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1 Introduction

The Zernike polynomials were named after Frits Zernike (1888 - 1966), a deutch
physicist who won a Nobel prize for his invention of the ‘phase contrast micro-
scope’. He proposed these as a complete set of orthonormal polynomials, with re-
spect to the plain Lebesgue measure in the unit disk D =

{
(x, y) ∈ R2/x2 + y2 ≤ 1

}
,

which also possess some additonal properties:

1. Variable separation in polar coordinates: Z(ρ, θ) = R(ρ)T (θ)

2. Rotational symmetry: T (θ) should be continuous, 2π-periodic and also
T (θ + α) = T (θ)T (α). For example, T (θ) = eikθ, k ∈ Z, satisfies that.

3. The radial component R(ρ) is a polynomial in ρ, such that Z(ρ, θ) is also
a polynomial in cartesian coordinates.

The Zernike polynomials are an infinite family that fulfill the properties above.

There exist several manners of enumerating the Zernike polynomials. The
most common one, is to use a double-index notation (n,m) with n ∈ N, |m| ≤ n
and n −m even (for a fixed n, m vary in {−n,−n + 2, . . . , n − 2, n}). In this
way, they can be written explicitly as follows:

Zmn (ρ, θ) = Nm
n R

m
n (ρ)Tmn (θ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π
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Nm
n being a normalization constant, Rmn is the radial part and Tmn is the angular

part, given by the following formulas:

Nm
n =

√
2(n+ 1)

1 + δm,0

R|m|n = (−1)(n−m)/2ρmP
(m,0)
(n−m)/2(1− ρ2)

with P
(α,β)
k the Jacobi orthogonal polynomials, and

Tmn (θ) =

{
cos (mθ) if m ≥ 0
− sin (mθ) if m < 0

With these definitions, the Zernike polynomials {Zmn }n,m are in fact or-
thonormal in the unit disk D:∫∫

D
Zmn (ρ, θ)Zrs (ρ, θ)ρdρdθ = δn,sδm,r

It is possible also to use an one-index notation, with j ∈ N (there are various
ways of doing this), such that the conversion between both notations is given
by:

j =
1

2
(n(n+ 2) +m)

n =

⌈
1

2
(−3 +

√
9 + 8j)

⌉
, m = 2j − n(n+ 2)

where dxe represents the ceiling function, the smallest integer number greater
or equal than x.

2 Discrete Orthogonality

In the way they have been defined, the Zernike polynomials are orthogonal for
the continuous Lebesgue measure in the unit disk D. But additionally, they also
satisfy a discrete orthogonality, discovered in 2005 by Pap and Schipp [1], in the
following way:

• ForN ∈ N, we take λNj (j = 1, . . . , N) the zeros of the Legendre orthogonal

polynomial of degree N ; and define ρNj =
√

1
2 (1 + λNj ).

• We also consider the Christoffel numbers ANj corresponding to the inter-

polation at λNj :

ANj =

∫ 1

−1
`Nj (x)dx, `Nj (x) is the Lagrange basic polynomial associated to λNj
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• Define as well N(4N + 1) nodes Qj,k, given in polar coordinates by the
expression:

Qj,k =

(
ρNj ,

2πk

4N + 1

)
, j = 1, . . . , N, k = 0, . . . , 4N

• Finally, let us define the measure νN as:

νN =

N∑
j=1

N∑
k=0

ANj
2(4N + 1)

δQj,k

δQj,k
being the Dirac delta at the node Qj,k.

With the previous definitions, it results that νN → 1
πdA, this is, the discrete

measure νN tends to the plain measure of Lebesgue in the unit disk D when
N → ∞; and with respect to that measure, the Zernike polynomials are also
orthogonal: ∫

Zmn Z
r
sdνN = δn,sδm,r

whenever n,m, s, r ∈ Z and in addition: n+ s+ |r| ≤ 2N − 1, and n+ s+ |m| ≤
2N − 1.

3 Open Problems

Despite the continuous orthogonality of the Zernike polynomials seems to be a
desirable property, in practice it becomes useless, as one normally makes use
of the values of that polynomials in a finite and discrete set of points of the
unit disk, say Pk = (xk, yk) ∈ D, with k = 1, . . . , N . Also, a finite number
of Zernike polynomials is used, namely the set of the M + 1 first of them:
{Zj(x, y)}j=0,1,...,M .

Then, it is common to work with the collocation matrix, or evaluation ma-
trix, of the M + 1 first Zernike polynomials (with the one-index notation) eval-
uated in a sample of N nodes of the unit disk.

A =
(
Zj(xi, yi)

)
1≤i≤N
0≤j≤M

∈MN×(M+1)(R)

A =


Z0(x1, y1) Z1(x1, y1) . . . ZM−1(x1, y1) ZM (x1, y1)
Z0(x2, y2) Z1(x2, y2) . . . ZM−1(x2, y2) ZM (x2, y2)

...
...

. . .
...

...
Z0(xN , yN ) Z1(xN , yN ) . . . ZM−1(xN , yN ) ZM (xN , yN )


N×(M+1)

This matrix is of great practical importance, as it is used to solve some
least squares problems, e.g. in order to obtain the coefficients of the Zernike
polynomials in a linear combination.
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In the following three open problems, the nodes Pk = (xk, yk) ∈ D might
be given a priori, with a fixed and known distribution (e.g. those used by the
commercial corneal topographers, which are regular or quasi-regular grids, in
polar or cartesian coordinates), or alternatively it is possible to choose the most
suitable distribution (for certain practical applications, it is possible to select the
nodes that will be used). We can even assume that Pk’s are angularly equally
spaced.

3.1 Invertibility of the matrix A

The first open problem is, in the case of A being square (this is, we have the
same number of nodes and of Zernike polynomials, N = M+1), decide whether
the matrix A is invertible or not.

3.2 Condition number of matrix A

In the general situation, when A might be square or not, it would be of interest
to estimate or bound the spectral condition number of the matrix A,

κ2(A) =
σmax(A)

σmin(A)
,

where σmax(A) and σmin(A) are the largest and smallest singular values of A,
respectively, or any other measure of numerical stability of this matrix.

3.3 Condition number of the matrix of derivatives

It is also useful for some practical applications to use the matrix of evaluations,
but not of the Zernike polynomials directly, but of their partial derivatives:

B =


∂
∂xZj(xi, yi)

∂
∂yZj(xi, yi)


2N×M

and for the same previous reasons, it is important to estimate the condition
number κ2(B).
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