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Octupolar perturbation of a single ion in a Penning trap
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We investigate the classical dynamics of a single ion trapped in a Penning trap perturbed by a octupolar
electrostatic perturbation that introduces nonlinearities in the motion. We show that the dynamics is controlled
by a single external parameter that combines the influence of the electric and magnetic fields. Through the
variation of this parameter, we explore the evolution of the phase space structure of the system by the
numerical continuation of the families of periodic orbits.
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I. INTRODUCTION

The dynamics of a perturbed single ion Penning trap
investigated from the point of view of the classical mecha
ics. Classical dynamics has proven to be very useful for
terpreting the quantum dynamics of atomic and molecu
systems, even when the classical dynamics is chaotic and
quantum dynamics is strongly mixed@1#. The study of peri-
odic orbits and phase space structure provides useful in
mation that can be compared with the behavior of the co
sponding quantum system and with experiments@1–3#.

The Penning trap@4# provides three-dimensional trappin
of charged particles by means of a magnetic field plu
quadrupolar electric field. The electric field is achieved
means of a set of three electrodes that are~ideally! infinite
hyperboloids of revolution. However, when a real trap
considered, the electric field can be modeled by means o
multipole expansion@7#

V5(
l>0

Vl , Vl5 (
0<k< l

al ,kr
lPl

k~cosu!coskf, ~1!

where (r ,u,f) are spherical coordinates, andPl
k are the

Legendre polynomials. The first two terms are linear, prod
ing constant forces. Thequadrupole V2 gives rise to har-
monic motion, and all higher orders introduce nonlinearit
in the motion. In typical real Penning traps, the electrod
can be assumed to be symmetrical with respect thex,y plane
and cylindrically symmetric. Hence, all the terms in Eq.~1!
with l odd andkÞ0 vanish. In this work, we consider th
contribution of theoctupole V4 that is the main perturbation
in a real trap where the electrodes are approximated by e
trodes of spherical section@5#. Hence, by using cylindrica
coordinates, we express the electrostatic potentialV5V2
1V4 as

V5U0@2z22r21a~8z4224r2z213r4!#/R0
2, ~2!

wherea5a4 /R0
2, U0 is the voltage applied to the end-ca

electrodes with respect to the ring,R0 is the distance be
tween the two end caps, andr25x21y2.
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The electric potential acts as a trap only along thez axis;
while the magnetic fieldB along thez axis provides the
complete trapping.

II. EQUATIONS OF MOTION

The Hamiltonian of a trapped single ion of massm and
chargeq is

H5 1
2 ~Pr

21Pz
21Pf

2 r22!2~ 1
2 qB!Pf1~ 1

2 qB!2 1
2 r2

1mV~r,z!, ~3!

where (Pr ,Pz ,Pf) are the conjugated momenta of the c
lindrical coordinates (r,z,f). Since the system is under ro
tation around thez axis, the canonical angular momentu
Pf is an integral. By introducing the ratiod5wz /wc be-
tween the axial wz5A4qU0 /(mR0

2) and cyclotron wc

5qB/m frequencies, scaling time bywc , and coordinates by
R0 , we write Eq.~3! in dimensionless coordinates as

H5 1
2 ~Pr

21Pz
2!1W~r,z;Pf!, ~4!

whereW is the effective potential,

W52
Pf

2
1

Pf
2

2r2 1
r2

8
1

d2

4
@2z22r21a~8z4224r2z2

13r4!#. ~5!

As parametera must be considered fixed for a given trap, t
problem depends on the external parameterd—giving a mea-
sure of the relative influence of the electric and magne
fields—as well as on the internal onePf , and of course on
the energy integralH5E.

Because of the cylindrical symmetry of our problem, t
(r,z) motion is decoupled from the angular motion, and t
study of the equations of motion,

ṙ5Pr , Ṗr52]W/]r, ż5Pz , Ṗz52]W/]z,
~6!

of the (r,z,Pr ,Pz) phase space will provide enough info
mation on the behavior of the system. It is convenient
distinguish between the casePfÞ0, where a centrifugal bar
©2003 The American Physical Society01-1
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rier exists preventing the orbits from approaching the orig
and the casePf50, where the motion takes place on a ve
tical plane that rotates with constant angular velocity. In t
paper we focus on the casePf50, which is quite represen
tative of the dynamics for allPf .

III. PHASE SPACE STRUCTURE

In the rotating (j,z) plane—where we usej instead ofr
in order to consider negative values—the potential ene
surfaceW(j,z)5E shows five critical points: a minimum
P0 , and four symmetrically located saddle pointsP1,2,3,4,

P05~0,0!, P1,2,3,45
1

2d S 6A114d2

15a
,6A12d2

10a D .

~7!

Hence, the effect of the octupolar perturbation is to cre
four equivalent channels of escape through which the io
able to leave the trap. We remark that the saddle points
equilibria with respect to the rotating frame and circular t
jectories with constant angular velocity in the inertial fram
of the trap.

The energies of the critical points are

E050, ES5E1,2,3,45
118d2214d4

960d2a
. ~8!

When a increases, the energyES decreases, and the sadd
points tend to the minimum. As expected, when the octup
perturbation grows, the trapping energy interval and the z
where the ion can be trapped decrease. In addition, note
ES5E050 for

d,
25

21A15/2

7
, d,'0.823, ~9!

which does not depend ona. At this value the motion is no
confined except for oscillations in thej and z directions—
that are critical. Therefore we limit our study to values ofd
in the interval (0,d,), where the ion can be trapped. No
that the possibility of escape is always present because in
interval (0,d,) there always exists ad value for which the
energy of saddle points can be smaller than the ion’s ene

The phase space structure is mainly characterized by
number of the periodic orbits living in phase space, and
their stability. The stability of a periodic orbit is determine
from the eigenvaluesl i of the monodromy matrix. In Hamil-
tonian problems, the eigenvalues appear in reciprocal p
and we have one trivial eigenvaluel051 with multiplicity
2. Then, the stability index

k5l11/l ~10!

is normally used, where the conditionk real anduku,2 ap-
plies for linear stability, and the critical valuek562 means
that a new family of periodic orbits has likely bifurcate
from the original one.

Therefore, we proceed as follows. First, we identify t
values of the parameters (Pf ,d,a) for which periodic ana-
02740
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lytical solutions exist in the reduced phase space. Then,
carry out the numerical continuation of the families of pe
odic orbits—by varying one parameter, while the other
mains constant—that arise from those solutions. In addit
a stability diagram presenting the evolution ofk versus the
parameter generator of the family is computed for every fa
ily, where we can detect possible bifurcations. When a bif
cation is found, the study is completed by calculating t
corresponding Poincare´ surfaces of section.

In searching for particular solutions of Eq.~6!, we find the
following.

~1! Rectilinear orbits along thej axis (z50) that exist
always, which we callRj .

~2! Rectilinear orbits along thez axis (j50) that exist for
Pf50, which we callRz .

~3! Rectilinear solutions withz/j56A3/5 that exist for
Pf50 andd5A1/6.

~4! Circular solutions of radiusj21z256E that exist for
Pf50, d5A1/6, anda50.

Therefore, we have available four periodic solutions
start the continuation procedure. We first compute the fam
of quasi circular periodic orbits that emanate from the circ
lar solution from variations of the structural parametera until
reaching the valuea50.2. For a50.2 the electrodes are
quite deformed and this value—that is near to experime
values @5#—will be considered fixed hereafter. Then, fo
Pf50 we study the variation of all four solutions for varia
tions of the control parameterd.

In order to work in a regular region of confined motio
but with possibility of escape, we fix the energy toE
51/200 for which value the escape channels are reache

d25
2

7
2

6a2)A125280a124a2

35&
, ~11!

which for a50.2 givesd'0.786,d, , inside the working
interval.

In Fig. 1 we see that oscillations on thej axis show a
regular behavior with stable orbits (uku,2) for d,0.809 and
possible bifurcations atd'0.242, 0.423, 0.540, 0.623, 0.70
0.756, 0.809. Oscillations on thez axis show stability ford
,0.6903 and possible bifurcations atd'0.690, 0.561,
0.390, 0.279, 0.210, 0.164, 0.131. For smaller values ofd the

FIG. 1. Families of periodic oscillations on thez axis ~dashed
line! and on thej axis ~full line!.
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stability behavior is highly oscillatory between the critic
values62 and, likely, with many bifurcations.

After a careful look at the valuesd'0.423 and d
'0.390 given before, we see that not one, but two conse
tive bifurcations are produced in their vicinity where the i
clined, rectilinear orbits and the elliptic periodic solutio
appear. As presented in Fig. 2, they only exist in a narr
interval ofd. Thus, the unstable, elliptic orbits bifurcate fir
from thez axis atd'0.385 and immediately the stable, in
clined rectilinear solutions bifurcate atd'0.394. Both fami-
lies terminate on thex-y plane: first the inclined, rectilinea
trajectories atd'0.417, and then the elliptic orbits atd
'0.429.

Figure 3 provides a representation of the reduced ph
space forPf50 andd51/A6, where we easily identify the
stable rectilinear orbit along thej axis as the elliptic fixed
point located at~0, 0!; the rectilinear orbitsz56A3/5j as
the elliptic fixed points symmetrically located at thez axis;
two unstable almost circular orbits traveled in opposite
rections, as the hyperbolic fixed points of the separatrix t
divides the previous regions of motion. Note that the sta
oscillation on thez axis is not a tangent to the flux in thi
representation, and corresponds to the exterior limit of
Poincare´ sectionPz5A2E2d2z2(114az2).

According to Figs. 1 and 2, a very different behavior

FIG. 2. Top: region ofd with stable, rectilinear, inclined orbits
~dotted line!, and unstable, elliptical ones. Bottom: orbits forPf

50, andd50.397~black!, d50.414~gray!.
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FIG. 3. Surface of sectionz-Pz (Pj50) for d51/A6.

FIG. 4. Surfaces of sectionj-Pj (Pz50). From top to bottom
d50.6, 0.7, and 0.757.
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found for higher values ofd, where both circular and in
clined trajectories disappear. More than this, ford.0.561
more families are expected from bifurcations of axial a
planar orbits. We rely again on surfaces of section in orde
get a picture of the phase space. Thus, in Fig. 4 we pre
three surfaces of section. Ford50.6 ~top! we see elliptic and
hyperbolic fixed points corresponding to stable and unsta
bifurcations of the axial trajectory ford50.5610. Ford
50.7 ~center! we identify several periodic trajectories: orbi
~1, 2, 3! appear atd50.6229 as bifurcations of thez axis
oscillation with triple period; orbits~4, 5, 6! bifurcate with
fourfold period from thez axis oscillation atd50.6500; or-
bits ~7, 8! are elevenfold bifurcations of thez axis oscillation
that occurs atd50.6429.

For d.0.7 thez axis oscillation becomes highly unstab
and the phase space is gradually filled with chaos. The c
d50.757 is presented at the bottom of Fig. 4, where ch
dominates the portrait alternating with chains of islands. T
apparition of chaos seems to be related to the transitio
instability of thez oscillations produced atd50.6903. Be-
fore this value all the solutions pass along the origin, bu
this bifurcation, two almost vertical symmetric oscillation
appear—orbit 9 in the center plot of Fig. 4 and its symme
with respect to thez axis—that never pass through the origi

IV. DISCUSSION

Despite all the orbits considered in the previous analy
being bounded orbits, not all of them have a physical me
ing. In addition to being bounded orbits, they must be c
fined to the trap. Since the dimensions of the trap are gi
by the arrangement of the electrodes, and the orbits
bounded by the corresponding equipotential curve of c
stant energy, we can guarantee that, for a givend, all the
orbits will be real orbits if the equipotential curve remai
confined between the electrodes. This fact is illustrated
Fig. 5. Whend is small, the equipotential curve spreads ov
a wide region of thez axis. Hence, most of the orbits aroun
Rz will have a big size, and, therefore, unphysical meani
while orbits aroundRj will have a small size, being rea
trapped orbits. Whend tends tod, , the equipotential curve is
mainly localized along thej axis and, therefore, most orbit
aroundRj could be too large in size to be physical, whi
orbits aroundRz will be real trapped orbits. A compensate
behavior takes place for 0.3<d<0.5 because the equipoten
tial curve is well confined inside the trap—a situation usua
achieved in real experiments@6#.
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On the other side, we can conclude that, for a wide ra
of values ofd, the phase space shows regular structure.
reason of this fact lies on that the effect of the octupo
perturbation can be mitigated by working with a cyclotro
frequencywc much bigger than the axial onewz , i.e., d
!d l , corresponding to the usual experimental conditio
the so-calledhierarchy conditionarrives from the fact that
slow magnetron motion is necessary in order to get an alm
permanent ion confinement@8#. In this sense, ford,0.38,
the phase space structure is dominated by the only pres
of the periodic orbitsRj and Rz . These periodic orbits are
indicating that the behavior of the system is very near to
integrable limit ~harmonic motion! for a→0. However, the
general effect of increasing the control parameterd is a
pumping process through which periodic orbits eman
from vertical oscillations on thez axis and they continuously
approach the~x,y! plane until ending as~horizontal! oscilla-
tions in that plane.
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FIG. 5. Equipotential curvesW(j,z)51/200 (a50.2). The
dashed curves correspond to the electrodes.
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