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The nno diagrams

In a Cartesian Category (cc) we have composition and a product

Recursion operator is obtained by means of an nno

De�nition

A nno in a category C with terminal object 1 is (N, z , s) with a
commutative diagram

1
z //

��

N

m

��

s // N

m

��
1

f // A
g // A

where m is unique
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The nno diagrams

Basic recursive structure is a parametrized nno

De�nition

A parametrized nno (pnno) is an nno (N, z , s) for which
there exists a commutative diagram

X
zX //

��

NX

m

��

sX // NX

m

��
X

f // A
g // A

We can speak of a weak nno (wnno) if uniqueness is not required
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The nno diagrams

These de�nitions can be generalized

De�nition

A left nno (lnno) in a Monoidal Category V =(V,⊗, I , α, λ, %) is
(N, z , s) such that

I ⊗ A
z⊗A //

λ

��

N ⊗ A

m

��

s⊗A // N ⊗ A

m

��
A

f // B
g // B

commutes
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Representation

We de�ne recursive function classes in cc + nno by its

representation

De�nition

We say that f : Nk −→ N is representable in a cc + nno C if there

exists f : Nk −→ N in C such that

f 〈]n1, ..., ]nk〉 = ]f (n1, ..., nk)
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The results

Given categorical structures we obtain recursive function classes:

For total function classes in the form f : Nk −→ N we have:

1

PR = {Representables in cc+wpnno}
2

PR ⊆ {Representables in Topos+nno} ⊂ TotalRec
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The results

For partial functions we have:

PartialRec ⊆ {Representables in cc+nno+equalizers}

And for a di�erent kind of representation:

PartialRec = {Numeralwise Representables in cc+wnno+equalizers}
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Free and syntactical structures

Two constructions

1. over Grph

Peano-Lawvere Axiom in a category

A category satis�es PL Axiom (or it is PL) if every object has an
nno

PL categories are not in general cartesian nor are they endowed with a
terminal object

However P = FPL(·) has both
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Free and syntactical structures

Let be P = FPL(·) the Category of PR-formal functions

De�nition

We de�ne P ′ as the PL precategory generated (·)
it will be called precategory of PR-programs
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Free and syntactical structures

Lema

We call P the image graph P // Set

its objects are Np

its morphisms f : Np // Nq such that f = (f0, f1, ..., fq−1)
where fi ∈ PR

P can (only?) be characterized by equivalence relations in P
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We can summarize as

P
′

��>
>>

>>
>>

>

(·)

88qqqqqqqqqqqqq
//

&&MMMMMMMMMMMMM P

����
��

��
��

P

P ′ is a syntactical construction while P is a category with semantics
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Categories of Algorithms

2. over Set

Concept of algorithm is bounded by

1. the implementations that we handle: programs

2. formalizations that are known: recursive functions
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There is a tree for any PR-program labelling the edges with

C (composition), R (recursion) and B (bracket)

nodes are Nk

edges are PR-functions generated from z , s and πki

De�nition

We call this graph PRdesc
it has all descriptions about how to compute all PR-functions
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Essentially equal ∼ in PRdesc gives equivalence classes

We construct by prunning

PRdesc
∼

= PRAlg

as the free initial category FCatxN(Ø) in CatxN
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Reducing by ≈ (run the same operation) we have

PRAlg
≈

= PRFunc

and the schema

PRdesc

&&MMMMMMMMMM

Ø

66nnnnnnnnnnnnnn //

((PPPPPPPPPPPPPPP PRAlg

xxqqqqqqqqqq

PRFunc
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Plan
What do we need for recursion in CT

From syntactic to semantic
Subrecursion

Free and syntactical structures
Categories of Algorithms

Free and syntactical structures

Similar constructions

initial PRU E (Pfender)

Freyd Cover FC from a cc C + nno (Román)

free Monoidal Category + lnno Φ(Ø) (Román-Paré)
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Plan
What do we need for recursion in CT

From syntactic to semantic
Subrecursion

Translations to CT
Polarized Categories

Translations to CT

Classes in Gzregorzcyk Hierarchy can be de�ned by bounding arithmetics

Consider the smallest derivations set

1 containing a derivation of every initial function 0, Sx = x + 1,

Px = max(0, x − 1) and conditional C(x , y , z) =

{
y if x = 0

z else

2 closed under the derivation rules

1 full composition: given derivations h and g1, ..., gm we derive

f (x) = h(g1(x
1), ..., gm(x

m))

2 full primitive recursiveness: for g and h if x 6= 0 we derive

f (x , y) = h(x , y , f (Px , y))
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Plan
What do we need for recursion in CT

From syntactic to semantic
Subrecursion

Translations to CT
Polarized Categories

Translations to CT

Complexity lower than PR can be modeled using rami�ed recursion

it is based in comprehension or

Axiom schema of speci�cation

Any de�nable subclass of a set is a set

Instead of bounding induction we use weaker subsystems

We use two kinds of arguments: normal and safe
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What do we need for recursion in CT

From syntactic to semantic
Subrecursion

Translations to CT
Polarized Categories

Translations to CT

De�nition

Subsets Nk+1 that make recursion having No , ...,Nk are called tiers

We calculate tier of a derivation f ∈ PR as

ρ(f ) = 0 if f is an initial function

ρ(f ) = max{ρ(h), ρ(g1), ..., ρ(gm)} if f is de�ned by full

composition of derivations h and g1, ..., gm

ρ(f ) = max{ρ(g), 1 + ρ(h)} if f is de�ned by full primitive

recursion of derivations g and h
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ε1, ε2 and ε3 of Gzregorzcyk have been constructed from

Doctrines with

1 an SM 2-Comprehension

2 two tiers N0, N1 of numerals with dyadics

I
z−→ Nk

sk−→ Nk

3 rami�ed recursion

I ⊗ A
z⊗A //

λ

��

N0 ⊗ A

hk

%%JJJJJJJJJJ
sk⊗A //

f

��

N0 ⊗ A

f

��
A

g // B B

I ⊗ A
z⊗A //

λ

��

N1 ⊗ A

f

��

sk⊗A // N1 ⊗ A

f

��
A

g // B
hk // B
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Polarized Categories

Polarization is a way to see rami�cation in CT

De�nition

A Polarized Strong Category (SPolCat) consists of

a module M : C × D −→ D where

C is a cc (the opponent) and D a category (the player)

endowed with a strong composition

(C1,D1)
f−→ D2 (C2,D2)

g−→ D3

(C1 × C2,D1)
f ;g−→ D3
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Polarized Categories

De�nition

A Polarized Functor of a SPolCat C consists of

functors Fp : D −→ D and Fo : C −→ C

with Fop acting

(C , 1)
f−→ D

(Fo(C ), 1)
Fop(f )−→ Fp(D)

Example

⊗ for D and × for C form a polarized functor
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We can do comprehended recursion on �xed points over Fop

Let F ? be a free algebra generated by

contexts C = 1 and D = Nat

constructors

Zero : 1 −→ Nat and Succ : Nat −→ Nat
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F ? is a �xed point for a polarized functor in the form

∑
k

Fk(Z )

Can we construct a SPolCat from this to get a general
form of rami�ed recursion in CT?
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