, cannot i0nize heriodic orbitsl; andl., .

However, for\>/2 the electron has the possibility of es- "~ 1o conclude, as we remark in the Introduction, while the

caping along the channel created by a saddle point located gneralized van der Waals problem has a real physical coun-
the p axis. We find that the three integrable casés terpart only for certain values of the parameters, we recall
=(*+1/2+1,+2) of the generalized van der Waals problemhat our problem always corresponds to a real physical sys-

appear in our system fok=(+2/3+2/3,£2/3), re-  tem that may be experimentally implemented.
spectively. In this sense, we have determined the three cor-

responding integrals of motion. We note that, while the inte-
grals of motion corresponding to= =+ V213 andB=*1 are
the same, the integrals of motion far= (= /2/3,+2/\/3) This research has been partially supported by the Spanish
are neither equal nor equivalent to the integrals fr Ministry of Education(DGES Project Nos. PB98-1576 and
=(*+1/2,+2). For \=+*2/3 and\=*+2/\3 the Hamil- BFM2002-03157.
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