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This paper presents an analytical study of an axially symmetric perturbation of the Penning trap.
This system is modeled as a generalization of the three-dimengRiDaHenon—Heiles potential.

Thus, the same techniques which succeeded in the study of the 8BnHEleiles system apply

here. The departure Hamiltonian is three dimensional, although it possesses an axial symmetry. This
property, together with an averaging process, is used to reduce the original system to an integrable
one. We study the flow of the reduced Hamiltonian: equilibria, bifurcations, and stability, extracting
thereafter the relevant information about the dynamics of the original problen20@ American

Institute of Physics.[DOI: 10.1063/1.1449957

Since the beginning of the last century, the effect of the
application of external fields to atoms has played a cru-
cial role in the development of atomic physics. In particu-
lar, the application of static electric and magnetic fields to
create trapping phenomena is a remarkable feature.
When the trapped patrticle is an ion, lab experiments are
used to perform very precise spectroscopic measurements
and to construct accurate atomic clocks. In this paper we
focus on one of these experiments: the Penning trap,
which is described in Sec. |. Due to physical imperfec-
tions of the real experiment, some perturbations have to
be added to the original model. The system we consider is
a three-dimensional (3D) Hamiltonian composed of the
main part (a 3D harmonic oscillator with two equal fre-
qguencie9 plus a small perturbation composed of cubic
terms. Hence, the model is ideal to be considered from an
analytical point of view within the framework of pertur-
bation theory. Our goal is to perform a qualitative analy-
sis of the effect caused by the imperfections on the Pen-
ning trap. Taking into account the axial symmetry of the
problem and by means of an averaging process, we arrive
to a one degree of freedom system. A global analysis of
the phase flow of this reduced system indicates that one of
the control parameters involved in the design of the Pen-
ning trap serves to attenuate the nonlinear behavior.

I. INTRODUCTION

namical systems. Moreover, its experimental and theoretical
applicability runs over a wide and disparate fields, such as
dynamical astronomy, see Refs. 1, 2, 3, particle and plasma
physics, see Refs. 4, 5 or atomic physics, see Refs. 6, 7. In
particular, the Penning ion trafin Refs. 8—10 stands out
because it is one of the most useful models in atomic phys-
ics.

Briefly described, the Penning trap represents a three-
dimensional(3D) trapping of a charge or ion due to an axi-
ally symmetric(“ perfect ) quadrupole electric field plus a
static magnetic field. The perfect quadrupole electric poten-
tial is achieved by means of a set of three electrodes. One of
the electrodes, called the ring, is shaped like the inner surface
of a toroid. The other two are like hemispheres placed above
and below the ring. In this arrangement, the quadrupole po-
tential acts as a trap only in the direction of the axis between
the hemisphere@ve call this axisz), while the motion in the
radial plane(Oxy plang is unstable. The presence of the
magnetic field along the axis provides the complete trap-
ping and the motion of the ion remains harmonic.

In the above-mentioned ideal configuration, the Penning
trap is modeled by means of an unperturbed three-
dimensional harmonic oscillatqas can be seen in Refs. 8,
9). However, electrostatic field perturbations may arise from
imperfections in the physical design of the electrodes, as
well as from misalignments in the experimental setup, see
for instance Refs. 10-12. We can separate these perturba-
tions into harmonic and anharmonic perturbations. In par-

As is known, one of the most celebrated models in nondicular, the second group is the most interesting one because
linear physics has been the perturbed harmonic oscillatoit leads to nonlinear motion.
One reason is that its apparently deceptive simplicity hidesa As we will see in Sec. Il, from the point of view of
rich nonlinear behavior which converts this system to a trialnonlinear dynamics, the Hamiltonian describing the per-
field where it is possible to test the modern theories on dyturbed Penning trap can be considered as a very general ex-
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tension of the famous H®n—Heiles model, see Ref. 13.
Then, the real physical system studied in this paper is a good
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candidate to apply the nonlinear dynamics techniques. How- 1 m w§
ever, despite the plethora of works dealing with the two- H=ﬁ(p§+P§+ p§)+WL(Xpy—ypx)+§ Wf‘j
dimensional(2D) Henon—Heiles mode(see Ref. 7 for a re-
view), a general theoretical study of the perturbed Penning m

: . : e X(x2+y?) + =w3z? (1)
trap is almost an impossible task. Hence, in this paper we 2 Wz

only consider axially symmetric perturbations of the three- ) ]
dimensional Penning trap, which is also axially symmetric."herew, andw, are, respectively, the frequency induced by
In this way we take advantage of the symmetric character o€ quadrupole electric field and the Larmor frequenc%/, see
the 3D perturbed system to reduce it to one of dimensiorﬁe‘c'2 12. The trapping condition is achieved Wh”ﬁ_:WL
two. In particular, we will treat theextupolarperturbation. ~ — W2/2=0, which ensures a stable motion in the radial plane.

The study is performed from an analytical point of view. HOWever, the perfect Penning trap is not a realistic model
We consider the Hamiltonian representing the perturbed Perflue 0 the imperfections of the electric field. In this way, the
ning trap as a sum of an unperturbed part, the correspondir&o"em'al induced by the quadrupole electric field, that is
harmonic oscillator, and the perturbation associated with the w§
axially symmetric electrostatic imperfection. The basic idea V= T(ZZZ—XZ—yz),
is to transform this system into an equivalent integrable
Hamiltonian easier to be studied and containing the mains substituted, as in Refs. 12 and 15, by the multipole expan-
features of the original system. Thus, we can extract dynamision of the electrostatic potential. This expansion in spherical
cal information of the original system from the integrable coordinategr, 6, ¢) takes the form
Hamiltonian.

We construct this new system in two steps: first we apply V= 2 Vi,
an asymptotic transformation based on the Lie—Deprit 1=0
method, see Ref. 14. Fixing a value for the energy, the transyhere
formed, i.e., normalized, system is of two degrees of free-
dom. The reduced phase space for the isotropic harmonic
oscillator is thecomplex projectivespace CP. Second, we

reduce the axial symmetry and fix a value for the new formaIPk ing th ; ) h B .
integral, the third component of the angular momentum vec-! being the Legendre functions. The tel§=a,, defines

tor. After this process, the twice reduced system is of ondl€ Origin of the electrostatic potential. The linear tevn
degree of freedortintegrablé. Then we analyze the dynami- _ 210 Z+a,x gives rise to a constant force and can pe
cal features of this system, calculating its equilibria and threéjmpped' Henge, the Hfimlltqnlan of the perturbed Penning
types of bifurcation lines: saddle center, Hamiltonian Hopf,trap (in Cartesian coordinatpss

and Hamiltonian flip. An estimation of the error committed 1, 5, 0, m ., .
in the Lie transformation allows us to conclude that our ap- 7= 5= (P Py+pz) + Wil + S wi(x*+y?)
proach is valid in a neighborhood of the origin. This is rein-

forced numerically using some Poincamarfaces of section. N E Y

Therefore using KAM theory, we infer that the bifurcations =

of the relative equilibria correspond to bifurcations of 2D _

invariant tori and quasiperiodic orbits of the original Hamil- WhereL,=Xp,—ypy is thez component of the angular mo-

tonian. In the end all these mathematical considerations peFI‘e”t“m- o
In general, Hamiltonian (3) represents a three-

mit are to establish some relevant physical aspects of thgimensional dynamical system. However, by assuming

erturbed Penning trap. ; S ; ! :
b g Tap z-axial symmetry, it is possible to lower the dimension of the

The paper is structured as follows: in Sec. Il we formu- bl q.i ; ) Under thi
late the problem. In Sec. Il we describe and perform theProPIEM, as., 1S gconstantq motion. Under this assump-
on all &  terms in Eq.(3) with k#0 are zero. Now, this

reduction. Once the integrable Hamiltonian has been detef_'—| iiton function def wo-d f-freedom d .
mined, we study the normalized dynamics in Sec. IV. This 'amHon function delinés a two-degree-ot-lreedom dynami-

involves the determination of equilibria and bifurcations with ﬁil gystehm.hAt this point \t/_ve rakfz an?Vs (Wltf(1j a|,k=| 0 if .
the corresponding analysis of the stability. In Sec. V we de- ), which are, respectively, théperfec) quadrupole an

scribe the phase flow evolution. Finally, in Sec. VI we estab—the sextupole terms. The corresponding Hamiltonian yields

lish the connection between the reduced and the original sys- 1, L, m , .
tems and present the conclusions in Sec. VII. H= 5 (Pt Py p2) +wi L+ S WX +y®)

|
Vi= 2, &' Pl(cos)coske), @)

©)

a a
+ %)(Zzz—xz—yzH $2(222—3x2—3y2).

Il. THE PERTURBED PENNING TRAP )
The parametea, o has dimensions of mass over time square
The Hamiltonian for a single ion of massand chargel  so that it introduces a frequenay, in such a way thaa, g
trapped in goerfectPenning trap is given by =mw§/2. In order to simplify notation, we rewrite the sex-
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tupole parametegas, as az and we assume the mass
equal to one. With this new notation, Hamiltonied) takes
the form

H=3(pi+p5+p5) + WL+ sw(x2+y?) + 3wSz?
+a,32(22%— 3x%— 3y?), (5)

where we are assuming the trapping conditiwﬁ=wf
2
—w;/2=0.

Perturbed ion traps 89

useful for analytical purposes. This must be accompanied by
an estimate of the error made after truncation of the high-
order terms.

By assuming the sextupole paramesgrsmall, we can
consider the system defined by Hamiltoni@y as a weakly
perturbedw:w:w, harmonic oscillator. Whew,# w, in or-
der to still consider Eq(6) as a weakly perturbed isotropic
oscillator, we will assume&v,~w. This allows us to define a
small detuning parametd®|<1 in such a way that it is

As we pointed out in Sec. |, owing to the cylindrical possible to splilW§:W2+ S5w?. Therefore, Hamiltoniari6)
symmetry of the system, it is possible to eliminate the lineahecomes

termw, L, in Eq. (5) by expressing the Hamiltonian in a

reference framex(,y’,z") rotating with the frequencyv,

around thez axis. This canonical transformation is given by

the generating function
W=p;(x cosw t+ysinw,t)

+ py(—xsinw, t+y cosw,t) +p;,

where
IW IW IW
px:&_xv PyZW, DZZE,
. IW . IW IW
X :(?pxr' y =@, z =(9p2,.
The new Hamiltonian is given by
IW
H' =H+ e

which results to be, after dropping the primes,
H=3(P5+py+p2) + W (P +Y?) + w52
+a32(22°—3x2—3y?), (6)

and Eq.(6) represents a three-dimensional perturbved: w,
harmonic oscillator.

We note that in the particular situatiam,=w (the iso-
tropic casg¢ Hamiltonian (6) corresponds to the Hen—

H=Ho+H,,
Ho=5(p5+ 3+ p2) + WA (x?+y2+72%), @
H,=36W?Z%+ azz(22%— 3x2—3y?),

whereH; is the perturbation td<,.

The goal of this section is to reduce the three-degree-of-
freedom Hamiltoniar#{ to a simpler one, but preserving the
main features of the original system. First of all, we normal-
ize system(7). In this way we obtain a two-degree-of-
freedom Hamiltonian. Fixing a value for the ener@y=h,
we pass from the original six-dimensional phase sp&e,
to the reduced one: the four-dimensional complex projective
spaceCP?. It is parametrized by nine linearly independent
generators, for example, see Ref. 16. Moreover, let us note
that bothH, andH, are axially symmetric. Thus, a second
reduction can be carried out so as to obtain a one-degree-of-
freedom reduced system. In this case, the second reduced
space is a semialgebraic variety of dimension two. Tééx-
ond reduced space is generated by five linearly independent
polynomials, details appear in Ref. 19. In the subsequent
paragraphs we develop these two reductions.

The normalization procedure is carried out by means of
Lie transformations following the Lie—Deprit method, see
Ref. 14. We use nodal-Lissajous variables, a set of action-
angle variables which describe particularly well axially sym-

Heiles system in three dimensions. Hence, we can considefietric perturbations of oscillators ib—1-1resonance, see
Eq. (6) as a more general Hen—Heiles system in three Ref. 20.

dimensions, see Refs. 16 and 17. Thus, we name the system Since the solutions of perturbed oscillators in 1-1—1

described by Hamiltonian(6) the axially symmetric per-
turbedgeneralized 3D Heon-Heiles system

IIl. NORMALIZATION AND REDUCTION

Our aim in this section is to simplifg§{. With this pur-

resonance are perturbed ellipses, nodal-Lissajous variables
allow one to describe the trajectories easily. The set is given
by (I, g, v, L, G, N), wherel stands for the elliptic anomaly
and describes the position of the particle in a trajectory from
the semiminor axis. The anglgsand v are called, respec-
tively, the argument of perigee and the argument of the node.
Both give the position of the perturbed ellipse in the space

pose we perform an asymptotic transformation up to secondince, on the one handy measures the position of the
order of approximation. The transformation is constructed irsemiminor axis, reckoned from the nodal line, whilgoes
such a way that we average the original system over one dfom the nodal line to the orbital plane. The momenturis

the angles. Indeed, the high-order averaging procedure cahe action associated toand is related to the energy of the
be interpreted as a normalization technique since the “elimiunperturbed syster{,. BesidesG represents the modulus
nation” of an angle variable is completely equivalent to theof the angular momentum vect@ of the problem, while
construction of a formal integral, see for instance Ref. 18. AN(=L,) refers to the third component @. One important

this point we want to emphasize that these types of transfoifeature of these variables is precisely that the third compo-
mations are, in general, divergent. However, one can stilhent and the modulus of the angular momentum are among
build approximations to the original problefe.g., normal- the conjugate moments. This makes it possible to understand
ized or averaged Hamilton functiongood enough to be the effects of the perturbations on the unperturbed ellipses as
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the variations of their inclinations and eccentricities. The sefvhere ,, collects all the terms known from the previous
of nodal-Lissajous variables is defined in the domafiR®  order and{-, -} represents the standard Poisson bracket. The
such that solution of this equation is simply an average with respect to

the elliptic anomaly:
A=[0,27)X[0,27) X[ 0,27) X{L>0}

2w
X{0<G<L}x{|N|<G}. /cn=(2w)‘1j Hondl,
0

Thus, circular G=L), rectilinear G=0), and equatorial

trajectories G=|N|) are excluded from the domain. For the -

explicit expressions of Cartesian variables as functions of Wn:W_lf (Hon—Ky)dl.
nodal-Lissajous variables, and a more detailed description of

them, the reader is referred to Refs. 20 and 21. In this manner the normalization is carried out straightfor-
In this way, the expression df, in nodal-Lissajous  \ardly. This transformation is not convergent in general, but
variables is proportional to the actian Thence, normalizing  jn practice we truncate it at a certain order and the terms we
in nodal-Lissajous means “eliminating the variablep to & take provide useful information about the original system. In
certain order, obtaining an averaged orbit with respect to the,g case, we compute the averaged Hamiltonian upto
elliptic anomaly. Asl represents time, it varies quickly and —2 pecause at this order we have a finite number of equi-
we “eliminate” it because we are not interested in the posi-jipria in the reduced phase space, as we will see in Sec. IV.
tion of the particle in each moment, but in the evolution OfThence, as a consequence of Morse thé%)h}gher orders in

the orbit at a large time scale. _ ~ the averaged Hamiltonian do not alter the qualitative behav-
The transformation up to ordevl is a change of vari- o; of the reduced system.
ablesW¥:(I’,g",»",L",G",N")—(l,9,»,L,G,N) whose goal As we have pointed out before, the presence of the axial
is to transform the Hamiltonian symmetry, not only in the perturbation, but also in the unper-
N turbed part ofH, allows the system to be reduced again. In
€ ith the first reduction, this second one is singular
H(1L,g,v.LGN; )= 3 —Hy(1,9,1,L,GN), conirast wit Lction, gular,
(l.g.v ) rgo n! (19w ) the twice-reduced space is not a smooth surface. Depending
on the value of the component of the angular momentum
into the new Hamiltonian the shape of this phase space is either a double-pinched
sphere(lemon, when N=0, or a single-pinched onébal-
Ka',g',v',L",G",N";¢) loon), if N#0, see Ref. 19.
Moo Fixing a value forN and L, the double-reduced space
€ o . ) .
_ K= v LG N)+O(eM D, (frqm now on we call |t7’).|s t\No—d!menS|onaI anq is Qe—
ngo n! (=9 ) (77 scribed by the three linearly independent invariants

(71, 70, 73), Which are related to the nodal-Lissajous vari-
through a generating function ables as follows:

Mo en 1= W?L%s?(4e?— 25— e?s?+ 4eP cos A
W(,9,7,L,GN; €)= > —Wy(1,9,».L,G.N).
n=1 M- —e?s?cos 4y),
Parametek is a small dimensionless quantity. The construc-
tion of IC, or averaged normalized Hamiltonian, is performed r,=wL(2—s’—es’cos ), (8)
step by step. We first identif§{,=K,. Then, at each step
n>0 of the procedure we have to solve the homology equa-  7,=—2w?L %eys?sin 2g,

tion
~ wherec=N/G, s=1-c?, »=G/L, ande?=1— 7%, The
{IWh  Hot +Kn=Hon: inverse change reads as
2[ 71 (WL— 75) + (2WL— 7,) (75— WL 7, — 2W?N?)]
cos Y= 2 2 INER
[Tl_Tz(ZWL_Tz)]\/271+ 7'2+(2WL_7'2) —4w“N
T3\ AWLT,— 2( 7y + 75) + 4WN?
sin2g= & 2 L2 (9

[ 71— m(2WL— 75) [N 27+ 75+ (2wl — 75)2— 4wN?’

1
G- VAWL T, —2( 7+ 75) + 4w?N2,
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TABLE I. Poisson brackets for the/ . Ther/ on the left must be putonthe At this point we note that the fact@%L/WS is dimensionless
left side of the bracket, while the on the top are placed on the right-hand 2 ; ; A ]
: 6 parep ght-hand hecauseasl has dimensions of time. Hence, we define a
side of the brackets. . . 2 5 S
new dimensionless parameter 3asL/w>, which indicates

{} 7 ™ 7 the ratio between the frequency of the unperturbed oscillator
) ) and the frequency induced by the sextupolar term. After this
] 0 -7 —E(l—ré)(ré—ngz-&-N’z) trans_formation and the corresponding rescaling in time,
5 ) Hamiltonian(12) becomes
2 ETé 0 7ET£ 6(4_5) ’ l 12 ’
2 5 K= Trz+ a(167;+41r,°—567,),
T [(A-B(B-2n N o 0

where K is dimensionless and contains all the dynamical
information of systenfH. We finish the simplifications by
introducing the parametey= 6(4— 6)/(2«), which in fact
accounts for the relative influence between the detuning and
the sextupolar perturbation. The final Hamiltonian is given
by

Kg=a(yrh+ 167, + 41752 —5675). (13

Note that the anglelsand v have been “eliminated” after the
first and second reductions, respectively. The invariapts
7,, T3 are constrained by: | N|<7,<2wL and

2 2__ 2, 2 2N12
+75=(2wL— —4w-N9), 10 L . L
Tt 7a=( )72 ) (10 Hence, Hamiltoniar{13) contains the relevant dynamical in-

for each fixed value of andN such tha{N|<L. Itis worth  formation of systen¥{, depending on the two parameters
noting that Eq.(10) defines the shape df, a surface of andN' [which appears in Eq.10) after being expressed in
revolution which is not differentiable when the second mem-he new variablels
ber of Eq.(10) has double roots. Once we have described the The equation determining the reduced phase space in the
two steps of the reduction process we apply them to Hamildimensionless variables and parameters is
tonian (7). 12, 12_ IN2( 12 n12
Carrying the normalization procedure to second order, % 73" =(1=72) (72" =N, (14)
we obtain the following normalized Hamiltonian expressedEach point in the double-reduced phase space defined by Eg.
in nodal-Lissajous variables: (14) corresponds to a family of perturbed ellipses in the
2 2 original phase space. The trajectories with the same energy
C=wL+ 5(4-9) WLSX(1+ecos 2)— SagL and with the same third component of the angular momen-
16 3aw? tum are all represented in the same balloon or lemon. As an
2 4, 2 > 4 advantage over the nodal-Lissajous variables, all kind of or-
X {48117+ 505"+ e(— 8+ 72574257 bits for H are contained inZ. For instance, polar orbits
+5es[4(—2+5s?)cos I+ 5es’ cos 4]} (N"=0) are represented in lemons. Rectilinear orbi& (
=0) correspond to the uppénon-negative part of the me-
! ) : _ ridian 73=0 in lemons. The singularit{0,0,0 represents the
making N an integral out of this process. We need to fiX .oilinear orbitx=p,=y=p,=0. The other singular point
values forN and L, neglect the constant terms 16, and (i, |emons or balloons(0,1,0 represents the family of equa-
express it in the invariants associated with the axial symmeg,a| orbits. In Fig. 1, we draw the projections of a balloon
try using formulas(8) and(9). The Hamiltonian we getis  4n4 3 lemon onto the plang =0 with the location of some

Now, we apply the second reduction o with the aim of

84— 5) 3a§ types of trajectories.
K=———g 72~ 16\,v6(167'1+417'§—112NL7-2).
11
) IV. EQUILIBRIA AND BIFURCATIONS
At first glance, the parameters appearing in the problem are o )
8, as, w, L, and N [which appear in Eq(10)]. However, Taking into account the Poisson brackets between the

some of them are redundant as is shown by introducing th¥ariables we derive the equations of the motion,
dimensionless variables{, 7, ,73) according to rim{rL K 2a(82 56+ )
T1=1T1L, Kgy=— To— 00+ y) 73,
T1=4W2L2Ti, T,=2WL 75, T3:4W2L27'é, ' ' L 2 s
as well as the dimensionlesscomponent of the angular ry= {7y K= %T (15)
momentumN’ =N/L in such a way that &|N’|<1. These 22 L ¥
variables have the Poisson structure given in Table I. 5
After introducing the new variables into Hamiltonian '73={73,1Cd}:—a[16N2(1—7-2)+(8272—56+ y) 7
(11), we obtain L

3a2L +16(1—37,+275) 75].

’ 12 _ /
(167, 417, 5672)}' Note that we have dropped the primes for the sake of sim-
(120 plicity.

o wL[a4-s)
B R

W5
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FIG. 1. Projections of a balloon and a lemon onto the plaje0, showing s|

Lanchares et al.

=

cp

pecial types of trajectories. On the left-hand sidgands for the family of

circular orbits whilee denotes the family of equatorial orbits. On the right-hand sidepresents the arc corresponding to rectilinear trajectories, wiiie
are the trajectories in th®z axis, r-e denotes rectilinear orbits on the equatorial plane espdare circular-polar trajectories.

A. Equilibria

The equilibria of the system are the local extremaigf
on the semialgebraic variefyL4). They are the roots of the
system formed by the right-hand members of Ef5)
equated to 0 together with the constraihd).

From the second equation ¢15), it follows that the
equilibrium points are located on the plang=0. Besides,
the first equation also vanishes fey=0 and, from the third
equation, the whole system vanishes if

16N?(7y— 1) — 75(275—37,+1)

n= 827,— 56+ y
provided 82,—56+ y#0. Finally, by substitution of(16)
into (14) and makingrz=0, it follows that the coordinate,

of the equilibria must satisfy the following polynomial equa-
tion:

(1—7,)?[ 570075+ 4(41y—2040 75

(16)

+(2880- 570(N?112y+ y?) 75— 4N?(41y— 2169 7,

—N?(3136+256N2—112y+ ?)]=0, (17

together with the restrictiofN| < r,<1.

From Eq.(17) we observe that there always exists one
equilibrium point, namely0,1,0. Note that this point corre-
sponds to a singular point of the varidti4), the only one if

N=#0, and it accounts for equatorial orbits. The remaining

equilibria are obtained from the real roots of the second fac
tor of the polynomial Eq(17) verifying [N|< r,=<1. Being

Indeed, we have that Ii;gﬂ,wP(rz)=+oo. On the
other hand,

P(0)=—N?[256N%+ (y—56)2]<0 (N+0).

Thus, we can conclude th&talways has a negative root
for N+ 0. Consequently, the number of roots in the interval
[|N],1] is at most three and, hence, the total number of equi-
libria is at most four(The caseN=0 will be treated in detail
in the following)

(iil) The minimum number of equilibria is two.

This is a consequence of the Index Theorérie only
need to realize that the Euler characteristic of the vafibdy
is two and the indices of the equilibria must be 0, 1.

The key point now is to decide whenever the number of
equilibria is two, three, or four depending on the values of
the parametery and N; more specifically, according to the
values of y and N?, since system(15) is symmetric with
respect to the lin&=0. A change in the number of equilib-
ria implies a change in the number of real rootsRgfr,) in
the interval[|N|,1]. This change is due to two different rea-
sons. The first one is that one of the roots enters or leaves the
interval taking the extreme valuéls| or 1, whereas the sec-
ond is that two or more roots explode from a multiple root.

Aroot is located at the extrema of the interya\|,1] if
and only if one of the following equations are satisfied:

| (NI =—256N%(1-|N])?=0,

18
P(1)=(1—N?)(420+52y+ y*+ 256N?)=0. 18

that this factor is a fourth degree polynomial it is possible to

explicitly derive the coordinates of the equilibria. However,

If we dispose of the casgN|=1 (the phase space gets re-

it is not easy to decide whether they are real or complex, aguced to a pointwe find that along the curved=0 and

well as if they belong to the interv@|N|,1]. It is for this

reason that we focus on the number of roots of this factor,

A=420+52y+ y2+ 256N2=0, (19

rather than on the explicit expressions of them. In this way, ifihe polynomial? has a root located at the extrema of the

we denote byP(r,) the fourth degree polynomial in Eq.
(17), that is,

P(1,)=5700r5+ 4(41y— 2040 75+ (2880- 5700N?
—112y+ y?) 15— 4AN?(41y— 2168 7,
—N?(3136+256N2— 112y + y?),

we have the following two basic results.
(i) The maximum number of equilibria is four.
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interval [|N|,1]. Thus, a change in the number of equilibria
is expected when crossing the liNe=0 and when traversing
A. On the one hand, due to the symmetry with respedt to
=0, the crossing oN=0 does not mean a change in the
number of equilibria. On the other hand, when the ellipse
is crossed the number of equilibria does change.

Now, we focus on the presence of a multiple root. To this
end we consider the discriminant of the polynonfalvhich,
after dropping constant factors, results in

license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 1, 2002 Perturbed ion traps 93

A(N?,y)=N?(— 840+ 336N?+ 71y— y?)?(— 23887 872 008 151 787 520 00N> — 280 713 600 00N*
+185 193 000 00RI®+ 2 786 918 40§ — 10 533 888 00N?y+ 10 916 640 00N*y— 133 263 366>

+302 630 4001?92 — 97 470 000N* 2+ 3 340 288°— 4 245 1223 — 46 272y*+ 24 01 N?y*+ 336y°— 1°).
(20

Thence, wheneveA =0, the polynomialP has a multiple . 4 ) 5
root. Moreover, if given a root N3,y,) of A [i.e., T3~ ggopq 281 V) (— 840+ 336N+ 71y— 7).

A(N3,v0)=0] then, whether | |
It vanishes at the same time as the second fagtoof the

dA dA discriminant. Being that,= (56— v)/82, 7, is not longer
IN?| ﬂ determined by(16) but by (14) and, givenr,, we find two
No Yo different values forr;,

do not vanish at the same time, the multiplicity of the rootis 7 =+(1- 72)1/75_ N2,
two and is higher otherwis@ee, e.g., for example, Ref. 24
This fact helps one to know the number of equilibria in- L
volved in the splitting of the multiple root. change of the number of equilibria. _ _

The discriminant is made of the product of three factors (3) F3=0. Identity 73=0 defines an algebraic curve in
(respectively,F;, F,, Fs) and hence, it vanishes whenever ("€ Plane ¢,N), symmetric with respect to the lind=0,
one of them is equal to 0. So we must consider the following%n"’lde of two branches. Moreover, the first branch is defined
three cases: r ye(—,40] while the second one is defined for

(1) F,=0. This case is special because the variety of thet [ 727). We note that the curve is not defined for
corresponding phase space now has the aspect of a doublg{40:72), which corresponds with one of the segments ob-

pinched sphere rather than a single-pinched one. Beside@ined in the casél=0. We name this segmeqt
along the lineN=0, 7,=0 is a root of the polynomiaP. Along 73=0 the polynomialP has a double root except

That is to say, the poin®,0,0 is an equilibrium point and it for the values §,N)=(40,0) and §,N)=(72,0) where the
coincides with the other singular point of the semialgebraiJOOt becomes triple. The goal now is to decide \_Nhen the
variety (14) for N=0. In this manner, the singular points of double root belongs to the intenfdNJ,1] or not. To this end

the double reduced phase space are always equilibria. Bye need to recall that a root enters or leaves the interval
sides, the polynomiaP can be factorized as [IN],1] only if one of the linesA or N=0 is crossed. Thus, if
' along the branches of;=0 the double root is outsidén-

(507, + y—40) (1147, + y—72) 73, side the interval[|N|,1] it will be so until one of the line#\

or N=0 be crossed. One the one hand, the cufge-0
giving rise to three critical points in the lemons, namely  intersectdN=0 at the pointg40,0 and(72,0. On the other
hand, since the curv&3;=0 and the ellipsé are tangent at

In this case the presence of a multiple root does not imply a

M;=(0,0,0), the points 810/41;+ (1425/1681)?), the branch defined
for ye (—,40) is divided into two parts.
M| BEE T2 T2y ) Take now this branch witiN=0. For the part of it de-
12996 ' 114 ')’ fined for ye (—«,—810/41), the double root is bigger than

1. Thus, traversing this part of the branch does not imply a
M =((40— y)(10+y) 40—y 0) modification of the number of equilibria. Nevertheless, for
4 2500 ' 50 ") the part of the branch defined fore [ —810/41,4Q, which
we call B, the multiple root is located in the intervdN|,1].
WhereasM , exists independently of the value f M3 ex-  Consequently, when crossing this part of the branch the num-
ists only if ye[—42,72 and M, exists only if ¥  per of equilibria changes. Finally, for the branch defined for
€[—10,40. Accordingly, the lineN=0 can be divided in ¢ (72c), the double root is negative and traversing this
different segments where the number of equilibria changepranch does not imply a change of the number of equilibria.
Thus, we may conclude that for< — 42 there are two equi- Taking into account the results obtained fdr=0 and
libria; for —42<y<-10 there are three equilibria; for the curvesA, B, andC, the parameter plane is divided into

—10=y<<40 there are four equilibria; for 40y<72 there gjfferent regions where the number of equilibria can be de-
are three equilibria; foy=72 there are two equilibria. termined(see Fig. 2

(2) F»=0. This case does not constitute an effective
change in the number of equilibria. In fact, it arises from a
symmetric configuration of the critical points with respect to
the planer;=0. This is what happens when the denominator ~ As we have seen in Sec. IV A, there is a correspondence
in Eq. (16), namely 82, + y— 56, vanishes. Indeed, now the between the valid roots of the polynomiBland the number
third equation in(15) becomes of equilibria. In this respect, the curvés B and the segment

B. Bifurcation lines and stability

Downloaded 04 Apr 2003 to 193.146.232.9. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



94 Chaos, Vol. 12, No. 1, 2002 Lanchares et al.

Ri [
< 4 R, -26
o\,

FIG. 2. Bifurcation diagram and meridian sectians=0 of balloons and lemons. Stable points (inge) are characterized by a closed circle while unstable
points with index-1 are by an open one and the ones with index O are represented by an open—closed circle.

C divide the parametric planey(N) into several regions called period doubling bifurcation as the usual scenario for it
(R1, Ry, R3, Ry) for which the number of equilibria and, is that of a periodic orbit losing its stability, giving rise to a
consequently, their stability change, see also Fig. 2. In othestable periodic orbit of twice the period, see Ref. 25. In Ref.
words, A, B, and C constitute the bifurcation lines of the 26 the terminologysubtle divisionis used. See also Ref. 17
problem. for a full analysis of the Hamiltonian flip bifurcation in a

In order to study the stability of the equilibria appearing similar context to that studied here.
in all regions of the parametric plane, we combine two tech-  The passage froR, to R; or vice versa through the line
nigues. On the one hand, for the equilibria appearing in thé\, undergoes anothétamiltonian flipbifurcation. Now, be-
regular points of the balloons and lemons we use the starning in zoneR,, the point(0,1,0 is an unstable equilibrium
dard method of Lagrange multipliers; on the other hand, thef index O which splits into a center and a saddle once the
stability of the singular points can be deduced from the Indexurve A, is crossed. Specifically, in regidR; there are four
Theorem once the stability behavior of the regular equilibriaequilibria, three centef®ne of them is the poin®0,1,0] and
has been established. Due to the complexity of a treatmemine saddle in the upper part of the balloons and lemons.
for an arbitrary balloon or lemofii.e., Ne[—1,1] and y  After traversingA, the saddle and the center located at
eR), we accomplish the stability analysis of the problem(0,1,0 meet in(0,1,0 forming an unstable equilibrium of
fixing specific values of the parametédsand y according to  index 0. Abraham and Marsd&rterm this bifurcation with
the different regions defined by the bifurcation lines. In thisthe name oimurder.
manner, we find the following. A Hamiltonian Hopfbifurcation occurs when the value
vy=T72 is reached while moving alorig= 0. This is a bifur-
cation of the equilibrium with coordinate®,0,0. Indeed,
the lemons withy e[40,72) have three equilibria, two cen-
ters located at0,1,0 and in the lower part of the lemon and
one unstable point of index 0 placed at the origin. When
=72 the center at the lower part of the lemon and the un-

table equilibrium coalesce i®,0,0 and become a center.

his is the typical scenario of the Hamiltonian Hopf bifurca-
tion, where two pairs of imaginary eigenvalues meet and
r. Split off the imaginary axis, forming a quartets=ie; see
another example in Ref. 17.

Finally, the segmen€ corresponds to a bifurcation be-
cause there we find two centers and one unstable point
whose index is 0 as it is detailed in the previous paragraph.
Now, moving up and down to regioR,, the singular point
at (0,0,0 disappears, but the two centers remain.

(i) In regionsR; andR, there are only two stable equi-
libria.

(i)  In regionR, and on the segmer® there are three
equilibria: two stable and the other one unstable with
index 0.

(i) In regionR5 there are four equilibria: three of them
with a stable character and the other one unstable wit
index equal to—1.

At this point, we are able to establish the type of bifu
cation that takes place when lindsB, or C are crossed. In
this way, we detect the following four different bifurcations.

A saddle-centerbifurcation takes place when passing
from R; to R, (or from R, to R3). In regionR; there is a
center and a saddle on the upper part of the ball@owl of
the lemon that come together at the bifurcation liBe giv-
ing rise to a degenerate point of parabolic type, and hence
unstable. After_gro_ssin@_, i.e., in zoneR, of the parametric V. PHASE FLOW EVOLUTION
plane, the equilibrium disappears.

A Hamiltonian flip bifurcation occurs when traversing Complementary information about the dynamics of the
line A;, that is, going fronR, to R; or fromR, to R, (and  system is obtained from the phase flow evolution. Since the
vice versa. What happens is that tHstable singular equi- reduced HamiltoniaiCy defines a dynamical system of one
librium (0,1,0 in regionR; (or in R,), bifurcates when pass- degree of freedom, we can obtain the trajectories, after fixing
ing toR,, losing its stability and giving rise to a nefstable  a valueh of the energy, as the curves resulting from the
equilibria. Once inR, this point becomes a saddle and an-intersections of the Hamilton functiokij=h with the sur-
other center emerges from it at the lower part of balloons anéace(14), that is to say, they are the level curvesgf=h on
lemons. Note that af\; the point(0,1,0 remains stable, as Eq. (14). This feature allows us to plot the phase flow of the
the index indicates. The Hamiltonian flip bifurcation is also system quite rapidly and accurately without even integrating
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numerically the differential equatiori$5). In fact, we do not
draw the level curves, but on the contrary we assign to every
point on Eq.(14) the value that the Hamiltonian functiddy

takes there. Hence, those points associated with the same
value belong to the same level curkig=h. This is the main

idea of the technigue known aginting by numbefsee Ref.

27).

Calculations involved to determine the phase flow are
straightforward. First, we construct a two-dimensional grid
which is orthographically projected on the lemons and bal-
loons. Then, HamiltoniaiCy is evaluated at the correspond-

ing points of Eq.(14) according to the grid we have chosen. © M,

Thereafter the resulting matrix is submitted as input to the 4

commercial softwareTransform?® which computes and S / (@@@D {@H@)
draws the level curves on the selected orthographic projec- M, . Y
tion. This technique has been used to produce all the plots y=45 y=65 y=72 y=80

appearing in this section.

The phase flow is mainly commanded by the equilibria
and their stability. Hence, making use of the conclusions
arising from Sec. IV, we have studied the phase flow evolu-
tion choosing three “representative” paths on the parametric
plane (y,N) for which the stability and/or the number of
equilibria change. Note that we only represent the phase flowlG. 3. Phase flow evolution of the system =0 as the parametey
for N=0, as the parametric plane is symmetric with respectncr_eases from 45 to 80. Rov@) and (b) correspond to ortographics pro-
to the lineN=0. Moreover, note that the singular points of 1SCtions onto the planerg, 7s) viewed fromz, =0 and fromr,=1, respec-

. ) tively. Rows (c) and (d) correspond to ortographics projections onto the
the double reduced phase space, i.e., the points of coorditane (-,,75) viewed fromr,>0 and fromr,; <0, respectively.
nates(0,0,0 and (0,1,0, are always equilibria. More pre-
cisely, the origin is a singular point &f only for N=0 and
we name it asM;. For N#0, we also denote b¥l; the  above the bifurcation curvésee Fig. 4 forN=0.2 andy
equilibrium that forN=0 is located at0,0,0. On the other =40), the phase flow is made of rotations arouvg and
hand,(0,1,0 is always a singular point df that we term by  Mj. The sequence of plots finishes in the zdwe 0 and
M,. 40< y<72 (see Fig. 4 foN=0 andy=45), where we find

Figure 3 shows the evolution of the system in phaseagain the three equilibridM,, M,, and M5, and whose
space forN=0 and y=40. For 46<y<72, there are three phase flow structure has already been detailed. The appear-
equilibria, namelyM, M,, andM3. Thus, it is easily con- ance ofM, obeys the presence of the singular pdioy0,0
cluded that the phase flow consists in rotations around thér N=0.
two centerdM, andM 3. These rotations are split off by the Finally, in Fig. 5 the evolution of the phase flow along a
separatrix passing through the poMt (equilibrium whose path traversing the liné is shown. The sequence starts in-
index is Q. As vy tends to the value 72\ ; approache$/ ;. side the ellipsdsee Fig. 5 foiN=0.2 andy= —15). In this
Thus, wheny reaches this value, the equilibrd, and M3 region R,) there are three equilibria, nameM,;, M,, and
come together and a Hamiltonian Hopf bifurcation takesM;. The phase flow consists of rotations around the stable
place. As a consequence, ory; and M, survive for y  equilibria M; and M5. These rotations are split off by a
=72, and furthermoreM,; becomes stable. This situation separatrix passing through the third equilibrilvt, whose
keeps on fory=72. index is 0.

In Fig. 4 we present the phase flow evolution of the Note that the ellipse can be crossed in two different
system along a path crossing the cuBeWhenN=0 and ways: along a path crossig,, or along a path crossing; .
—10<y<40 (see Fig. 4 foN=0 and y=35) we find the = When the ellipse is traversed in the first w@ge Fig. 5 with
four equilibria:M 4, M,, M3, andM,. A homoclinic loop N=0.2 andy= —5), M, undergoes @murde) Hamiltonian
(separatrix asymptotic to the unstable equilibrium,, that  flip bifurcation: fromM, (which becomes stabl@an unstable
surroundsM, and M,, divides the phase space into three equilibrium namedM, emanates. Now, a homoclinic orbit
different zones of rotations around the stable equilibfig, asymptotic toM, surroundsM; and M,, and the corre-

M,, andM;. ForN+0 but still in regionR; (see Fig. 4 for  sponding phase flow has already been described. When the
N=0.2 andy=15), we encounter the same type of equilibria ellipse is crossed through;, the phase flow evolution is

as in caseN=0 and ye(10,40) and an equivalent phase different. As we get close to the ellipskl; approached,

flow structure. However, as we get close to the bifurcationin such a way that when the ellipse is reached, they meet and,
curve B, the equilibriaM; and M, begin to approach each after crossing, onlyM, survives and it becomes stable. A
other in such a way that whdg is crossed, a saddle-center (subtle division Hamiltonian flip bifurcation has taken
bifurcation occurs: the equilibris; andM, meet atB and  place, and the phase flow is simply made of rotations around
disappear once regioR, is reached. Hence, fdd#0 and M; andM, (see Fig. 5 foN=0.8 andy=—5).
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> N=02

My \,M y=40 FIG. 5. Phase flow evolution of the system along a path crossing the bifur-
My oy=35%2  yeas cation curvesA, andB. Rows(a) and (b) correspond to ortographics pro-
T3 jections onto the planer(,73) viewed from7,=0 and fromr,=1, respec-

(d) () /\ T, tively. Rows (c) and (d) correspond to ortographics projections onto the

plane (r,,73) viewed from7,>0 and fromr,<0, respectively.
___7;15_1____ ﬁ\_‘___N=0.2

)
'Y \Y global error term, which is obtained explicitly and depends

on the three coordinates, their three conjugate moments, and
FIG. 4. Phase flow evolution of the system along a path crossing the saddiéhe two significant parameters of the problem, sagnd
center bifurcation curve. Row®) and (b) correspond to ortographics pro- or, going back to the original Hamiltonian, the parameteyrs
jections onto the planerg,75) viewed from7,=0 and fromr,=1, respec-  and §. Note that for this particular problem the parameter
tively. Rows (c) and (d) correspond to ortographics projections onto the can be set equal to 1 as the real small parameters are inside
plane (r,,73) viewed from7,;>0 and fromr;<0, respectively. . q P

the functionE.

Now we have to bound the functidh Assuming thaga;

and § satisfy |ag|<5x10 2 and |§|<3%x10 %, we have
VI. CONNECTION TO THE ORIGINAL SYSTEM checked numerically thatE(x)|<5x 1072 provided that
A. Estimate of the error of the Lie transformation x| <1.25. This calculation shows the efficiency of the ana-
lytical approach, valid in a neighborhood of the originRSt.

The (formal and symplecticchange of variable¥ con- Note that this result is in agreement with the values obtained
structed in Sec. ”I_ can _be used to C"_"ICUIate an upper boungfter truncation of the Lie transformation at second order
of the error committed in the truncation of the Lie transfor- since|E(x)| is of the order ofd(s3).

mation approach. Indeed, we start by callinghe set of Alternatively, one could obtain an equivalent estimate to
variables &, y, z, Py, py, p,) andx’ the set of the rans- g4 (21) working with Hamiltonians. Indeed, composing

formed variablesX’, y',z", py. py, p,;).. . Hamilton function(6) with the changeP truncated after sec-
Now we calculate the changé= X' (x;e). Note thatX ond order, we have

is actually the chang& but written in Cartesian variables
and gives explicit expressions of the néwansformeg vari- |WoH—K|<ce®,
ablesx’ in terms of the old(original) variablesx. Further-
more, we computa=X(x';e) obtaining expressions of the with ¢ a function depending on the nodal-Lissajous variables
old variablesx as functions of the new variableg. At this ~ and on the parameters of the problem. After writing this es-
step we have to mention that bothand X’ are constructed timate in Cartesian variables, one gets a similar expression to
by means of the generating functio®, expressed in Carte- that obtained foE(x). However, we have preferred to com-
sians and using the formulas given in Ref. 14. Moreover bottpose the change of variables instead of the Hamiltonians
changesX and X’ are built up to second order in the small since the expressions involved in the process are shorter and
parametek. therefore easier to be handled with the algebraic manipulator.
We can compos& with X’ and compute explicitly the We end this section by mentioning that the validity of
vector fieldX(X'(x;e);e), which must indeed be a second- our Lie transformatior{either in the form¥, X or X') is on
order approximation tx. Hence we arrive at a time scale ¥. Nevertheless, other upper bounds of the
S time validity could be obtained based on Neh@wsheory,
[x=X(X' (x;8);e)l| = EC0) + O, 2D see, e.g., I%ef. 29, although this is outside the scope >:)f the
where]| - | denotes the Euclidean norm R andE(x) is the  present paper.
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B. Poincare” surfaces of section the stable equilibriunM 5. Finally, the almost equatorial or-
bit EQ is related to the equilibriung0,1,0 on the lemon. In

We can validate the estimation of Sec. IV C by the analy thi find a direct tion bet iodic orbit
sis of the original Hamiltonian by means of the technique of. IS way, We Tind a direct connection between periodic orbits

Poincaresurfaces of section. To this end, it is convenient to" the oggm_r:;l sy?rt:.em and c;ng:lal points "t1' the redulced pbhase
express Hamiltoniar{6) in cylindrical coordinates. In this space. besides nis remarkable connection we also observe

: the same qualitative evolution asincreases. In fact, both
way we obtain . . !
y the original and the twice-reduced systéff) undergo the

1, ., 55 1 s o same sequence of bifurcations. Concretely, the Hamiltonian
H= E(ppﬂ)z) + 52 + E(P +29) flip bifurcation in balloons and lemons turns to be a pitchfork
bifurcation in the surfaces of section. This is due to the 2:1
+367°+a32(22°— 3p?), (22)  covering of the twice-reduced phase spasee Ref. 1Y

Moreover, the Hamiltonian Hopf bifurcation remains the
same in both the surfaces of section and the lemons and
balloons.

It is interesting to mention that the valuespfor which

wherep,=L, is the z component of the total angular mo-
mentum and we have sei=1.
We describe the dynamics of the system by keefifig

Py andas fixed and varying the (_jetumn_g parameteive the bifurcations are observed in the sequence of the Poincare
will show that the behavior obtained with the surfaces of . . .

o . : surfaces of section are in very good agreement with the val-
section is in very good agreement with the dynamics Ob'ues of y for the bifurcation lines obtained in Sec. ¥y (
served in the lemons and balloons in Sec. V. — —10,y=40,y=T72) '

For the sake of simplicity we focus on the cgsg=0 4 Y '

(e.g.,N=0 in the reduced systemthough analogous results

can be shown for other valughl|=1. For this case we de- ~ Dynamics of the full system: KAM theory

fine the surface of section @s=0, p,>0. Under these con- _ _ o _
ditions, the surface of section appears as a closed region in Since the normalized Hamiltoniali has been obtained

the plane ¢,p,) bounded by the curves after two reduction proceduréthe second-order normaliza-
tion followed by the exact axial-symmetry reductiprnve
p,= = \2H—(1+ 82— 4asz°. have to attach a 2D torus to any point of the reduced phase

. . . . <G< €.
It is worth noting that the boundary of the section corre-Spacef Mpre congretely, fIN|<G L e, when thg
2 o : nodal-Lissajous variables are well defined, the 2D tori are
sponds to a periodic rectilinear orbit, namely: 0. . )
. 4 ) parametrized by the angldsand v. (However, in case of
We fix the energyH=0.75. The reason is twofold: on . . ; Lo . .
e . equatorial or circular trajectories it is still possible to define
the one hand the estimation of the error of the Lie transfor- . . .
o P , other action-angle variables and perform the reconstruction
mation is satisfied; on the other hand we find a regular re- : . . -
f the invariant manifolds similarly.

gime for all the values of the parameters that are considered! In particular one should speak of families of 2D tori

In addition we setaz=0.05 as it is a small parameter and depending on the parametdrsndN. This means that equi-

also in accordance with the estimation of the error. Takinq. . g
) - L ) ibrium points on the balloons and on the lemons must be
into account the definition of the nodal-Lissajous variables

and neglecting the contribution of the perturbative terms, wi understood as invariant 2D tori R°. Moreover they enjoy
9 9 P » W&he same type of stability whenever all the eigenvalues of the
takeL~0.75 and thus

linearization of each equilibrium have non-null real part. One
5(4—6) 8(4—96) can even compute explicit formulas of ttteuncatedl invari-
Y= 6a§L ~ 001125 ant _2D tori using the direct change of the Lie transformation.
Notice that a second-order theory has been enough to study

So, fixedd, a value ofy is obtained and we can compare the the dynamics of the original problem, but the higher order
corresponding surface of section with the flow on the re-we reach with the Lie transformation process the more accu-
duced phase space. rate the invariant manifolds of the original Hamiltonian we

Figure 6 shows a sequence of surfaces of sectiodfior have encountered could be computed, provided that the glo-
the interval[—0.06,0.22 that yields values ofy in [—22,  bal error after truncation will be maintained adequately.
74]. We observe several fixed points on the surfaces of sec- In those equilibria of7 where the linearization gives
tion that correspond to periodic orbits. To each periodic orbitigenvalues with null real part, a specific analysis should be
we can associate a fixed point in the reduced phase spageerformed. Nevertheless, in this problem such situations oc-
Indeed, if we consider the casg=0, we find five fixed cur only on the bifurcation curve#, B and the point
points on the surface of section plus the boundary of th€y,N)=(72,0), which correspond, respectively, to Hamil-
section. The periodic orbits are labeledlas L, (rectilinear  tonian flip, saddle-center, and Hamiltonian Hopf bifurcations
orbits), C;, C, (almost circular orbits and EQ (almost  (note that this has been numerically verified in the latter sub-
equatorial orbit section using the surfaces of secliofror the analysis of

We notice that the rectilinear polar orbif=0 (the these cases we refer to Refs. 17 and 19 where these bifurca-
boundary of the surface of sectjois associated with the tions also occur. Hence, all the details about the reconstruc-
equilibrium (0,0,0 on the lemon. The two rectilinear orbits tion process can be followed in those papers. The bifurca-
L, and L, correspond to the unstable equilibriuiv,, tions of relative equilibria are translated into bifurcations of
whereas the almost circular orbi®; andC, correspond to 2D invariant tori or quasiperiodic orbits. Moreover the per-
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FIG. 6. Evolution of the Poincarsur-
faces of section as a function ¢ffor a
fixed energy H=0.75, p,=0, as
=0.05.

sistence of these bifurcations is guaranteed by the estimate trapping phenomena. In this sense, starting from a realis-

derived in Sec. VIA. tic model, this work provides a systematic study of the phase
We do not give more details here about the reconstructorbit) space structure of a single ion trapped in a perturbed

tion of the full system using KAM theory, as the analysis is Penning trap.

analogous to the one performed in Refs. 17 and 19. Instead |n this paper we have shown that, for a fixed valuéopf

of that we have preferred to establish the connection to théhe dynamics is governed by the parameter which indicates

original system by using the estimates of the error of the Lighe relative influence between the detunifignd the sextu-
transformation and the calculation of Poincawrfaces of polar imperfectionas. If we focus on the polar cagé=0,

section. which is the easiest to be achieved experimentiliyhen y
o . goes from 0 §=0) to y>72 or to y<—42, in both cases
D. Physical interpretation the phase space evolve to rotations around the stable equilib-

From the physical point of view, a weakly perturbed ion ria M; and M, through several bifurcations. It is worth not-
trap is the most frequent situation encountered when workingng that this situation is equivalent to the one where the
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