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Global dynamics of dust grains in magnetic planets

Manuel Ifiarre&*, Victor Lanchare8, Jesus F. PalacidnAna |. Pascudl,
J. Pablo Sal&s Patricia Yangua$s

2 Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrofio, Spain
b Universidad de La Ri 0ja, Departamento de Matemédticas y Computacién, 26004 Logrofio, Spain
C Universidad Publica de Navarra, Departamento de Matemética e Informética, 31006 Pamplona, Spain

Received 16 November 2004; received in revised form 18 February 2005; accepted 25 February 2005
Available online 8 March 2005
Communicated by A.P. Fordy

Abstract

We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Hamiltonian
of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole field and
a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for which we
obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In particular,
dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is located
inside the E-ring.
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1. Introduction of the solid rings but also forms light circumplane-
tary structureq1]. Besides, the Cassini mission to
The observations provided by the spacecrafts Voya- Saturn has devices for detecting cosmic dust. The
ger, Ulysses and Galileo revealed the presence of in- analysis of the data obtained from them will give
numerable dust grains orbiting around the gaseousnew insights about the charge and size of the dust
planets Jupiter, Saturn, Neptune and Uranus. This dustgrains around this giant planet. Other projects such
is scattered not only among the macroscopic bodies as the Bepi—Colombo mission to explore Mercury’s
magnetosphere, expected to be launched by ESA in
msponding author. 2008[2], make crucial the understanding of the mo-
E-mail address: manuel.inarrea@dg.unirioja.@4. Ifiarrea). tion of charged particles around magnetic planets.
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One of the first attempts towards the study of (¢B,)/(mc) is the cyclotron frequency, being the
charged dust was the theoretical approach initiated speed of the light in the vacuum. Due the axial sym-
by Starmer (se¢3]) about the motion of a charged metry of the system, the-component of the angular
particle subject to a dipolar magnetic field. Stermer's momentum,P,, is conserved and the system defined
analysis provided the framework that led to the un- by (1) has two degrees of freedom. To analyse its
derstanding of the radiation belts around the Earth dynamics it is convenient to use dimensionless coor-
and other magnetised planef4]. These radiation  dinates as a function of the planet radiRsand the
belts are composed by ions and electrons whose mo-Keplerian frequencywx = (M/R3)Y2. After these
tion is well described by using models which take considerations, we get:
into account only electromagnetic forces. However,
dust grains composing faint rings like Saturn's E- 2 2 2
: : : s P2 Pyl
ring are much heavier than ions and electrons of ra- H= -2 + * 4+ * _ =
diation belts. It implies that their dynamics cannot 2 2 2% r
be generally well described using solely electromag- A 2 ) 02
netic forces. To overcome this problem, we consider - 5r—3 + 5ﬁr—3 +3 276" (2)

a more realistic physical model that includes the Ke-

plerian gravity, a rotating magnetic dipole of strength where the parametess= w./wx andg = w/wg indi-

u aligned along the planet’s rotating axis and a coro- cate, respectively, the ratio between the magnetic and
tational electric field: the generalised Stgrmer (GS) the Keplerian interactions (e.g., the charge—mass ratio
model[5,6]. q/m of the particle) and the ratio between the electro-

Howard and co-worker6—8] explore the effective  static and Keplerian interactions. For a given planet,
potential governing the dynamics of the GS problem. B,, w andwg are constant and thence the problem de-
Besides, the significant question of the global dynam- pends on the three parametéys H (the energy), and
ics has been patrtially treated [8,10]. In this Let- 8. For a more detailed description of the model we ad-
ter we focus on the changes in the phase flow that dress td9] and references therein. If the gravity domi-
take place in the vicinity of a circular equatorial orbit. nates [§| « 1), Hamiltonian(2) can be understood as
These features must be highlighted because they area sum of a pure Keplerian part, and a perturbation de-
related to the fine structure of diffuse planetary rings scribing the electromagnetic forces. For instance, this
like Saturn’s E-ring. The origin and structure of this situation takes place for micron-size dust grains form-
kind of rings remains as an open question in the liter- ing Saturn’s E-ring5,11].
ature. Our approach is purely analytical. The basic idea

is to transform Hamiltoniafi2) into an integrable ap-
proximation via averaging. Delaunay variablés g,

2. Dynamical model and its average h,L,G,H) are a suitable set to achieve the nor-
malisation in a Keplerian-type system. Varialileis
For a dust grain of masa and chargey orbiting the Delaunay action related to the unperturbed Kep-
around a magnetic planet of mass and radiusR lerian energyHo = —1/(2L?), G is the modulus of
which rotates with angular velocity, the GS Hamil- the angular momentum arfdl = P4. The correspond-
tonian in Gaussian units and cylindrical coordinates ing angle<, ¢ andh represent, respectively, the mean
(0,2, ¢, Py, P, Py) is: anomaly, the argument of the pericentre and the as-
) 2 y , cendant node of the orbit in the instantaneous orbital
2, p2, 9 m 3Py plane.
H= ﬂ(Pp +Ph+ ﬁ) T weR 3 The averaging method is the so-called Delaunay
mw2R8 p2 402 nor.malisation, ie,a n_ear—identity canonical change of
+ ; 5 + mww:R e 1) variables whose goal is to transform a perturbation of
the two-body Hamiltonian into another one which has
where r = /p2+22, B, = u/R® is the magnetic  the actionL as a new integrgll2]. Up to first order,

field strength at the equator of the planet and= the new Hamiltonian is given bi = Ko + K1 with
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Fig. 1. Top: phase spad, y (left) and7;, g (right). Bottom: projections of;, y, 0 < |H| < L, onto the plane; = 0; on the leftc stands for
circular orbits whilee represents equatorial orbits; on the righis the arc corresponding to rectilinear trajectories, whiédenotes rectilinear
orbits in the equatorial plane amep are circular-polar trajectories.

Ko=—1/(2L?) and

%

16L5(L + G)G

x [2(L + G)(4BL3G" + 4BL3G°H? — sG*
—8L2G*H — 8G?H? + 35L?G? + 38L*H?)
+(L—G)(G*~ H?)

x (88L3G® +8G? +25LG + 8L?) cos2g)].

Ki1=

A representation of the spacg p is given in
Fig. 1

HamiltonianC is now written in terms of the;’s,
after dropping constant terms, as:

5
ALST/[ALTa 4+ V2(2L2 4 12)]

X {5(2L2 + 2v2Lt + rf)

x [tf(14L% — 417 — 3cf) + H?(20L* — 277)]

]C:

For a fixed L > 0, the phase space related to
Keplerian-like Hamiltonians independent 6fis the
product of the two sphere$? x $2 [13]. However, if
the Hamiltonian enjoys an axial symmetry, it may be
further reduced to a compact two-dimensional space

+8L%¢}[—2H (2L% + 2v/2Lts + )
+ BLTZ(2H?L + V2(L? + H? — t¥) 14
+L75)]},

[14] Tz y = {(11, 12, 13) € R3}, where

2+ =[(L+w)? - H?[(L —w)? - H,
nnelH-L,L-H]. (3)
The relationship betwee(z, G) and(z1, 12, 73) IS:

G*= %(L2+H2—r12+13),

-T2

cosg = ,
J 22— H22 — (e — 512

sin 2(L2+ H2 — 12+ 13)
=T .
TN HY — 2 -2

where we writery = \/LZ + H2— le + 3. The phase
flow for K is mainly managed by its equilibria and
their stability.

3. Relative equilibria and bifurcations

Equilibrium points are obtained as the local ex-
trema of C on 7, . A detailed analysis about the
existence conditions and linear stability is giverj9h
where those terms 8% are neglected. From this analy-
sis a number of parametric bifurcation lines are de-
termined, both for progradeH > 0) and retrograde
(H < 0) motions. On the one hand, féf > 0 we get



250

v Lo

el

Fig. 2. Plane of parameter$/, L) for § = 0.01 andg = 0.4. The
number of equilibria in each region is encircled.

the lines

I =3BL*H?+ BL* — 12H =0,
I>=2BLH®—3(L+ H)=0,
I3=2BL°H?—3(L + H) =0,
I'y=pBL*(L? —5H?) +12H =0,
I's=—3H +88L*H? — 168L*
—6B2L*H3 + BALEBH® =0,
le=BL?H* (L + H) —2(L*+ LH + H?) =0. (4)
On the other hand, fol < 0 we get

To=5BL?H?— BL*— 12H =0. (5)

It is worth to note that if the terms i8¢ are taken into

account, new bifurcation lines appear; moreover, the
lines addressed before are slightly modified. Never-
theless, the new lines, that involve new equilibrium
points, are not of physical interest as they are in
correspondence with collision type orbits. Indeed, as
they are related to Keplerian trajectories, their peri-

centres are located inside the planet, that is, at a dis-

tance smaller than 1. In this way, after fixing a value
of L, the most eccentric non-collisional orbit satisfies
L?\/1— H?2/L2 = 1. This equation defines a curve
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Fig. 3. Evolution of the energy for the equilibrium points when

L =25 andH varies from 1 to 2. Dashed lines stand for unsta-

ble equilibria, whereas solid lines stand for stable points. Circles
represent bifurcations.

in the parameter planéH, L) that separates colli-
sion motions from non-collisional ones. As we are
interested in a qualitative description of circumplane-
tary trajectories, it is enough with analysing the model
with §2=0.

Taking into account all the above, it follows that, for
afixedg, the plang H, L) is divided into different re-
gions where the number of equilibria changes. These
regions are determined by the cury@3 and (5) to-
gether with the constrain#/| < L as it is depicted in
Fig. 2 There always exist two equilibrium point
and E» corresponding to the class of equatorial and
circular trajectories, respectively. The rest of equilib-
ria, when they exist, appear as pairs. Pols E3 are
symmetric with respect to the plane = 0, whereas
E4, E4 and Es, Es are symmetric with respect to
71 =0.

4. Discussion

Remark 1. As the flow of the Hamiltonian is defined
over a compact spac€y, g, if an equilibrium point

is stable it corresponds to a maximum or a minimum,
whereas if it is unstable its energy takes an intermedi-
ate value. Hence, we are able to determine the stability
of the equilibria by studying the evolution of their en-
ergies, as the paramete(#, L) take values in the
different regions ofrig. 2 For instance, irFig. 3 it

is depicted the energy of the equilibrium points for
L =2.5 asH varies from 1 to 2.

Remark 2. All the lines I'; correspond to paramet-
ric bifurcations of pitchfork type except fafs that
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Fig. 4. Sketch of the sequence of bifurcations of the class of cirq#lay and equatorial E1) orbits as the bifurcation lines are crossed.
Direction of the flow is viewed from the positive axis.
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Fig. 5. Different types of flow in the phase spafg p over the parametric plangH, L) for § = 0.01 andg = 0.4, showing north- and
south-pole views. We present the phase space like a sphere to get a better visualisation of the phase flow evolution.

corresponds to a saddle-centre bifurcation @gdo a consequence, the flow direction aroufid and E»

a saddle connection. This conclusion follows from the reverse when crossings (seeFig. 4). The physical
number of equilibrium points involved in the bifurca- meaning is that the advance of the pericentre of the
tions together with the index theorem and a theorem on osculating ellipse is clockwise or counter-clockwise.
the multiplicity of a root for a vanishing discriminant.

A sketch of the sequence of bifurcations is depicted in Remark 4. All the curves are coincident at the point

Fig. 4
P=(3/8,3/8)

Remark 3. An outstanding feature is the presence of on the lineL = H. This point corresponds to an equa-
a saddle-connection bifurcation when bd@hand E» torial circular orbit around which the dynamics is ex-
are unstable and the energy of their orbits is the same.tremely complex. The orbit corresponding with the
This is a global bifurcation and not a local one. As point P is a periodic orbit of the original system and it
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remains Keplerian in spite of the perturbation. Even Saturn’s moon Enceladus in the vicinity of the circu-
more, the characteristic frequencies associated with lar orbit defined by pointP can help to explain the
this orbit are in resonance 1:1. This can be inferred dynamics and structure of the dusty E-ring. In partic-
from the Hessian matrix associated with Hamiltonian ular, the 1:1 resonance could be the responsible of the
(2) evaluated at poinP. ring’s narrowing about BR. However, the inclusion

in the model of the oblateness of Saturn and the radia-

Remark 5. Associated with each relative equilibria tion pressurg5] should be taken into account in order
there is a family of (approximate) two-dimensional to refine our conclusions.

invariant tori in the original Hamiltoniaxil) parame-

terised by the anglesandh. These tori are functions

of the actions. and H and are filled up with quasipe- ~Acknowledgements

riodic trajectories. Using the implicit function theorem

[15], we may guarantee the existence of families ofin- ~ Work supported by projects #BFM2002-03157
variant tori close to the approximated ones we have Of Ministerio de Ciencia y Tecnologia (Spain) and
computed. Moreover, the bifurcation lines and the sta- #ACP12002/04 of Gobierno de La Rioja (Spain).
bility of the equilibria are translated into the bifurca-

tions and the stability character of the invariant tori.
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