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Abstract

We present a semiclassical study of the energy spectrum of a Rydberg hydrogen atom in the instantaneous van der Waals
potential. The results are in good agreement with those obtained by the first-order quantum perturbation theory. Both the
semiclassical and the quantum calculations show that vibrational energy levels disappear when the magnetic quantum number
|m| increases. This fact is well explained in the framework of classical dynamics of this system for which the pitchfork
bifurcation takes place at critical value|m|/n = √
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We consider the problem of a hydrogen atom at
a large distance from a metal surface (i.e., ford � r,
wherer andd are the electron–nucleus and nucleus–
surface distances, respectively) under the approxima-
tion of the instantaneous van der Walls interaction.
The corresponding potential can be obtained as the
quadratic approximation of the exact atom-surface po-
tential within the electrostatic image model [1,2]. Us-
ing cylindrical coordinates(ρ, z,ϕ) and atomic units,
the Hamiltonian of the system takes the form

(1)H = p2

2
− 1

r
− 1

16d3

(
r2 + z2),
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wherer = (ρ2 + z2)1/2 andp2 = p2
ρ + L2

z/ρ
2 + p2

z .
Owing to the cylindrical symmetry, thez-component
of angular momentumLz is conserved and theϕ-
motion is separated from that in the(ρ, z) plane. Thus,
the system reduces to the problem with two degrees
of freedom. In our recent paper we have considered
the caseLz = 0 [3]. Here we analyse the effects of
nonzeroLz and present the results.

From the point of view of the classical mechan-
ics, for sufficiently larged , system (1) is nearly in-
tegrable [2]. Hence, we are handling with a per-
turbed Coulombian system which can be treated by
using classical perturbation methods. Following pre-
vious works on similar perturbed systems [4–6], we
normalize our problem by applying a Lie transfor-
mation [7]. After this process, we get an integrable
Hamiltonian where only one degree of freedom is left.

0375-9601/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00010-X



380 N.S. Simonovi´c, J.P. Salas / Physics Letters A 279 (2001) 379–384

We perform the normalization in the Delaunay vari-
ables (I1, I2, I3, φ1, φ2, φ3), where the actionI3 is
the principal Delaunay action,I2 is the magnitude
of the total angular momentumL, andI1 = Lz, i.e.,
the z-component of the angular momentumI2. The
actions (I3, I2, I1) correspond to the principal, or-
bital and magnetic quantum numbers(n, l,m), respec-
tively. For a more complete explanation of the geo-
metrical meaning of the Delaunay variables, we re-
fer the reader to [8]. The Delaunay normalization [9]
is a canonical transformation(I1, I2, I3, φ1, φ2, φ3) →
(I ′

1, I
′
2, I

′
3, φ

′
1, φ

′
2, φ

′
3) which convertsH into a func-

tion H′ that does not depend on the averaged mean
anomalyφ′

3. As consequence of this reduction, the
new Hamiltonian admits the principal actionI ′

3 as an
integral. In the following, for the sake of simplicity,
we drop the primes on the new action–angle variables.

Carry out the reduction to first order, the normalized
Hamiltonian (normal form) H′ comes as the sumH′ =
−1/(2I2

3 )+H′
1, where

(2)H′
1 = − I4

3

32d3

(
3− I2

1

I2
3

+Λ

)
,

Λ being the dynamical part of the normalized Hamil-
tonian:

Λ =
[
2+ 5

2

(
1− I2

1

I2
2

)
(1− cos 2φ2)

]

(3)×
(

1− I2
2

I2
3

)
.

Since I1 and I3 are constants of the motion, the
Hamiltonian H′ reduces toΛ. We note thatΛ is
the generalized approximate Solov’ev constant [10].
The phase portrait of the normalized system, for a
given values ofI1 andI3, are the maps ofΛ on the
cylinders (φ2, I2). It is worthwhile noting that this
map is singular because it excludes the circular orbits
(I2 = I3) and the equatorial orbits(I2 = I1). This
singularity disappears when the system is treated in
the following variables:

ξ1 = 2ηe sini cosφ2

(1− β2)
, ξ2 = 2ηe sini sinφ2

(1− β2)
,

(4)ξ3 = 2

(1− β2)

[
η2 − 1

2

(
1+ β2)],

wheree =
√

1− I2
2/I

2
3 and i = cos−1(I1/I2) are, re-

spectively, the eccentricity and the inclination of the
electronic orbits. We have introduced the dimension-
less quantitiesη = I2/I3 andβ = I1/I3. In this vari-
ables(ξ1, ξ2, ξ3), owing thatξ2

1 + ξ2
2 + ξ2

3 = 1, the
phase space is an sphere of unit radius. Given the val-
ues ofI3 andI1 (i.e., the value ofβ), the north pole of
the sphere represents the circular orbits (e = 0), while
the south pole represents the equatorial orbits(i = 0).

The dynamics emerging fromΛ has been studied by
Elipe and Ferrer [11]. These authors have shown that
the averaged system shows four equilibrium points
that we denote byE1,2,3,4. The equilibriumE1 (E2) is
located at the north (south) pole, while the equilibria
E3,4 are at the meridianξ1 = 0. The equilibriaE1,2
are, respectively, absolute and local maxima ofH′,
while the equilibriaE3,4 are absolute minima ofH′
with equal energy.2

The most important feature of this dynamical sys-
tem is that it undergoes a pitchfork bifurcation at a
critical valueβ = √

5/7. We observe this fact in Fig. 1
where the phase flow evolution in the cylinders(φ2, η)

as well as in the unit sphere is shown forβ = 0.7, 0.8
and 0.9.

Whenβ <
√

5/7 (Figs. 1(a)–(d)), we observe that
there exist three families of classical levels (orbits).
The two families ofvibrational levelsV1 (V2) around
the equilibriaE3 (E4) and the family ofrotational
levelsR aroundE1. These two kind of levels are kept
apart by a separatrix passing throughE2.

As the parameterβ reaches the critical value
√

5/7,
the separatrix shrinks and, at the same time, the equi-
libria E3,4 migrate to the southern hemisphere. This
fact indicates that the vibrators are gradually replaced
by rotators. Finally, whenβ >

√
5/7, the pitchfork

bifurcation has taken place: only the equilibriaE1,2
survive and there are only rotational levels (Figs. 1(e)
and (f)).

As it has been shown for a Rydberg hydrogen atom
in external field [12,13] and for this problem in the
polar caseβ = 0 [3], the classical families of vibrators
and rotators are connected to the quantum states of
the system. In this way, each classical phase space
trajectory with appropriately quantized value of the

2 For a discussion about the stability of these equilibria, we refer
the reader to [11].
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Fig. 1. Phase flow evolution of the normalized HamiltonianH′ for β = 0.7 ((a) and (b)),β = 0.8 ((c) and (d)) andβ = 0.9 ((e) and (f)). The left
panel corresponds to the phase flow on the cylinders(φ2, η), while the right one corresponds to the phase flow on the unit sphere(ξ1, ξ2, ξ3).
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action corresponds to a quantum state. Hence, while
the quantum states corresponding to vibrational levels
are degenerated and have the lower energies, those
corresponding to rotational levels are nondegenerate
and have the higher energies. This is the fundamental
qualitative level structure information arising from
the classical picture which is difficult to obtain from
quantum mechanics.

Since the system determined by the normal form (2)
is integrable, it can be quantized by applying the EBK
rules to the action variables (I1, I2, I3). As we have
mentioned above,I1 andI3 are exact and approximate
constants of the motion, respectively, and they can be
quantized as in the unperturbed Kepler problem, i.e.,
I1 = m, I3 = n. However, because of the presence
of the instantaneous van der Waals interaction, the
angular momentumI2 is not a constant of the motion
and the appropriate quantization rules is [12]

(5)A = 1

2π

∮
C

I2 dφ2 = k + 1

2
,

where k is the semiclassical quantum number. For
vibrators,A is 1/2π times the area enclosed by the
loop in the map(φ2, I2), while for a rotator, it is 1/2π
the area between the rotator line and theI2 = I3 line
in the same map.

We evaluate the latest action integral by using the
Solov’ev constantΛ, which takes the values 0<Λ<

Λmax = 7(1 − √
5/7β)2 and for separatrixΛsep =

2(1−β2). We remark that the separatrix in the(φ2, I2)

representation corresponds to the lineI2 = I3. Note
that (3) is a biquadratic equation in terms ofI2, giving
(positive) solutionsI±

2 = [(−b ± √
b2 − 4ac)/2a]1/2,

where a = 4 + 5Φ, b = −2I2
3 (2 − Λ) − 5(I2

1 +
I2
3 )Φ, c = 5I2

1 I
2
3Φ, andΦ = 1 − cos2φ2. The action

integralsA for rotational and vibrational motions are
then

(6)Arot = 1

2π

2π∫
0

I+
2 dφ2, 0<Λ<Λsep,

Avib = 1

2π

π−φ0
2∫

φ0
2

(
I+
2 − I−

2

)
dφ2,

(7)Λsep<Λ<Λmax,

where

φ0
2 = 1

2
arccos

(
1− 2

5
I2
3

{
(Λ+ 2)I2

1 + (Λ − 2)I2
3

+ 2I1

√
Λ

[
2I2

1 + (Λ− 2)I2
3

]}
/(

I2
3 − I2

1

)2
)
.

Semiclassical values for the energy level shifts are
found by solving iteratively equationA(I1, I3,Λ) =
k + 1/2 for Λ and inserting these values (with the
conditionsI1 = m andI3 = n) in Eq. (2):

(8)%Enmk = − n4

32d3

(
3− m2

n2 +Λnmk

)
.

We apply the above formula ford = 100 nm and
n = 10. The vibrational (doubly degenerate ink) levels
may exist fork = 0,1,2, whereas the rotational for
k = 6,7,8,9 (see Table 1). Additionally, all levels
with |m| �= 0 are also doubly degenerate inm. The
levels shown in the brackets ((n,m, k) equal(10,1,6)
and(10,6,7)) are nonessential (unphysical) and they
appear due to the vicinity of the separatrix. Because of
the same reason the levels(10,4,6) and(10,7,7) are
missing in the rotational submanifold, however their
values (labeled in Table 1 by asterisks) are estimated
by the formula

(9)%Enmk∗ ≈ %E
sep
nm = − n4

32d3

(
5− 3

m2

n2

)
,

which is obtained by using theΛ-value for the
separatrix.

The effects of the instantaneous van der Waals
interaction to the energy spectrum of the hydrogen
atom can be calculated also quantum-mechanically by
using the first-order degenerate perturbation theory.
The eigenstates can be expressed as a function of the
pure hydrogenic basis by using the expansion over the
orbital quantum numberl:

Ψnmκ(r,ϑ,ϕ) =
n−1∑
l=|m|

cnmκ
l Rnl(r)Y

m
l (ϑ,ϕ),

(10)κ = |m|, . . . , n− 1,

sincem andn are exact and within the first-order the-
ory good quantum numbers, respectively. The coeffi-
cientscnmκ

l follow after solving the secular problem
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Table 1
The energy level shifts (in GHz) for then = 10 manifold atd = 100 nm — semiclassical and quantum-mechanical results

|m| 0 1 2 3 4

k SC QM SC QM SC QM SC QM SC QM

−2.7173 −2.4057 −2.1188 −1.8567 −1.6205

0 −2.7052 −2.3935 −2.1064 −1.8441 −1.6067

−2.7173 −2.4057 −2.1188 −1.8566 −1.6189

−2.1437 −1.9074 −1.6995 −1.5286

1 −2.1313 −1.8946 −1.6841 −1.5022

−2.1437 −1.9071 −1.6954 −1.5032

−1.7262 −1.5872

2 −1.7101 −1.5572

−1.7209 −1.5527

6 −1.5168 −1.5051 (−1.5094) −1.4866 −1.4763 −1.3774∗ −1.3884

7 −1.3920 −1.4047 −1.3864 −1.3889 −1.3695 −1.3829 −1.3410 −1.3417 −1.3001 −1.3165

8 −1.2243 −1.2325 −1.2199 −1.2287 −1.2065 −1.2146 −1.1841 −1.1930 −1.1524 −1.1599

9 −1.0248 −1.0335 −1.0213 −1.0300 −1.0109 −1.0196 −0.9934 −1.0020 −0.9690 −0.9775

|m| 5 6 7 8 9

k SC QM SC QM SC QM SC QM SC QM

−1.4141 −1.2392

0 −1.3948 −1.2105

−1.4032 −1.2023

7 −1.2457 −1.2423 (−1.1751) −1.0757∗ −1.0788

8 −1.1109 −1.1200 −1.0589 −1.0646 −0.9948 −1.0056 −0.9148 −0.9142

9 −0.9374 −0.9456 −0.8985 −0.9065 −0.8520 −0.8594 −0.7976 −0.8045 −0.7343 −0.7375

The vibrational (doubly degenerate ink) levels appear fork = 0,1,2, whereas the levels withk = 6,7,8,9 are the rotational. The values shown
in the brackets are unphysical and they appear in the semiclassical calculations due to the vicinity of the separatrix. Because of the same reason
the values labeled by the asterisks are missing in direct calculation, and these values are estimated by formula (9).

for the perturbation, which involves the diagonaliza-
tion of a matrix of rankn − |m| obtained by repre-
senting the operatorr2 + z2 in the hydrogenic basis
{|nlm〉; l = |m|, . . . , n−1}. If we denote the eigenval-
ues of this matrix by(r2 + z2)nmκ , the energy shifts
are

(11)%Enmκ = − 1

16d3

(
r2 + z2)

nmκ
.

The corresponding values for then = 10 manifold are
given in Table 1 for comparison with the semiclassi-

cal results. (Note that the quantum numberκ is not de-
fined uniquely, so we prefer the semiclassical quantum
numberk for labeling the states.)

We can observe from the table that the semiclas-
sical results are in good agreement with the quan-
tum mechanical. The tiny splitting of the degener-
acy appearing in the quantum-mechanical values of
the vibrational energy levels near the classical sepa-
ratrix is a consequence of tunneling between vibra-
tional statesV1 andV2 in the vicinity of the separa-
trix. This splitting does not appear in the semiclassi-
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cal energy levels because the EBK rules do not in-
corporate tunneling effects. It is important to remark
that in both semiclassical and quantum calculations,
the degenerate vibrational levels disappear when|m|
increases. This fact is the semiclassical/quantum re-
flex of the pitchfork bifurcation that takes place in the
classical counterpart. The classical criterion for this
disappearance is|m| > [√5/7n], where the term on
the left side is the integer part of

√
5/7n. Then, for

n = 10 this takes place for|m| > 8. However, from
the Table 1 we can see that the degenerate levels have
disappeared still when|m| > 6. This happens due to
the fact that, although for|m| = 7,8 the vibrational
regions in phase space exist (see Fig. 1), the corre-
sponding actionsAvib < 1/2 and there are no vibra-
tional levels (rule (5)). Thus, an empirical criterion is
|m| > [√5/7n] − 2, which is valid for 5� n � 21.
Hence, the quantum/semiclassical threshold of disap-
pearance of the degenerate levels might be roughly
evaluated from the pure classical results. Once again,
the classical mechanics proves to be a powerful tool
which provides a compact geometric picture of the en-
ergy level structure of the perturbed Rydberg systems.
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