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Area de F́ısica Aplicada,

Universidad de la Rioja, 26004 Logroño, Spain

V. LANCHARES†

Departamento de Matemáticas y Computación,
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We study the spin-up dynamics of a dual-spin spacecraft containing one axisymmetric rotor
which is parallel to one of the principal axes of the spacecraft. It will be supposed that one of
the moments of inertia of the platform is a periodic function of time and that the center of mass
of the spacecraft is not modified. Under these assumptions, it is shown that in the absence of
external torques and spinning rotors the system possesses chaotic behavior in the sense that it
exhibits Smale’s horseshoes. We prove this statement by means of the Melnikov method.

The presence of chaotic behavior results in a random spin-up operation. This randomness is
visualized by means of maps of the initial conditions with final nutation angle close to zero. This
phenomenon is well described by a suitable parameter that measures the amount of randomness
of the process. Finally, we relate this parameter with the Melnikov function in the absence of
the spinning rotor and with the presence of subharmonic resonances.

1. Introduction

Basically, a dual-spin spacecraft, also called a gy-
rostat, is a mechanical system G composed by sev-
eral bodies: a main rigid body P, called platform or
core body, and other axisymmetric bodies R, called
rotors or wheels. These rotors are not rigidly con-
nected to the platform, but they can have a motion
of relative rotation with respect to the platform, in
such a way that the motion of the rotors does not
modify the distribution of masses of the spacecraft.
Thus, the gyrostat represents a model for a rotating
body with an internal angular momentum.

This model has been used with success in the
study of the dynamics of different physical systems

since the end of the 19th century. Peano [1895a,
1895b] and Volterra [1899] applied the gyrostat
model to the rotation of the Earth in order to ex-
plain the motion of its poles and the variation of the
latitude on the surface of the Earth. They consid-
ered the Earth as a rigid body but with an internal
angular momentum due to internal motions as the
ocean currents. Later on, Kramers [1923], following
Volterra’s example, started to consider the effect of
internal electronic angular momenta of molecules on
their rotational spectra. Several theoretical results
on the attitude dynamics of gyrostats in different
particular situations have been collected in Leima-
nis’s book [1965, pp. 207–238].

∗E-mail: manuel.inarrea@dq.unirioja.es
†E-mail: vlancha@dmc.unirioja.es

997
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In the last decades, the dynamics of the
gyrostat has been the object of great interest in as-
trodynamics and space engineering, this is because
nowadays most artificial satellites have one or more
rotors in order to control the attitude and to sta-
bilize the rotations of the spacecraft. So, the gyro-
stat is an useful model to study, at first approxima-
tion, the attitude dynamics of dual-spin spacecrafts
[Hughes, 1986; Wiesel, 1997].

Moreover, the gyrostat model also matches
with several problems in nuclear and atomic physics
[Ring & Schuck, 1980; Elipe & Ferrer, 1994]; and
with optical problems [David et al., 1990].

Recently, many authors have studied different
problems on gyrostats in various situations, most of
them related to the dynamics of artificial satellites.
Some of these authors have obtained analytical so-
lutions of the equations of motion of free gyrostats
[Cochran et al., 1982, 1983] or under a central field
[Cavas & Vigueras, 1994]. Other authors have fo-
cused on the attitude dynamics and the reorienta-
tion process of various types of gyrostats [Hubert,
1980; Hall & Rand 1994; Hall, 1995a, 1995b, 1995c,
1996, 1997]. On the other hand, several authors
have used the Melnikov method in order to analyze
the chaotic behavior of a gyrostat under different
kinds of perturbations [Holmes & Marsden, 1983;
Koiller, 1984; Tong et al., 1995].

All these studies are based on the premise that
the gyrostat is made of perfectly rigid components.
Unfortunately, all real materials are elastic and
deformable to some degree. The model of per-
fectly rigid components can lead to results not co-
incident with the real behavior of the spacecraft.
This mistake was dramatically pointed out in 1958
when an unexpected instability appeared in the ro-
tation of the Explorer I satellite [Thomson, 1986,
pp. 212–213].

This consideration has moved us to focus our
attention on the dynamics of a dual-spin spacecraft
with one of the moments of inertia as a periodic
function of time. The system is in the absence
of external torques and the center of mass of the
spacecraft is not modified. In this specific case,
Lanchares et al. [1998] and Iñarrea [1998] have
proved, using the Melnikov method, that the sys-
tem exhibits chaotic motion and that it can be re-
moved by means of a spinning rotor about one of
the principal axes of the gyrostat. This model is a
more realistic approximation to the attitude motion
of a spacecraft than the perfectly rigid model, but
not exempt from considerable simplifications.

Following several authors, we treat the prob-
lem in noncanonical variables: the components of
the total angular momentum in the body frame. As
Elipe et al. [1997] and Elipe and Lanchares [1997a,
1997b] have shown, in these variables the free gyro-
stat model reduces to a quadratic Hamiltonian with
a spherical phase space, and so the phase flow can
be easily interpreted. Besides, this kind of Hamilto-
nians has been widely studied in order to determine
their equilibria, bifurcations and phase flow evolu-
tion [Lanchares & Elipe, 1995a, 1995b; Lanchares
et al., 1995].

The present paper is structured in the following
way. In Sec. 2, we develop the Hamiltonian formu-
lation corresponding to a generic free gyrostat with
n rotors aligned in different directions. Then we fo-
cus on the particular case of a free triaxial gyrostat
and treat its Hamiltonian as a sum of an integrable
part plus a time-periodic perturbation. In Sec. 3,
we calculate the Melnikov function of the perturbed
system when the rotors are at relative rest. The
Melnikov function gives us an analytical estimation
of the width of the stochastic layer generated by
the perturbation. In the next section, we analyze
the dependence of this analytical estimation on the
parameters of the perturbation. Also we check the
validity of this analytical estimation calculating a
numerical estimation of the width of the layer. We
find some deviations between both estimations due
to the effect of nonlinear resonances. In Sec. 5 we
consider the reorientation process and the effect of
the perturbation in it. In order to show the influ-
ence of the perturbation, a suitable parameter is
introduced and it is related to the Melnikov func-
tion calculated in Sec. 3. Finally, in Sec. 6, we take
into account the effect of nonlinear resonances to
explain the sudden increments of the amount of ap-
parent chaotic motion of the system.

2. Hamiltonian and Equations
of Motion

Let us consider a gyrostat, consisting of an asym-
metric platform and n axisymmetric rotors aligned
in different directions. As the gyrostat is in the ab-
sence of external forces and torques, we can assume
that the gyrostat has a fixed point O, identified with
its center of mass. Centered on it we will use two
orthonormal reference frames

— S, the inertial space frame Os1s2s3 fixed in the

space.
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— B, the body frame Ob1b2b3 fixed in the plat-
form. The directions of the orthogonal basis
(b1, b2, b3) coincide with the principal axes of
the gyrostat.

The relative orientation between these two
reference frames results from three consecutive
rotations involving the Euler angles (ψ, θ, φ)
[Goldstein, 1992, pp. 183–188] (see Fig. 1).

Let x = x1b1 + x2b2 + x3b3 be the position
vector of a generic particle P of the gyrostat with
mass dm. The absolute velocity of this particle in
the body frame B is

vab =
dx

dt
= v + ω × x ,

where v = ẋ1b1 + ẋ2b2 + ẋ3b3 is the relative veloc-
ity of P with respect to the platform, and ω is the
angular velocity vector of the body frame B with
respect to the space frame S. That is, ω is the
rotation angular velocity of the platform.

The angular momentum vector dG of the par-
ticle P with respect to the center of mass O in the
body frame B is

dG = x× dp = x× vab dm .

The gyrostat G can be considered as the union
of the platform P plus the rotors R, G = P ∪ R.
With this and taking into account that v = 0 for
particles belonging to the platform, the total angu-
lar momentum G of the gyrostat in the body frame
B can be expressed as

G = Gxb1 +Gyb2 +Gzb3

=

∫
P

[x× (ω × x)]dm+

∫
R

[x× (v + ω × x)]dm

=

∫
P

[x× (ω × x)]dm+

∫
R

[x× (ω × x)]dm

+

∫
R

(x× v)dm

=

∫
G
[x× (ω × x)]dm +

∫
R

(x× v)dm

= IIω + h ,

(1)

where II = IIP +
∑
IIRi is the tensor of inertia of

the gyrostat, G = P ∪ R. As it is expressed
in the body frame B of the principal axes of the

b 1

b 2

b 3
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s 2

s 3

O

φ

θ

ψ

Platform

R 1

R 2

R 3

Fig. 1. Basic structure of a gyrostat with three attached
rotors aligned in different directions.

gyrostat, this tensor is a diagonal one, that is,
II = diag(s11, s22, s33). On the other hand,

h = hxb1 + hyb2 + hzb3 =

∫
R

(x× v)dm ,

is the relative angular momentum of the n rotors
with respect to the platform.

In a similar way we obtain for the total kinetic
energy of the gyrostat

T =
1

2

∫
G

v2
abdm =

1

2

∫
G
(v + ω × x)2dm

=
1

2

∫
G
(ω × x)2dm+ ω ·

∫
R

(x× v)dm

+
1

2

∫
R

v2dm

=
1

2
ω · IIω + h · ω + TR ,

(2)

where TR represents the kinetic energy of the rel-
ative motion of the n rotors with respect to the
platform.

As we consider a gyrostat in free rotation (V =
0), the Lagrangian L of the system is

L = T − V = T =
1

2
ω · IIω + h · ω + TR . (3)

As it is well known, the components (ωx, ωy,
ωz) of the angular velocity ω in the body frame
B, can be written in terms of the Euler angles
(ψ, θ, φ) and the Euler angles velocities (ψ̇, θ̇, φ̇) as
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[Goldstein, 1992, pp. 225–226]
ωx = φ̇ sin θ sinψ + θ̇ cosψ ,

ωy = φ̇ sin θ cosψ − θ̇ sinψ ,

ωz = φ̇ cos θ + ψ̇ .

(4)

Making use of these equations the Lagrangian L
of the system could be explicitly expressed in terms
of three generalized coordinates q = (φ, θ, ψ), and
their velocities q̇ = (φ̇, θ̇, ψ̇).

The Hamiltonian H(q, p) is the Legendre
transformations with respect to the velocities of the
Lagrangian function L(q, q̇)

H(q, p) =
∑

piq̇i − L(q, q̇)

where pi is the canonically conjugate momentum,
pi = ∂L/∂q̇i.

In this case, the Lagrangian is expressible as
the addition of three terms, L = L2 +L1 +L0. The
first term, L2 = 1/2ω · IIω, is a quadratic homoge-
neous function on the velocity q̇. The second term
L1 = h · ω is a linear homogeneous function on q̇,
and the third term, L1 = TR is a non-dependent
function on q̇. So, by virtue of the Euler theorem
for homogeneous functions, the Hamiltonian of the
system is

H = ∇q̇L · q̇− L = 2L2 + L1 − L2 − L1 − L0

= L2 − L0 =
1

2
ω · IIω − TR .

(5)

Taking into account Eq. (1), this Hamiltonian
can be expressed in terms of the total angular mo-
mentum G as

H =
1

2
(G− h) · II−1(G− h)− TR . (6)

As the components (Gx, Gy, Gz) of the total
angular momentum G in the body frame B are not
canonical variables, it is necessary to know the Pois-
son brackets of these components Gi. The canoni-
cally conjugate momentum, pi is

pi =
∂L
∂q̇i

= IIω · ∂ω
∂q̇i

+ h · ∂ω
∂q̇i

= G · ∂ω
∂q̇i

. (7)

By applying this equation, the components
(Gx, Gy, Gz) may be expressed in terms of the Eu-
ler angles q = (φ, θ, ψ) and their canonically con-

jugate momenta p = (pφ, pθ, pψ) as

Gx =

(
pφ − pψ cos θ

sin θ

)
sinψ + pθ cosψ ,

Gy =

(
pφ − pψ cos θ

sin θ

)
cosψ − pθ sinψ ,

Gz = pψ .

(8)

Making use of these equations, it is just a mat-
ter of computing partial derivatives to obtain the
Poisson brackets between the components Gi,

{Gx; Gy} = −Gz, {Gx; Gy} = −Gx ,
{Gz ; Gx} = −Gy .

(9)

From here on, we will consider the case of a gy-
rostat with three rotors aligned with the principal
axes of the gyrostat, that is, the axes of the body
frame B. In this situation, denoting the x-axis rotor
as rotor 1, the y-axis rotor as rotor 2, and the z-axis
rotor as rotor 3, the angular velocities of each rotor
can be written as

ω1 = ω + Ω1 = (ωx + Ωx, ωy, ωz) ,

ω2 = ω + Ω2 = (ωx, ωy + Ωy, ωz) ,

ω3 = ω + Ω3 = (ωx, ωy, ωz + Ωz) ,

where Ω1 = (Ωx, 0, 0), Ω2 = (0, Ωy, 0) and Ω3 =
(0, 0, Ωz), are the relative angular velocities of each
rotor with respect to the platform.

Moreover, in this case the relative angular mo-
mentum h of the rotors can be calculated more ex-
plicitly

h =

∫
R

(x× v)dm =

∫
R1

(x× v1)dm

+

∫
R2

(x× v2)dm+

∫
R3

(x× v3)dm ,

and since we can now write vi = Ωi × x,

h =
3∑
i=1

∫
Ri

[x× (Ωi × x)]dm =
3∑
i=1

IIRiΩi ,

where IIRi is the tensor of inertia of the Ri rotor. It
is a diagonal tensor in the body frame B, that is,
IIRi = diag(Ai11, Ai22, Ai33).

Thus, we obtain

h = hxb1 + hyb2 + hzb3 = A111Ωx b1

+ A222Ωy b2 +A333Ωz b3 ,

where hi now represents the relative angular mo-
mentum of each individual rotor with respect to the
platform.
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On the other hand, in this situation the kinetic energy TR of the relative motion of the rotors can be
expressed in a more explicit form

TR =
1

2

∫
R

v2dm =
1

2

3∑
i=1

∫
Ri

v2
i dm =

1

2

3∑
i=1

∫
Ri

(Ωi × x)2dm

=
1

2

3∑
i=1

Ωi · IIRiΩi =
1

2
(A111Ω2

x +A222Ω2
y +A333Ω2

z)

=
1

2

(
h2
x

A111
+

h2
y

A222
+

h2
z

A333

)
.

Thus, and taking into account that in the body frame II−1 is also a diagonal tensor, in this case the
Hamiltonian (6) results

H =
1

2

(
G2
x

s11
+
G2
y

s22
+
G2
z

s33

)
−
(
Gxhx
s11

+
Gyhy
s22

+
Gzhz
s33

)

+
1

2

(
h2
x

s11
+
h2
y

s22
+
h2
z

s33

)
− 1

2

(
h2
x

A111
+

h2
y

A222
+

h2
z

A333

)
.

(10)

Note that there is no loss of generality in considering the case of the rotors aligned with the principal
axes of the gyrostat, because of the Hamiltonian of the system is always in the form of Eq. (10), even if
the rotors are not aligned with the principal axes. However, in that case (hx, hy, hz) do not represent the
individual relative angular momentum of any particular rotor, but they are the components of the relative
angular momentum of the rotors set.

The Poisson brackets (9) yields the Eulerian equations of motion for Hamiltonian (10)

Ġx = {Gx; H} =

(
1

s33
− 1

s22

)
Gy Gz +

hy
s22

Gz −
hz
s33

Gy ,

Ġy = {Gy; H} =

(
1

s11
− 1

s33

)
GxGz −

hx
s11

Gz +
hz
s33

Gx ,

Ġz = {Gz ; H} =

(
1

s22
− 1

s11

)
GxGy +

hx
s11

Gy −
hy
s22

Gx .

(11)

The Hamiltonian (10) is invariant under the
group SO(2) of rotations R(φ, s3) about the space
axis s3, since the angle φ is ignorable in H as it can
be checked by replacing Eqs. (8) into (10).

On the other hand, by virtue of the angular
momentum theorem and as we are considering a
gyrostat in free motion, the total angular momen-
tum G is constant in the space frame S, and conse-
quently its norm G is also constant. Therefore, the
problem is also invariant under the group SO(3) of
rotations about the origin O. As it is well known,
the change from the space frame S to the body
frame B may be directly done by means of one ro-
tation. Thus, as the norm of a vector is invariant
under the action of de SO(3) group, the norm G of
the total angular momentum G is also constant in

the body frame B, that is, G =
√
G2
x +G2

y +G2
z =

cte. It can also be easily checked by making use of
Eq. (9), since

Ġ =
1

G
(Gx ·Gx +Gy ·Gy +Gz ·Gz) = 0 .

Therefore, in the noncanonical variables (Gx,
Gy, Gz), the phase space of the system may be re-
garded as a foliation of invariant manifolds

S2(G) = {(Gx, Gy, Gz)|G2
x +G2

y +G2
z = G2} .

The total angular momentum G in the body
frame B describes a curve on the S2 sphere of ra-
dius G. And the trajectories in the phase space are
the level contours of the Hamiltonian (10) onto the
sphere S2(G).
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Making a scale change in the variables Gi, mo-
menta hi, and the time t, it is possible to reduce
the phase space to a unique sphere of unit radius.
So, if we define

Gi =
Gi
G
, hi =

hi
G
, τ = Gt ,

results G
2
x +G

2
y +G

2
z = 1 and

{Gx; Gy} = −Gz
G
, {Gy; Gz} = −Gx

G

{Gz; Gx} = −Gy
G
.

In this way, the equations of motion and the Hamil-
tonian of the system do not change their forms of
Eqs. (11) and (10). In order to simplify the nota-
tion, from here on we will omit the bars and denote
the time variable τ as t.

On the other hand, as we will suppose, from
here on, that the quantities sjj, h̄j and Ajjj are
known functions of time, the dynamics of the prob-
lem is defined by the reduced Hamiltonian

H =
1

2

(
G2
x

s11
+
G2
y

s22
+
G2
z

s33

)

−
(
Gxhx
s11

+
Gyhy
s22

+
Gzhz
s33

)
. (12)

The Hamiltonian (12) belongs to the kind of
quadratic Hamiltonians with SU(2) algebraic struc-
ture on the unit sphere S2. This kind of Hamil-
tonians may be reduced by means of equivalence
transformations to six different generic types de-
pending on the essential parameters of the problem
[Frauendiener, 1995]. This kind of quadratic Hamil-
tonians has been widely studied in order to deter-
mine their equilibria, bifurcations and phase flow
evolution in terms of the parameters of the Hamil-
tonian [Lanchares & Elipe, 1995a, 1995b; Lanchares
et al., 1995].

Note that the topology of the phase space re-
mains unchanged even if the moments of inertia
are functions of time, that is the kind of pertur-
bation that we deal with in this paper. In partic-
ular, we consider a platform with one of its mo-
ments of inertia as a periodic function of time. So
if we denote with IIP the tensor of inertia of the
platform, IIP is a diagonal tensor in the body frame
B, that is, IIP = diag(A, B, C) since the rotors are
aligned with the principal axes of the gyrostat. We

will consider a triaxial platform with the relation
A > B > C. We will suppose specifically that the
greatest moment of inertia of the platform is a pe-
riodic function of time, that is, A = A(t) whereas
the two other moments of inertia, B and C remain
constant. Although A varies with time, we will sup-
pose that the platform always holds the same triax-
ial condition, A(t) > B > C, at any time. Also we
will suppose that the center of mass of the gyrostat
is not altered.

It is important to note that the choice of the
greatest moment of inertia as function of time, and
the other two constant, is not relevant in the dy-
namics of the problem. In fact, the results and
conclusions are similar no matter what moment of
inertia is supposed to be variable with time.

On the other hand, from here on we will sup-
pose that the three rotors are perfectly rigid, that
is, Aijj = constant, and therefore the relative an-
gular momenta hj of the rotors are not affected by
the elasticity of the platform.

The function that defines the change of the
platform’s greatest moment of inertia A(t) is sup-
posed to have the specific form

1

s11(t)
=

1

A(t) +A111 +A211 +A311

= a1(t) = a10 + ε cos νt , (13)

where ε is a parameter much smaller than a10,
(ε � a10). That is, a1(t) is a periodic function
with frequency ν and amplitude ε. In this way,
the dynamics of the problem is described by this
Hamiltonian

H =
1

2
(a10G

2
x + a2G

2
y + a3G

2
z)

− (a10Gxhx + a2Gyhy + a3Gzhz)

+

(
1

2
G2
x −Gxhx

)
ε cos νt , (14)

where a2 = 1/s22 and a3 = 1/s33.
Note that in the Hamiltonian (14) of the per-

turbed problem, there are two limit cases in which
the problem is integrable: for ν = 0, and for ν →∞.

For ν → ∞, the problem is integrable be-
cause in this limit, the period T of the perturbation
(εG2

x cos νt)/2 is zero, T = 0. This means that, al-
though a1(t) is changing, it spends no time, T = 0,
to make a complete oscillation. So, in this case the
perturbation takes the constant value εG2

x/2, that
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b1 b2

b3

Fig. 2. The phase flow for the triaxial rigid body in free
rotation (a10 < a2 < a3).

is, the perturbation value for t = 0. Therefore, in
the limit ν →∞, the perturbed problem reduces to
the integrable case of a quadratic Hamiltonian. On
the other hand, in the case ν = 0, the problem is
also integrable. In this case, the perturbation is not
a function of time, but a constant εG2

x/2. So, for
ν = 0, the perturbed problem also coincides with
the integrable case of a quadratic Hamiltonian.

3. Rotors at Relative Rest.
Chaotic Motion

The natural starting point in the study of the dy-
namics of the gyrostat described by the Hamilto-
nian (14) is to consider the three rotors at rel-
ative rest with respect to the platform, that is,
hx = hy = hz = 0. Under these conditions, the
Hamiltonian of the system is

H =
1

2
(a10G

2
x + a2G

2
y + a3G

2
z) +

1

2
G2
xε cos νt

= H0 + εV (Gx, Gy, Gz ; t) (15)

where we will suppose that a1(t) < a2 < a3, since
A(t) > B > C.

Therefore, the Hamiltonian of the gyrostat
may be expressed as a sum of an integrable
term, H0, plus a time-periodically perturbation,
εV (Gx, Gy, Gz; t), with period T = 2π/ν. The in-
tegrable term, H0, is that of a triaxial rigid body
with moments of inertia 1/a10 > 1/a2 > 1/a3 in
free motion.

b1 b2

b3

Fig. 3. Poincaré surface of section for a10 = 0.1, a2 = 0.2,
a3 = 0.3, ε = 0.005 and ν = 0.1.

We will apply the Melnikov method in or-
der to prove that the problem shows chaotic be-
havior. For the application of this method it is
necessary to know previously the solutions of the
homo/heteroclinic trajectories of the unperturbed
Hamiltonian H0.

Taking into account Eqs. (9) it is easy to obtain
the well-known Eulerian equations of motion of the
free rigid body.

Ġx = {Gx; H0} = (a3 − a2)Gy Gz ,

Ġy = {Gy; H0} = (a10 − a3)GxGz ,

Ġz = {Gz; H0} = (a2 − a10)GxGy . (16)

From these equations, it is also easy to deduce
that there are six equilibria located at the intersec-
tions of the body frame axes with the sphere S2.
The two equilibria located at the axis b2, of inter-
mediate moment of inertia are unstable equilibria,
whereas the other four equilibria are stable. The
two unstable equilibria, denoted by E1 and E2, are
connected by four heteroclinic trajectories. These
orbits are the separatrices of the phase space. Fig-
ure 2 shows the main features of the phase flow for
the triaxial rigid body in free rotation.

The four heteroclinic orbits are obtained for the
Hamiltonian value a2/2, the Hamiltonian value at
the unstable equilibria. These separatrices divide
the phase space into two different classes of motion:
circulations about the axis b1 of maximal moment
of inertia when a10 < 2H0 < a2; and circulations
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about the axis b3 of minimal moment of inertia
when a2 < 2H0 < a3.

The explicit expressions of the different types
of trajectories are obtained in terms of elliptic and
hyperbolic functions, from Eqs. (16) by means of
the two integrals H0 and G (for more details see
[Deprit & Elipe, 1993]).

3.1. Circulations about the axis
of maximal moment of inertia

In this case a10 < 2H0 < a2 and the solutions are

Gx = Γ1dn(n1t, k1) ,

Gy = Γ2sn(n1t, k1) ,

Gz = Γ3cn(n1t, k1) ,

(17)

where

Γ1 =

√
a3 − 2H0

a3 − a10
, Γ2 =

√
2H0 − a10

a2 − a10
,

Γ3 =

√
2H0 − a10

a3 − a10

and

n1 =
√

(a2 − a10)(a3 − 2H0) ,

k2
1 =

(2H0 − a10)(a3 − a2)

(a2 − a10)(a3 − 2H0)
.

3.2. Circulations about the axis
of minimal moment of inertia

Now, a2 < 2H0 < a3 and the solutions are

Gx = Γ1cn(n3t, k3), Gy = γ2sn(n3t, k3) ,

Gz = Γ3dn(n3t, k3)
(18)

where

γ2 =

√
a3 − 2H0

a3 − a2
, n3 =

√
(2H0 − a10)(a3 − a2)

k3 =
1

k1
.

3.3. Asymptotic orbits
(heteroclinic trajectories)

When 2H0 = a2, the four different asymptotic solu-
tions, corresponding to the heteroclinic trajectories,
are

Gx = (−1)[(k−1)/2]

√
a3 − a2

a3 − a10
sech(n2t) ,

Gy = (−1)k−1tanh(n2t) ,

Gz = (−1)[k/2]

√
a2 − a10

a3 − a10
sech(n2t)

k = 1, 2, 3, 4 . (19)

where

n2 =
√

(a2 − a10)(a3 − a2) (20)

and [b] stands for the integer part of b.
The four heteroclinic trajectories form the sta-

ble manifolds Ws(E1), Ws(E2) and the unstable
ones Wu(E1), Wu(E2) corresponding to the two un-
stable equilibria. In the unperturbed problem the
stable manifold of E1 and the unstable manifold
of E2 join smoothly together, and vice versa, so
it holds that Ws(E1) = Wu(E2) and Wu(E1) =
Ws(E2). But if there exists a perturbation, these
manifolds are not forced to coincide and it is pos-
sible that they intersect transversaly leading to an
infinite number of new heteroclinic points. Then,
a heteroclinic tangle is generated. In this case,
because of the perturbation, the motion of the

gyrostat near the separatrices becomes chaotic in
the sense that the system exhibits Smale’s horse-
shoes and a stochastic layer appears near the sepa-
ratrices. Inside this chaotic layer small isolated re-
gions of regular motion with periodic orbits can also
appear.

The existence of heteroclinic intersections in
the perturbed problem, and so the existence of
chaotic motion, may be proved, at first order, by
means of the Melnikov method [Guckenheimer &
Holmes, 1983]. The Melnikov function, M(t0), for
the Hamiltonian (15) is given by

M(t0) =

∫ ∞
−∞
{H0(Gi(t− t0)); εV (Gi(t− t0), t)} dt

i = x, y, z .
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where Gi are precisely the solutions of the unper-
turbed heteroclinic orbits (19). The Poisson bracket
{H0; εV } can be evaluated taking into account the
structural identities (9) and we obtain

{H0; εV } = (a2 − a3)εGxGyGz cos νt . (21)

So, the Melnikov function results in

M(t0) = ε

∫ ∞
−∞

(a2 − a3)GxGyGz cos νt dt . (22)

By substitution of (19) into (22) we get

M(t0)

= ε
(a2 − a3)n2

(a3 − a10)

∫ ∞
−∞

sinh[n2(t− t0)]

cosh3[n2(t− t0)]
cos νt dt .

(23)

Integrating by parts we arrive at an integral that is
tabulated by Gradshteyn and Ryzhik [1980, p. 505]
and it finally results in

M(t0) =
(a3 − a2)επν2

2(a3 − a10)n2
2 sinh

(
πν

2n2

) sin νt0

= ∆H(ε, ν) sin νt0 . (24)

We can conclude from (24) that the Melnikov
function, M(t0), has simple zeroes for νt0 = kπ
with k = 0, 1, 2, . . . Therefore the perturbation pro-
duces heteroclinic intersections between the stable
and unstable manifolds of the equilibria E1 and E2.
So, the perturbation generates a layer of chaotic
motion surrounding the unperturbed separatrices.

It is important to notice that a formula similar
to (24) is obtained if any other moment of inertia of
the platform (minimal or intermediate one) is sup-
posed to be variable with time.

4. Estimation of the Width
of the Stochastic Layer

In the previous section, we have seen that the per-
turbed system shows chaotic behavior whatever mo-
ment of inertia varies with time, in the sense that
it appears as a layer of stochastic motion near the
separatrices of the unperturbed problem. It is im-
portant to estimate the width of this layer in order
to know the amount of apparent chaotic motion of
the perturbed gyrostat and also the set of initial

conditions with nonregular behavior. In this sec-
tion we focus on the case in which only the maximal
moment of inertia A(t) is a function of time. The
factor ∆H that appears in Eq. (24)

∆H(ε, ν) =
(a3 − a2)επν2

2(a3 − a10)n2
2 sinh

(
πν

2n2

) , (25)

give us an analytical estimation [Zaslavsky et al.,
1991] of the Hamiltonian value in the border of the
stochastic layer. According to Eq. (25) the width
of the layer, in terms of the Hamiltonian value, is a
function of the amplitude ε and frequency ν of the
perturbation. Note, that fixed the frequency ν the
width of the layer is a linear function of the ampli-
tude ε and the bigger ε is the wider is the layer. On
the other hand, fixed the amplitude ε, the width of
the layer grows, as a function of ν, until it reaches
a maximum value and then decreases asymptoti-
cally to zero. This behavior is plotted in Fig. 4 for
a10 = 0.1, a2 = 0.2 and a3 = 0.3, and for (a) a
fixed frequency ν = 0.3 and (b) a fixed amplitude
ε = 0.01.

The chaotic behavior of the gyrostat near
the unperturbed separatrices may be observed by
means of a Poincaré surface of section. The surface
consists of time sections t = cte.(mod T ) of the
fourth-dimensional (Gx, Gy, Gz , t) extended phase
space. Figure 3 shows the presence of a stochastic
layer around the unperturbed separatrices. As it
can be seen in this figure, the regular trajectories
appear as closed curves, whereas chaotic ones ap-
pears like a cloud of points around the separatrices
of the unperturbed problem.

To check the validity of the analytical estima-
tion (25) of the width of the stochastic layer, a nu-
merical estimation is needed. The basis in order
to design the algorithm to estimate numerically the
width of the layer is the following reasoning on the
phase flow on S2. Note that in the unperturbed
problem, all the trajectories passing through the
meridian Gx = 0, lie either on the northern hemi-
sphere (Gz > 0) or on the southern one (Gz < 0).
On the other hand, in the perturbed problem, the
chaotic trajectories cover the stochastic layer, so
that for these orbits the component Gz takes both
positive and negative values. Therefore, we can con-
sider as regular a trajectory which lies always in
the same hemisphere, whereas we may consider as
chaotic a trajectory crossing the equator Gz = 0.

Taking into account this consideration, for
given values of ε and ν, we have swept the meridian
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Fig. 4. Evolution of the analytical estimation ∆H(ε, ν) of the width of the stochastic layer. (a) As a function of the amplitude
ε, for ν = 0.3. (b) As a function of the frequency ν, for ε = 0.01. In both cases a10 = 0.1, a2 = 0.2 and a3 = 0.3.
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Fig. 5. Comparative evolution of the estimations of the width of the stochastic layer as a function of the amplitude ε for two
different fixed frequencies: (a) ν = 0.04, and (b) ν = 0.15. In both cases a10 = 0.1, a2 = 0.2 and a3 = 0.3.

Gx = 0 from Gz = 1 to Gz = 0 looking for the
initial conditions of the first orbit passing through
the equator to the southern hemisphere. Each orbit
has been obtained by numerical integration of the
equations of the motion

Ġx = {Gx; H} = (a3 − a2)Gy Gz

Ġy = {Gx; H} = (a10 − a3 + ε cos νt)GxGz

Ġz = {Gx; H} = (a2 − a10 − ε cos νt)GxGy .

using a Runge–Kutta algorithm of fifth order with
fixed step [Lambert, 1976, pp. 121–123], checking
that the norm of the total angular momentum is
“constant”, that is, G2

x + G2
y + G2

z = 1. The orbits
have been propagated 1000 periods of the pertur-
bation and the initial condition of the first chaotic
orbit has been calculated with a precision of 10−3.
This orbit determines the border of the layer and
it allows us to calculate the width of it. With the
initial conditions (0, Gy, Gz) of this limit trajec-

tory we can calculate the Hamiltonian value Hlim of
the perturbed problem at the initial instant t = 0,
corresponding to the northern border of the layer
at the meridian Gx = 0.

At this point, it is interesting to compare the
analytical (25) and the numerical estimations of the
width of the layer as functions of the amplitude ε
and the frequency ν of the perturbation. Figures 5
and 6 show in a comparative way, the analytical
and the numerical estimations of the value Hlim at
the northern border of the layer. We have calcu-
lated the analytical estimation of Hlim as Hlim =
Hs+∆H, whereHs = a2/2 is the Hamiltonian value
at the unperturbed separatrices, and ∆H is the an-
alytical estimation (25) of the width of the layer.
In these three plots we have considered a gyrostat
with a10 = 0.1, a2 = 0.2 and a3 = 0.3. Figure 5
presents the evolution of both estimations ofHlim as
a function of the amplitude ε for two different con-
stant frequencies. The values of ε vary from 0.001
to 0.01 with steps of 0.001. On the other hand,
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Fig. 6. Comparative evolution of the estimations of the
width of the stochastic layer as a function of the frequency ν
for a fixed amplitude ε = 0.01, and for a10 = 0.1, a2 = 0.2
and a3 = 0.3.

Fig. 6 shows the comparative evolution of the esti-
mations of Hlim as functions of ν, for a fixed ampli-
tude value ε = 0.01. The frequency ν, varies from
0.01 to 0.7 with steps of 0.01.

As it can be seen in Fig. 5(a) for a low fixed
value of the frequency ν = 0.04, there exists a great
agreement between the analytical and numerical es-
timations. Thus, the predicted behavior of Eq. (25)
is confirmed by the numerical estimation: For a
fixed frequency, the width of the layer grows lin-
early with the amplitude ε of the perturbation. In
Fig. 5(b) it can be observed that for an intermediate
frequency value ν = 0.15, the numerical estimation
is very close to the analytical one for small values
of the amplitude ε ≤ 0.004. Nevertheless, between

Fig. 7. Evolution of the phase space of the unperturbed gyrostat as hz increases. In gray, the region of initial conditions
with a final nutation angle θ < 20◦. a10 = 0.1, a2 = 0.2 and a3 = 0.3.
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the values ε = 0.004 and ε = 0.005, a sharp increase
of the numerical estimation of Hlim stands out, so
that, for values ε ≥ 0.005, the numerical estimation
is always rather greater than the analytical one.

As we will explain in Sec. 6, these abrupt in-
creases of the numerical estimations, not reflected
in the analytical estimation, are due to the fact that
the stochastic layer engulfs a nonlinear resonance.

Figure 6 reveals the two integrable limits of the
perturbed problem: for ν = 0, and for ν → ∞.
It may be observed that for high values of the fre-
quency, as ν grows, the Hlim value tends asymptot-
ically to zero, that is, the stochastic layer tends to
disappear in the integrable limit for ν →∞. On the
other hand, for frequency values close to zero, as ν
decreases the Hlim value tends to zero, and so the
layer also tends to disappear in the other integrable
limit for ν = 0.

Figure 6 also shows some abrupt increases in
the evolution of the numerical estimation of Hlim,
e.g. for ν = 0.18 or ν = 0.37, resulting in great
differences between both estimations for intermedi-
ate frequency values. The explanation of these dif-
ferences is essentially the same that we have given
before. For certain values of ν, there are nonlinear
resonances near the border of the stochastic layer,
either inside of it or outside of it. The size of these
resonances depends strongly on the frequency ν, in-
creasing, decreasing or even disappearing suddenly
as ν varies. This fact affects the evolution of the
border of the layer producing those sharp changes
of the numerical estimation observed in Figs. 5(b)
and 6.

5. The Effect of the Perturbation
in the Reorientation Process

As we have indicated above, the study of the
gyrostat dynamics has an important application in
the attitude control and the rotation stabilization
of the spacecrafts. Almost all spacecrafts need to
maintain a constant orientation with respect to an
inertial space frame S{Os1s2s3}, because of point-
ing requirements for antennas, cameras or solar-
panels. Among the various techniques used for this
requirement, the simplest one is based on the prin-
ciple of conservation of the total angular momen-
tum G of the vehicle. If the spacecraft has suffi-
ciently large total angular momentum and it is free
of external torques, or if they are very small, the
angular momentum vector G of the system will re-
main essentially constant both in magnitude and
direction.

It is important to point out that the noncanon-
ical formalism we use is very useful in order to de-
scribe this process, as several authors [Hubert, 1980;
Krishnaprasad, 1985; Hall, 1995a] have stated it be-
fore. Moreover, this formulation allows to explain in
a simple way, more complex processes like momen-
tum transfer [Hall, 1996, 1997] or resonance cap-
tures [Hall, 1995b], that are directly related to the
reorientation process.

For a free gyrostat, the total angular momen-
tum G is constant in the space frame S, but in this
frame the gyrostat orientation can change with time
due to precessional and nutational motions around
the fixed direction of G. This variation of the at-
titude is reflected by the trajectories of the total
angular momentum vector G in the spherical phase
space constructed in the body frame S (see Fig. 2
for rotor at rest), as in that frame the gyrostat ori-
entation is fixed and the vector G varies with time.

As it is well known, there are no precessional
motions when the direction of the total angular ve-
locity coincides with the direction of G, it only hap-
pens when any of the principal axes of the gyrostat
coincides with the fixed direction of G. In this situ-
ation, the gyrostat maintains a constant orientation
with respect to the space frame S. So, if the gy-
rostat has initially a precessional motion, it would
be interesting to reorientate the gyrostat in such a
way that one of its principal axes can be parallel
to G. This reorientation or spin-up process can be
achieved by means of relative rotational motions of
rotors with respect to the platform. These rotors
are activated by internal forces.

In this section we analyze the effect of the per-
turbation in the reorientation process. We consider
a free gyrostat with a rotor in relative motion. The
axis of this rotor coincides with the principal axis
b3 of the gyrostat. We have modeled the inter-
nal forces that move the rotor supposing the rel-
ative angular momentum of the rotor hz is a lin-
ear function of time, with a slow variation, that is,
dhz/dt = ε � 1. We have chosen the space frame
S in such a way that the s3-axis coincides with the
fixed direction of G, and we want that the final ori-
entation of the gyrostat is that of the principal axis
b3 to be parallel to G. With this choice of the space
frame S, the relation between the Euler angles and
the components of G in the body frame B takes the
form 

Gx = G sinψ sin θ ,

Gy = G cosψ sin θ ,

Gz = G cos θ .
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Fig. 8. Time evolution of the nutation angle as hz increases from 0 to 0.8 and for initial conditions θ0 = 100◦ and ψ0 = 90◦.
a10 = 0.1, a2 = 0.2 and a3 = 0.3.

Therefore, when the gyrostat has the orientation we
want, G = Gz, or what is the same, θ = 0.

Figure 7 shows the evolution of the phase space
of the unperturbed gyrostat in the body frame B,
as the relative angular momentum hz of the rotor
increases. In this figure, it appears in gray the set
of initial conditions for which the rotor spin reori-
entates the gyrostat (a10 = 0.1, a2 = 0.2, a3 = 0.3)
with a final nutation angle θf < 20◦. It can be seen
in the way this gray area travels from the princi-
pal axis b1 to b3 as hz increases from 0 to a final
value of 0.8. In this evolution we can also observe
that after two different bifurcations, there are no
homo/heteroclinic trajectories in the phase space
of the unperturbed system.

On the other hand, the time evolution of the
nutation angle θ corresponding to one trajectory
for which the rotor spin produces the correct reori-
entation, θf < 20◦, of the unperturbed gyrostat, is
presented in Fig. 8. The initial conditions of this
trajectory are θ0 = 100◦ and ψ0 = 90◦. The two
vertical dashed lines represent the instants when
the rotor is turned on and when it reaches the value
hz max = 0.8 and its acceleration is stopped. This
figure reflects how the nutation angle decreases from
a mean initial value around 90◦ to a mean final value
around 17◦. So, in this way the precessional and
nutational motions of the gyrostats can be strongly
decreased.

In order to analyze the effect of the perturba-
tion in the reorientation process by rotor spin, we
have simulated the maneuver by means of numer-
ical integration of the equations of motion of the

perturbed system while the relative angular mo-
mentum hz increases linearly from 0 to a maximum
value 0.8. The final goal is to study the influence
of the frequency ν and amplitude ε of the pertur-
bation in the change of these areas of suitable ini-
tial conditions for a correct reorientation. So, we
have made different numerical simulations varying
the frequency ν for a fixed amplitude ε and vice
versa. For each pair of values (ε, ν) we have cre-
ated a map with coordinates of initial conditions
(ψ0, θ0) from 50◦ to 130◦ with steps of 1◦. At every
point of these maps we have indicated the mean fi-
nal nutation angle θf of the perturbed gyrostat after
the rotor has reached its maximum relative angular
momentum hz max = 0.8.

As it can be seen in Fig. 7, the suitable initial
conditions for the correct reorientation (b3 approx-
imately parallel to G) in the unperturbed system
are situated in two symmetric approximately circu-
lar areas around the axis b1. On the other hand,
Fig. 9 shows six maps corresponding to a perturbed
gyrostat for six different increasing values of ampli-
tude ε and a fixed frequency ν = 0.1. In the x–axis
is represented the initial nutation angle θ0 in de-
grees, and in the y-axis the initial spin angle ψ0

also in degrees. The continued closed line indicates
the border of the area of suitable initial conditions
for a correct orientation with θf < 30◦ when the
gyrostat is unperturbed. The gray regions repre-
sent the suitable initial conditions for that correct
reorientation for the perturbed gyrostat. In this fig-
ure, it can be observed how the region of suitable
initial conditions is progressively broken up as the
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Fig. 9. Evolution of the set of suitable initial conditions for a reorientation with θf < 30◦, as the amplitude ε increases for

fixed frequency ν = 0.1. a10 = 0.1, a2 = 0.2 and a3 = 0.3.

amplitude ε increases. For ε = 0.001, the area of
suitable initial conditions is almost identical to the
corresponding one in the unperturbed system. Nev-
ertheless, for ε = 0.01, there is no well-defined area
of suitable initial conditions, but they are spread in
an almost uniform way over the whole set of ini-
tial conditions (ψ0, θ0), that is, they are spread in
a random way. This means that for relative great
values of the amplitude ε the reorientation process
of the gyrostat turns to be very chaotic.

Figure 10 presents other six maps of final nu-
tation angle θf . These six maps correspond to a
fixed amplitude ε = 0.01 and six increasing values
of the frequency ν. In this figure it can be seen
that for great or small values of frequency, the re-
gion of suitable initial conditions for a correct reori-
entation (θf < 30◦) almost coincides with the cor-
responding area for the unperturbed gyrostat. On
the other hand, for intermediate values of frequency,
e.g. ν = 0.1, those suitable initial conditions are not
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Fig. 10. Evolution of the set of suitable initial conditions for a reorientation with θf < 30◦, as the frequency ν increases for
fixed amplitude ε = 0.01. a10 = 0.1, a2 = 0.2 and a3 = 0.3.

grouped in a defined area, but they are spread at
random over the whole map (ψ0, θ0).

Thus, from Figs. 9 and 10 we can conclude that
the main effect of the perturbation in the gyrostat
reorientation is that, for great amplitudes or inter-
mediate frequencies, the reorientation process turns
highly random and chaotic.

5.1. The measure of the amount
of apparent chaotic motion
in the reorientation process

The discussion above leads to the definition of
a dimensionless parameter that give us informa-
tion about the amount of randomness in the re-
orientation process in terms of the amplitude ε
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(a) (b)

Fig. 11. The parameter q as a function of (a) the amplitude ε (ν = 0.3) (b) the frequency ν (ε = 0.01). For the two cases
a10 = 0.1, a2 = 0.2 and a3 = 0.3 and hz max = 0.8.

(a) (b)

Fig. 12. The graphs of q and 100 ∆H. (a) As a function of the amplitude ε for a fixed frequency ν = 0.3. (b) As a function
of the frequency ν for a fixed amplitude ε = 0.01. For the two cases a10 = 0.1, a2 = 0.2, a3 = 0.3 and hz max = 0.8.

and the frequency ν. Let us define this parameter,
denoted by q, as

q = 1− ∆(ν, ε)

∆(ν, 0)

where ∆(ν, 0) is the area of initial conditions such
that θf < 30◦ for the unperturbed problem and
∆(ν, ε) is the area of initial conditions with θf <
30◦ inside ∆(ν, 0) for the perturbed problem.

From this definition, we have that as q → 1
the reorientation process turns to be highly ran-
dom and the area of initial conditions for a desired
reorientation with θf < 30◦ reduces to a collection
of points distributed at random in phase space. On
the other hand, when q → 0 the reorientation pro-
cess is well described by the unperturbed problem
provided that the areas of ideal initial conditions
almost coincide. Roughly speaking, this parameter
measures the probability of two close initial condi-
tions to finish close the reorientation process and it
can be considered as a measure of the amount of ap-
parent chaotic motion of the reorientation process.

Moreover, Fig. 9 indicates, for a fixed frequency,
that the bigger the amplitude ε the greater the pa-
rameter q, suggesting a possible linear dependence
of ε. On the other hand, when ε is fixed, Fig. 10
indicates that for low frequencies the parameter q
is close to zero increasing its value to reach a max-
imum and to decrease asymptotically to zero, ac-
cording to the two integrable limits for ν = 0 and
ν →∞. This behavior is observed for the width of
the stochastic layer when the rotors are at rest. In
fact, the width of the stochastic layer with the ro-
tors at rest is no more than another indicator of the
amount of apparent chaotic motion of the system,
and it is not surprising to be connected with the
parameter q provided that the wider the stochastic
layer is, the more easily the reorientation process
will become random.

In order to show the connection between these
two measures of the amount of apparent chaotic mo-
tion, we proceed to plot the parameter q as a func-
tion of the amplitude ε and the frequency ν. Fig-
ure 11(a) indicates, for a fixed frequency ν = 0.3,



Reorientation Process of a Dual-Spin Spacecraft 1013

Fig. 13. The parameter q and 100 ∆H as a function of the
amplitude ε for a fixed frequency ν = 0.1 being a10 = 0.1,
a2 = 0.2, a3 = 0.3 and hz max = 0.8.

that q behaves as a linear function, as we expected.
On the other hand, Fig. 11(b) shows, for a fixed
amplitude ε = 0.01, that the parameter q increases
from zero until it reaches a maximum to decrease
asymptotically to zero.

The behavior observed in Fig. 11 is the same
observed in Fig. 4 corresponding to the graph of
the width of the stochastic layer as a function of
the amplitude ε and the frequency ν. To emphasize
this point we plot in Fig. 12 both the graph of pa-
rameter q and 100 ∆H, a hundred times the width
of the stochastic layer.

It is clear that there is a good agreement when
both parameters q and 100 ∆H are considered as
a function of the amplitude ε for the fixed value
of the frequency ν = 0.3. On the contrary, when

they are plotted as a function of the frequency ν,
for a fixed value of ε = 0.01, only good agreement is
observed for low and high frequencies, that is, near
the two integrable limits and it is in an intermediate
range of frequencies where we observe strong devia-
tions. Moreover, these deviations are also observed
plotting q as a function of the amplitude ε in the
intermediate range of frequencies as it is depicted
in Fig. 13 for ν = 0.1.

It is worth to note that the same kind of de-
viations were observed between the theoretical and
numerical estimations of the width of the stochas-
tic layer. These deviations can be explained taking
into account the effect of nonlinear resonances. To
begin with, we show a graphical description of this
phenomenon where we notice the sudden increment
of the stochastic layer when a resonant orbit is en-
gulfed. Figure 14(a) shows a 10:1 resonant orbit
near the border of the stochastic layer, just before
it is absorbed. In Fig. 14(b) we appreciate the ab-
sorption of the resonant orbit and the sudden incre-
ment of the width of the stochastic layer due to the
width of the resonant configuration, the resonant
bandwidth. This abrupt increment for the values
of Fig. 14 matches with the increment detected nu-
merically and depicted in Fig. 5(b).

As we can see, the abrupt changes in the mea-
sure of the amount of apparent chaotic motion of
the system are originated for the presence of reso-
nant orbits in the vicinity of the stochastic layer.
Our next step is, thus, to establish the existence of

(a) (b)

Fig. 14. Absorption of a 10:1 resonant orbit for increasing ε and a fixed frequency ν = 0.5 being a10 = 0.1, a2 = 0.2 and
a3 = 0.3. (a) ε = 0.008. (b) ε = 0.014.
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Fig. 15. Overlapping of the primary stochastic layer and
the 2:1 resonant band for ε = 0.01, a10 = 0.1, a2 = 0.2 and
a3 = 0.3.

resonant orbits and estimate the width of the reso-
nant band.

6. The Effect of Nonlinear Resonances

Nonlinear resonances are an essential property of
nonlinear dynamical systems and it characterizes
the response to an external perturbation. The ef-
fect of the perturbation is well understood if the
perturbation is developed as a double Fourier se-
ries [Chirikov, 1979; Zaslavsky et al., 1991]. In fact,
if ω(I) is the frequency of the unperturbed system
and ν the frequency of the perturbation, whenever
the resonance condition

mω(I)− nν = 0

is satisfied, m hyperbolic critical points connected
by heteroclinic orbits that encircle m elliptic points
will appear in a phase space rotating with fre-
quency nν. Besides, in the vicinity of the for-
mer heteroclinic orbits, resonance stochastic layers
may appear as a consequence of the splitting of the
separatrices.

This universal phenomenon will allow us to
explain the deviations observed between the pa-
rameter q and the scaled Melnikov’s integral and,
at the same time, the deviations between the nu-
merical and theoretical estimations of the width of
the stochastic layer. In this way, we will use the
Melnikov’s subharmonic analysis (for details see,
e.g. [Guckenheimer & Holmes, 1983]). Let us con-
sider a system

ẋ = f(x) + εg(x, t) (26)

where g is T -periodic in t and for ε = 0 the sys-
tem is Hamiltonian, possesses a homoclinic orbit

q0(t), to a hyperbolic point p0 and the interior of
Γ0 = {q0(t)‖t ∈ R}⋃{p0} is filled with a continuous
family of periodic orbits qα(t), α ∈ (−1, 0). Under
these assumptions, we define the subharmonic Mel-
nikov function as

Mm/n(t0) = ε

∫ mT0

0
{f(qα(t)); g(qα(t), t+ t0)} dt ,

(27)

where qα(t) is a periodic orbit of period Tα =
mT/n. Then, the following result holds

Theorem 1. If Mm/n(t0) has simple zeroes and is
independent of ε, then for ε sufficiently small (26 )
has a subharmonic orbit of period mT . Besides, if
Mm/1(t0) = Mm(t0), then

lim
m−→∞

Mm(t0) = M(t0) ,

where M(t0) is the Melnikov function of (26 ).

6.1. Subharmonic analysis

The previous result is the tool we need to prove the
existence of subharmonic resonant orbits for a per-
turbed gyrostat with no spinning rotors, that is, for
the system

H =
1

2
(a1g

2
1 + a2g

2
2 + a3g

2
3) +

1

2
εg2

1 cos(νt) . (28)

First of all, we have to derive the expression of the
frequency of the gyrostat when it behaves as a rigid
body, that is, for the unperturbed system (ε = 0).
From Eqs. (17) and (18) we observe that Gx, Gy
and Gz are periodic functions with period

T =
n1

F (π/2, k1)
, H <

a2

2

T =
n3

F (π/2, 1/k1)
, H >

a2

2

So, we define a frequency ω = 2π/T , which results
in the frequency of the angular variable when the
Hamiltonian is expressed in action angle variables.
Indeed, let us introduce a pair of conjugate canon-
ical variables (L, `), similar to Serret–Andoyer
[Deprit, 1967; Deprit & Elipe, 1993], which are
cylindrical coordinates of vector G

Gx =
√

1− L2 cos `, Gy = L ,

Gz =
√

1− L2 sin ` .
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By inversion, L and ` are periodic functions with
the same period as Gx, Gy and Gz. Thus, the ac-
tion is given by

I =
1

2π

∫ T

0
L(t) ˙̀(t) dt

and then,

ω =
∂H
∂I

=
1

∂I/∂H
where

∂I

∂H

=
1

2π

[
∂T

∂HL(T ) ˙̀(t)+

∫ T

0

∂L

∂H
˙̀dt+

∫ T

0
L
∂ ˙̀

∂H dt

]
.

Taking into account the initial condition L(0) = 0
we obtain

ω =
2π

T
.

Therefore, we have a m : n nonlinear resonance
when

mT0

n
=

4K(k1)

n1
, H0 <

a2

2

mT0

n
=

4K(1/k1)

n3
, H0 >

a2

2

(29)

where T0 = 2π/ν.
From the above resonance condition (29) and

for ε 6= 0 we can establish the following theorem.

Theorem 2. The system (28 ) has resonant sub-
harmonic orbits of period mT0/n, for even m and
n = 1.

Proof. The proof is quite straightforward by com-
puting the subharmonic Melnikov function and ap-
plying Theorem 1.

For the case H0 < a2/2, we obtain

Mm/n(t0) =

∫ mT0

0
(a2 − a3)εΓ1Γ2Γ3sn(n1t, k1)cn(n1t, k1)dn(n1t, k1) cos ν(t+ t0) dt .

Basic considerations about the parity of the functions involved in the integral yields after expanding
cos ν(t+ t0) to

Mm/n(t0) = (a3 − a2)εΓ1Γ2Γ3

∫ mT0

0
sn(n1t, k1)cn(n1t, k1)dn(n1t, k1) sin νt sin νt0 dt .

Introducing a new variable z = n1t and integrating by parts

u = sin
mπz

2nK
, dv = sn(z, k1)cn(z, k1)dn(z, k1)dz

we obtain

Mm/n(t0) =
(a3 − a2)mπεΓ1Γ2Γ3

4nn1K
sin νt0

∫ 4nK

0
sn2(z, k1) cos

mπz

2nK
dz .

From the Fourier series of the function sn2(z, k1)
[Abad et al., 1994; Vallejo, 1995]

sn2(z, k1) =
E −K
k2

1K
− 2π2

k2
1K

2

∞∑
m=1

mqm

1− q2m
cos

mπz

K
,

the subharmonic integral vanishes unless n = 1 and
even m, that is to say, for m = 2m, m ∈ N. Thus,
we obtain

Mm(t0)

=
(a2 − a3)mπεΓ1Γ2Γ3

2n1K
sin νt0

2π2

k2
1K

mqm

1− q2m

where q = e−πK
′/K and then

Mm(t0) =
(a2 − a3)m2π3εΓ1Γ2Γ3

n1k
2
1K

2 sinh
mπK ′

K

sin νt0 .

Finally, from the resonance condition (29), we have

Mm(t0) =
(a2 − a3)πεν2Γ1Γ2Γ3

n3
1k

2
1 sinh

K ′ν

n1

sin νt0

which possesses simple zeroes and it is independent
of ε for even m. Thus, by Theorem 1, the system
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(28) has subharmonic orbits with period mT0 for
even m.

Besides, taking into account that

lim
m−→∞

2H = a2 , lim
m−→∞

K ′ =
π

2
,

lim
m−→∞

k1 = 1

we obtain that

lim
m−→∞

Mm(t0) = 2M(t0) =
(a3 − a2)πεν2

(a3 − a1)n2
2 sinh

πν

2n2

.

Note that this result is the same in Theorem 1 but
is a factor 2. This is because the Melnikov subhar-
monic integral has been calculated for one of the
heteroclinic orbits, but a periodic orbit has a pair
of heteroclinic orbits as limit. �

A similar conclusion is obtained for H0 > a2/2.
In this case the subharmonic Melnikov integral is

Mm(t0) =
(a2 − a3)k2

1πν
2εΓ1γ2Γ3

n3
3 sinh

K ′ν

n3

sin νt0 .

6.2. The resonant bandwidth

Once established the existence of resonant orbits,
we focus on the theoretical estimation of the res-
onant bandwidth with the aim to see how the

primary stochastic layer shows an abrupt increment
when a resonant orbit is engulfed.

There exists a theoretical estimation for the res-
onant bandwidth for two degrees of freedom sys-
tems of the form [Perko, 1992]

Hε(p, q, θ, I) = F (p, q) +G(I) + εH1(q, p, θ, I)

where H0 = F (p, q) +G(I) is an integrable Hamil-
tonian, G′(I) > 0 for I > 0 and the (p, q) phase
plane contains hyperbolic saddles connected by ho-
moclinic or heteroclinic orbits filled with periodic
orbits. Although the system (28) does not match
this structure, it is possible to reduce it by means
of a canonical extension of the variables. Thus, we
obtain the following formula for the estimation of
the resonant bandwidth

∆Hm = 2ω(Hm)

√
Mm

max −Mm
min

πωm

where

ωm = −T0ω(Hm)
dω(Hm)

dH
being Hm the energy corresponding to the resonant
orbit, that is to say ω(Hm) = ν/m. Taking into
account that

dω(Hm)

dH =
n1[(a2 − 2H)K(k1)− (a2 − a1)E(k1)]

4(2H − a1)(a2 − 2H)K2(k1)

we yield, finally, to

∆Hm =

√√√√√√ 16(2H − a1)(a2 − 2H)(a2 − a3)K2(k1)ν4εΓ1Γ2Γ3

n4
1πmk

2
1 [(a2 − 2H)K(k1)− (a2 − a1)E(k1)] sinh

K ′ν

n1

, (30)

where Γ1, Γ2 and Γ3 are the coefficients appearing
in Eqs. (17).

The formula (30) will help us to show how the
stochastic layer and the resonant bands overlap.
Then, we can account this effect to improve the es-
timation of the width of the stochastic layer and, in
the last resort, to establish a better agreement be-
tween the two measures of the amount of apparent
chaotic motion of the system.

We take, as an example, the 2:1 resonance. In
this case we can calculate the values of the fre-
quency ν for which the stochastic layer and the res-
onant band overlap. Figure 15 shows the overlap
for a gyrostat with a10 = 0.1, a2 = 0.2, a3 = 0.3
and ε = 0.01. We can appreciate that the over-
lapping begins for ν ≈ 0.1 (for smaller values the

resonant band is entirely inside the stochastic layer)
and it finishes for ν ≈ 0.15 (for greater values the
resonant band is outside the stochastic layer disap-
pearing for ν great enough). Note that the forming
pick in Fig. 15 explains the abrupt increment for
both the numerical estimation of the width of the
stochastic layer and the parameter q in the range of
frequencies between 0.1 and 0.15 [compare Fig. 15
with Figs. 6 and 11(b)].

7. Conclusions

We have established that for the model of a gyrostat
with time-dependent moments of inertia chaotic
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behavior takes place when the rotors are at relative
rest. Moreover, analytical and numerical estima-
tions of the width of the stochastic layer have been
obtained, showing the discrepancies between both
of them. This chaotic behavior is responsible for
the randomness observed in the reorientation pro-
cess which is measured by means of a suitable pa-
rameter. Finally, we take into account the effect
of the nonlinear resonances to explain the sudden
increment of the amount of apparent chaotic mo-
tion of the system and the discrepancies observed
between the numerical and theoretical estimations
of the width of the stochastic layer.
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moleküle,” Z. Phys. 13, 343–350.

Krishnaprasad, P. S. [1985] “Lie–Poisson structures,
dual-spin spacecraft and asymptotic stability,” Non-
lin. Anal. Th. Meth. Appl. 9, 1011–1035.

Lambert, J. D. [1976] Computational Methods in Ordi-
nary Differential Equations (John Wiley, London).

Lanchares, V. & Elipe, A. [1995a] “Bifurcations in bi-
parametric quadratic potentials,” Chaos 5, 367–373.

Lanchares, V. & Elipe, A. [1995b] “Bifurcations in bi-
parametric quadratic potentials II,” Chaos 5, 531–535.
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