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Abstract

We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Ham
of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole fi
a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for w
obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In pa
dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is
inside the E-ring.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The observations provided by the spacecrafts Vo
ger, Ulysses and Galileo revealed the presence o
numerable dust grains orbiting around the gase
planets Jupiter, Saturn, Neptune and Uranus. This
is scattered not only among the macroscopic bo
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of the solid rings but also forms light circumplan
tary structures[1]. Besides, the Cassini mission
Saturn has devices for detecting cosmic dust.
analysis of the data obtained from them will gi
new insights about the charge and size of the d
grains around this giant planet. Other projects s
as the Bepi–Colombo mission to explore Mercur
magnetosphere, expected to be launched by ES
2008[2], make crucial the understanding of the m
tion of charged particles around magnetic planets.
.
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One of the first attempts towards the study
charged dust was the theoretical approach initia
by Størmer (see[3]) about the motion of a charge
particle subject to a dipolar magnetic field. Størme
analysis provided the framework that led to the u
derstanding of the radiation belts around the Ea
and other magnetised planets[4]. These radiation
belts are composed by ions and electrons whose
tion is well described by using models which ta
into account only electromagnetic forces. Howev
dust grains composing faint rings like Saturn’s
ring are much heavier than ions and electrons of
diation belts. It implies that their dynamics cann
be generally well described using solely electrom
netic forces. To overcome this problem, we consi
a more realistic physical model that includes the K
plerian gravity, a rotating magnetic dipole of streng
µ aligned along the planet’s rotating axis and a co
tational electric field: the generalised Størmer (G
model[5,6].

Howard and co-workers[6–8] explore the effective
potential governing the dynamics of the GS proble
Besides, the significant question of the global dyna
ics has been partially treated in[9,10]. In this Let-
ter we focus on the changes in the phase flow
take place in the vicinity of a circular equatorial orb
These features must be highlighted because they
related to the fine structure of diffuse planetary rin
like Saturn’s E-ring. The origin and structure of th
kind of rings remains as an open question in the li
ature.

2. Dynamical model and its average

For a dust grain of massm and chargeq orbiting
around a magnetic planet of massM and radiusR
which rotates with angular velocityω, the GS Hamil-
tonian in Gaussian units and cylindrical coordina
(ρ, z,φ,Pρ,Pz,Pφ) is:

H = 1

2m

(
P 2

ρ + P 2
z + P 2

φ

ρ2

)
− Mm

r
− ωcR

3Pφ

r3

(1)+ mω2
cR

6

2

ρ2

r6
+ mωωcR

3ρ2

r3
,

where r = √
ρ2 + z2, Bo = µ/R3 is the magnetic

field strength at the equator of the planet andω =
c
(qBo)/(mc) is the cyclotron frequency, beingc the
speed of the light in the vacuum. Due the axial sy
metry of the system, thez-component of the angula
momentum,Pφ , is conserved and the system defin
by (1) has two degrees of freedom. To analyse
dynamics it is convenient to use dimensionless co
dinates as a function of the planet radiusR and the
Keplerian frequencyωK = (M/R3)1/2. After these
considerations, we get:

H = P 2
ρ

2
+ P 2

z

2
+ P 2

φ

2ρ2
− 1

r

(2)− δ
Pφ

r3
+ δβ

ρ2

r3
+ δ2 ρ2

2r6
,

where the parametersδ = ωc/ωK andβ = ω/ωK indi-
cate, respectively, the ratio between the magnetic
the Keplerian interactions (e.g., the charge–mass r
q/m of the particle) and the ratio between the elect
static and Keplerian interactions. For a given plan
Bo, ω andωK are constant and thence the problem
pends on the three parametersPφ , H (the energy), and
δ. For a more detailed description of the model we
dress to[9] and references therein. If the gravity dom
nates (|δ| � 1), Hamiltonian(2) can be understood a
a sum of a pure Keplerian part, and a perturbation
scribing the electromagnetic forces. For instance,
situation takes place for micron-size dust grains fo
ing Saturn’s E-ring[5,11].

Our approach is purely analytical. The basic id
is to transform Hamiltonian(2) into an integrable ap
proximation via averaging. Delaunay variables(�, g,

h,L,G,H) are a suitable set to achieve the n
malisation in a Keplerian-type system. VariableL is
the Delaunay action related to the unperturbed K
lerian energyH0 = −1/(2L2), G is the modulus of
the angular momentum andH = Pφ . The correspond
ing angles�, g andh represent, respectively, the me
anomaly, the argument of the pericentre and the
cendant node of the orbit in the instantaneous orb
plane.

The averaging method is the so-called Delau
normalisation, i.e., a near-identity canonical chang
variables whose goal is to transform a perturbation
the two-body Hamiltonian into another one which h
the actionL as a new integral[12]. Up to first order,
the new Hamiltonian is given byK = K + K with
0 1
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Fig. 1. Top: phase spaceTL,H (left) andTL,0 (right). Bottom: projections ofTL,H , 0� |H | < L, onto the planeτ2 = 0; on the left,c stands for
circular orbits whilee represents equatorial orbits; on the right,r is the arc corresponding to rectilinear trajectories, whiler-e denotes rectilinea
orbits in the equatorial plane andc-p are circular-polar trajectories.
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K0 = −1/(2L2) and

K1 = δ

16L5(L + G)G7

× [
2(L + G)

(
4βL3G7 + 4βL3G5H 2 − δG4

− 8L2G4H − δG2H 2 + 3δL2G2 + 3δL2H 2)
+ (L − G)

(
G2 − H 2)

× (
8βL3G5 + δG2 + 2δLG + δL2)cos(2g)

]
.

For a fixed L > 0, the phase space related
Keplerian-like Hamiltonians independent of� is the
product of the two spheresS2

L × S2
L [13]. However, if

the Hamiltonian enjoys an axial symmetry, it may
further reduced to a compact two-dimensional sp
[14] TL,H = {(τ1, τ2, τ3) ∈ R3}, where

τ2
2 + τ2

3 = [
(L + τ1)

2 − H 2][(L − τ1)
2 − H 2],

(3)τ1 ∈ [H − L,L − H ].
The relationship between(g,G) and(τ1, τ2, τ3) is:

G2 = 1

2

(
L2 + H 2 − τ2

1 + τ3
)
,

cosg = −τ2√
(L2 − H 2)2 − (τ2

1 − τ3)2
,

sing = τ1

√
2(L2 + H 2 − τ2

1 + τ3)

(L2 − H 2)2 − (τ2
1 − τ3)2

.

A representation of the spaceTL,H is given in
Fig. 1.

HamiltonianK is now written in terms of theτi ’s,
after dropping constant terms, as:

K = δ

4L5τ7
4 [4Lτ4 + √

2(2L2 + τ2
4 )]

× {
δ
(
2L2 + 2

√
2Lτ4 + τ2

4

)
× [

τ2
4

(
14L2 − 4τ2

1 − 3τ2
4

) + H 2(20L2 − 2τ2
4

)]
+ 8L2τ4

4

[−2H
(
2L2 + 2

√
2Lτ4 + τ2

4

)
+ βLτ2

4

(
2H 2L + √

2
(
L2 + H 2 − τ2

1

)
τ4

+ Lτ2
4

)]}
,

where we writeτ4 =
√

L2 + H 2 − τ2
1 + τ3. The phase

flow for K is mainly managed by its equilibria an
their stability.

3. Relative equilibria and bifurcations

Equilibrium points are obtained as the local e
trema ofK on TL,H . A detailed analysis about th
existence conditions and linear stability is given in[9],
where those terms inδ2 are neglected. From this anal
sis a number of parametric bifurcation lines are
termined, both for prograde (H > 0) and retrograde
(H < 0) motions. On the one hand, forH > 0 we get
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Fig. 2. Plane of parameters(H,L) for δ = 0.01 andβ = 0.4. The
number of equilibria in each region is encircled.

the lines

Γ1 ≡ 3βL2H 2 + βL4 − 12H = 0,

Γ2 ≡ 2βLH 3 − 3(L + H) = 0,

Γ3 ≡ 2βL2H 2 − 3(L + H) = 0,

Γ4 ≡ βL2(L2 − 5H 2) + 12H = 0,

Γ5 ≡ −3H + 8βL2H 2 − 16βL4

− 6β2L4H 3 + β4L8H 5 = 0,

(4)Γ6 ≡ βL2H 2(L + H) − 2
(
L2 + LH + H 2) = 0.

On the other hand, forH < 0 we get

(5)Γ0 ≡ 5βL2H 2 − βL4 − 12H = 0.

It is worth to note that if the terms inδ2 are taken into
account, new bifurcation lines appear; moreover,
lines addressed before are slightly modified. Nev
theless, the new lines, that involve new equilibriu
points, are not of physical interest as they are
correspondence with collision type orbits. Indeed,
they are related to Keplerian trajectories, their pe
centres are located inside the planet, that is, at a
tance smaller than 1. In this way, after fixing a va
of L, the most eccentric non-collisional orbit satisfi
L2

√
1− H 2/L2 = 1. This equation defines a curv
Fig. 3. Evolution of the energy for the equilibrium points wh
L = 2.5 andH varies from 1 to 2. Dashed lines stand for uns
ble equilibria, whereas solid lines stand for stable points. Cir
represent bifurcations.

in the parameter plane(H,L) that separates colli
sion motions from non-collisional ones. As we a
interested in a qualitative description of circumplan
tary trajectories, it is enough with analysing the mo
with δ2 = 0.

Taking into account all the above, it follows that, f
a fixedβ, the plane(H,L) is divided into different re-
gions where the number of equilibria changes. Th
regions are determined by the curves(4) and (5) to-
gether with the constraint|H | � L as it is depicted in
Fig. 2. There always exist two equilibrium pointsE1
and E2 corresponding to the class of equatorial a
circular trajectories, respectively. The rest of equil
ria, when they exist, appear as pairs. PointsE3, Ē3 are
symmetric with respect to the planeτ2 = 0, whereas
E4, Ē4 and E5, Ē5 are symmetric with respect t
τ1 = 0.

4. Discussion

Remark 1. As the flow of the Hamiltonian is define
over a compact space,TL,H , if an equilibrium point
is stable it corresponds to a maximum or a minimu
whereas if it is unstable its energy takes an interm
ate value. Hence, we are able to determine the stab
of the equilibria by studying the evolution of their e
ergies, as the parameters(H,L) take values in the
different regions ofFig. 2. For instance, inFig. 3 it
is depicted the energy of the equilibrium points
L = 2.5 asH varies from 1 to 2.

Remark 2. All the lines Γk correspond to parame
ric bifurcations of pitchfork type except forΓ that
5
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d.
Fig. 4. Sketch of the sequence of bifurcations of the class of circular(E2) and equatorial(E1) orbits as the bifurcation lines are crosse
Direction of the flow is viewed from the positive axisτ3.

Fig. 5. Different types of flow in the phase spaceTL,H over the parametric plane(H,L) for δ = 0.01 andβ = 0.4, showing north- and
south-pole views. We present the phase space like a sphere to get a better visualisation of the phase flow evolution.
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corresponds to a saddle-centre bifurcation andΓ6 to
a saddle connection. This conclusion follows from
number of equilibrium points involved in the bifurc
tions together with the index theorem and a theorem
the multiplicity of a root for a vanishing discriminan
A sketch of the sequence of bifurcations is depicte
Fig. 4.

Remark 3. An outstanding feature is the presence
a saddle-connection bifurcation when bothE1 andE2
are unstable and the energy of their orbits is the sa
This is a global bifurcation and not a local one.
a consequence, the flow direction aroundE1 andE2
reverse when crossingΓ6 (seeFig. 4). The physical
meaning is that the advance of the pericentre of
osculating ellipse is clockwise or counter-clockwise

Remark 4. All the curves are coincident at the poin

P ≡ (
3
√

3/β, 3
√

3/β
)

on the lineL = H . This point corresponds to an equ
torial circular orbit around which the dynamics is e
tremely complex. The orbit corresponding with t
pointP is a periodic orbit of the original system and
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remains Keplerian in spite of the perturbation. Ev
more, the characteristic frequencies associated
this orbit are in resonance 1:1. This can be infer
from the Hessian matrix associated with Hamilton
(2) evaluated at pointP .

Remark 5. Associated with each relative equilibr
there is a family of (approximate) two-dimension
invariant tori in the original Hamiltonian(1) parame-
terised by the angles� andh. These tori are function
of the actionsL andH and are filled up with quasipe
riodic trajectories. Using the implicit function theore
[15], we may guarantee the existence of families of
variant tori close to the approximated ones we h
computed. Moreover, the bifurcation lines and the s
bility of the equilibria are translated into the bifurc
tions and the stability character of the invariant to
Besides, it is possible to obtain some periodic orb
out of the quasiperiodic orbits using the discrete sy
metries of the Hamiltonian (see[9]).

A picture of the phase flow in each region arou
the pointP is depicted inFig. 5. It is important to high-
light that a small change in the value of the parame
near the pointP yields dramatic changes in the d
namics. In fact, as it can be seen inFig. 5, the number
of equilibrium points may vary from 2 to 8 through a
appropriate sequence of bifurcations. Consequent
rich scenario of periodic and quasiperiodic orbits is
pected near the equatorial circular orbit associate
P specially for low inclinations and eccentricities.

5. Conclusions

In spite of its simplicity, the generalised Størm
model exhibits a very rich dynamics specially arou
the pointP of the parametric plane where all the b
furcation lines meet. Moreover at this point a 1:1 r
onance occurs and branches of relative periodic or
emanate from it.

In the case of Saturn (β ≈ 0.4), the orbit associ
ated toP is located at about 3.8R, inside the E-ring,
but very close to its beginning. The presence of
Saturn’s moon Enceladus in the vicinity of the circ
lar orbit defined by pointP can help to explain the
dynamics and structure of the dusty E-ring. In par
ular, the 1:1 resonance could be the responsible o
ring’s narrowing about 3.8R. However, the inclusion
in the model of the oblateness of Saturn and the ra
tion pressure[5] should be taken into account in ord
to refine our conclusions.
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