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Octupolar perturbation of a single ion in a Penning trap
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We investigate the classical dynamics of a single ion trapped in a Penning trap perturbed by a octupolar
electrostatic perturbation that introduces nonlinearities in the motion. We show that the dynamics is controlled
by a single external parameter that combines the influence of the electric and magnetic fields. Through the
variation of this parameter, we explore the evolution of the phase space structure of the system by the
numerical continuation of the families of periodic orbits.
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[. INTRODUCTION The electric potential acts as a trap only along ztais;
while the magnetic fieldB along thez axis provides the
The dynamics of a perturbed single ion Penning trap iscomplete trapping.
investigated from the point of view of the classical mechan-
ics. Classical dynamics has proven to be very useful for in- Il. EQUATIONS OF MOTION
terpreting the quantum dynamics of atomic and molecular _ i i
systems, even when the classical dynamics is chaotic and the The Hamiltonian of a trapped single ion of massand
quantum dynamics is strongly mixéd]. The study of peri- Cchargeq is
odic orbits and phase space structure provides useful infor- 12 2 a2 -2 1 L2t 2
mation that can be compared with the behavior of the corre- H=32(P,+P;+Pyp 7= (20B)P,+(29B)"zp
sponding quantum system and with experimégats3]. +mV(p,2) &)
The Penning trap4] provides three-dimensional trapping "
of charged particles by means of a magnetic field plus ghere P,.P,,P,) are the conjugated momenta of the cy-
quadrupolar electric field. The electric field is achieved by“ndrica_] Coordinateslﬁ'Z, ¢) Since the system is under ro-
means of a set of three electrodes that @leally) infinite  tation around thez axis, the canonical angular momentum
hype_rbOIOIdS of rev0|-ut|(-)n. However, when a real trap |SP¢ is an integraL By introducing the ratié:WZ/WC be-
cons_ldered, the e_Iectrlc field can be modeled by means of thgeen the axial w,= \/W and cyclotron w,
multipole expansiof7] =qB/m frequencies, scaling time hy., and coordinates by
Ry, we write Eqg.(3) in dimensionless coordinates as

V=2 Vi, Vi= 2> ar'Pl(cost)coske, (1) H=1(P2+ P2 +W(p,Z;P,), @

O<ks=lI
whereW is the effective potential,

where {,60,¢) are spherical coordinates, aﬂéf are the 2

Legendre polynomials. The first two terms are linear, produc- Py, Py p? &

€9 poly : S are linear, p =— L+ oG+ + —[222- pP+a(8z*— 24077
ing constant forces. Thguadrupole V4 gives rise to har- 2 2p° 8 4

monic motion, and all higher orders introduce nonlinearities L3ph 5
in the motion. In typical real Penning traps, the electrodes Pl ®)

can be assumed to be symmetrical with respeckifiplane  ag narametea must be considered fixed for a given trap, the
and cylindrically symmetric. Hence, all the terms in BB} rop1em depends on the external paramétegiving a mea-
with | odd andk=0 vanish. In this work, we consider the gre of the relative influence of the electric and magnetic
contribution of theoctupole 4 that is the main perturbation ia1qs—as well as on the internal oife,, and of course on

in a real trap where the electrodes are approximated by elegq energy integral =E. ’

trodes of spherical sectidib]. Hence, by using cylindrical  gecayse of the cylindrical symmetry of our problem, the
coordinates, we express the electrostatic potenfialV, (p,z) motion is decoupled from the angular motion, and the
+V, as study of the equations of motion,
V=Ug[22%— p2+a(82*— 24p22%+ 3p") IR, (2) p=P,, P,=—dWldp, z=P,, P,=-diWlaz, ©
6

wherea=a,/R3, U, is the voltage applied to the end-cap of the (p.z,P,,P,) phase space will provide enough infor-
electrodes with respect to the rinB, is the distance be- mation on the behavior of the system. It is convenient to
tween the two end caps, apd=x>+y?2. distinguish between the cabg,# 0, where a centrifugal bar-
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rier exists preventing the orbits from approaching the origin,
and the cas® ,=0, where the motion takes place on a ver-
tical plane that rotates with constant angular velocity. In this
paper we focus on the casg,= 0, which is quite represen-
tative of the dynamics for alP, .

Ill. PHASE SPACE STRUCTURE

In the rotating €,z) plane—where we usé instead ofp
in order to consider negative values—the potential energy
surfaceW(¢,z)=E shows five critical points: a minimum
Py, and four symmetrically located saddle poifs; 3 4,

1 1+4652 1— &2 FIG. 1. Families of periodic oscillations on tizeaxis (dashed
Po=(0,0), P1’2’3'4=2—5 + 15 =+ 1 |- line) and on thet axis (full line).

@ lytical solutions exist in the reduced phase space. Then, we

Hence, the effect of the octupolar perturbation is to creat&arTy out the numerical continuation of the families of peri-
four equivalent channels of escape through which the ion i@dic orbits—by varying one parameter, while the other re-
able to leave the trap. We remark that the saddle points ar®ains constant—that arise from those solutions. In addition,
equilibria with respect to the rotating frame and circular tra-a Stability diagram presenting the evolutionlofersus the
jectories with constant angular velocity in the inertial frameParameter generator of the family is computed for every fam-

of the trap. ily, where we can detect possible bifurcations. When a bifur-
The energies of the critical points are cation is found, the study is completed by calculating the
corresponding Poincasurfaces of section.
1+86°—145* In searching for particular solutions of E&), we find the
Eo=0, Es= E1,2,3,4:W- 8 following.

(1) Rectilinear orbits along thé& axis (z=0) that exist
When a increases, the enerdys decreases, and the saddle always, which we calR;.
points tend to the minimum. As expected, when the octupolar (2) Rectilinear orbits along theaxis (6=0) that exist for
perturbation grows, the trapping energy interval and the zon® ,= 0, which we callR, .
where the ion can be trapped decrease. In addition, note that (3) Rectilinear solutions withe/é= + J/3/5 that exist for
Es=Ey=0 for P,=0 and5=/1/6.
(4) Circular solutions of radiug®+ z°=6E that exist for
52:2+\/F/2 P,=0, §=/1/6, anda=0.
¢ 7 Therefore, we have available four periodic solutions to
start the continuation procedure. We first compute the family
which does not depend am At this value the motion is not  of quasi circular periodic orbits that emanate from the circu-
confined except for oscillations in th&and z directions—  |ar solution from variations of the structural parametemtil
that are critical. Therefore we limit our study to values®f reaching the value=0.2. Fora=0.2 the electrodes are
in the interval (09;), where the ion can be trapped. Note quite deformed and this value—that is near to experimental
that the possibility of escape is always present because in thglues [5]—will be considered fixed hereafter. Then, for
interval (04,) there always exists @ value for which the  p =0 we study the variation of all four solutions for varia-
energy of saddle points can be smaller than the ion’s energyions of the control parametet:
The phase space structure is mainly characterized by the |n order to work in a regular region of confined motion
number of the periodic orbits living in phase space, and byput with possibility of escape, we fix the energy B

their stability. The stability of a periodic orbit is determined =1/200 for which value the escape channels are reached at
from the eigenvalueks; of the monodromy matrix. In Hamil-

., 5,~0.823, (9)

tonian problems, the eigenvalues appear in reciprocal pairs, 2 6a—v3./125-80a+ 24a?
and we have one trivial eigenvalug=1 with multiplicity 5227— , (17
2. Then, the stability index 352
K=\ -+ 1/\ (100  Which for a=0.2 gives§~0.786<d,, inside the working
interval.
is normally used, where the conditidnreal and/k|<2 ap- In Fig. 1 we see that oscillations on tigeaxis show a

plies for linear stability, and the critical valde= =2 means regular behavior with stable orbitfk(<2) for §<0.809 and
that a new family of periodic orbits has likely bifurcated possible bifurcations ai~0.242, 0.423, 0.540, 0.623, 0.708,
from the original one. 0.756, 0.809. Oscillations on tteaxis show stability ford
Therefore, we proceed as follows. First, we identify the<<0.6903 and possible bifurcations at~0.690, 0.561,
values of the parameter®|,,d,a) for which periodic ana- 0.390, 0.279, 0.210, 0.164, 0.131. For smaller valuestbe
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FIG. 2. Top: region ofs with stable, rectilinear, inclined orbits
(dotted ling, and unstable, elliptical ones. Bottom: orbits fey,
=0, and6=0.397 (black, §=0.414(gray). 0.1

stability behavior is highly oscillatory between the critical 0.05
values*=2 and, likely, with many bifurcations.

After a careful look at the value$~0.423 and §
~0.390 given before, we see that not one, but two consecu-
tive bifurcations are produced in their vicinity where the in-
clined, rectilinear orbits and the elliptic periodic solutions  .0.05
appear. As presented in Fig. 2, they only exist in a narrow
interval of 6. Thus, the unstable, elliptic orbits bifurcate first
from thez axis at5~0.385 and immediately the stable, in-
clined rectilinear solutions bifurcate at=0.394. Both fami-
lies terminate on the&-y plane: first the inclined, rectilinear
trajectories at6~0.417, and then the elliptic orbits at
~0.429.

Figure 3 provides a representation of the reduced phase
space forP ,=0 andé= 1/\/6, where we easily identify the
stable rectilinear orbit along thé axis as the elliptic fixed
point located a0, 0); the rectilinear orbitz= + \/3/5¢ as
the elliptic fixed points symmetrically located at theaxis;
two unstable almost circular orbits traveled in opposite di-
rections, as the hyperbolic fixed points of the separatrix that
divides the previous regions of motion. Note that the stable
oscillation on thez axis is not a tangent to the flux in this
representation, and corresponds to the exterior limit of the
PoincaresectionP,= \2E— 6°z*(1+4az°). FIG. 4. Surfaces of sectiof-P, (P,=0). From top to bottom

According to Figs. 1 and 2, a very different behavior is §=0.6, 0.7, and 0.757.
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found for higher values ob, where both circular and in-
clined trajectories disappear. More than this, ¢ 0.561 0.75
more families are expected from bifurcations of axial and
planar orbits. We rely again on surfaces of section in order to 05
get a picture of the phase space. Thus, in Fig. 4 we present
three surfaces of section. Fé 0.6 (top) we see elliptic and 0.25
hyperbolic fixed points corresponding to stable and unstable
bifurcations of the axial trajectory fo6=0.5610. Foré z 0
=0.7 (centej we identify several periodic trajectories: orbits
(1, 2, 3 appear at6=0.6229 as bifurcations of the axis -0.25
oscillation with triple period; orbitg4, 5, 6 bifurcate with
fourfold period from thez axis oscillation ats=0.6500; or- -0.5
bits (7, 8) are elevenfold bifurcations of theaxis oscillation
that occurs av=0.6429. -0.75
For 6>0.7 thez axis oscillation becomes highly unstable
and the phase space is gradually filled with chaos. The case -1 -0.5 0 0.5 1
6=0.757 is presented at the bottom of Fig. 4, where chaos 3
dominates the portrait alternating with chains of islands. The
apparition of chaos seems to be related to the transition to FIG. 5. Equipotential curvedV(¢,z)=1/200 @=0.2). The
instability of the z oscillations produced af=0.6903. Be- dashed curves correspond to the electrodes.
fore this value all the solutions pass along the origin, but at
this bifurcation, two almost vertical symmetric oscillations  On the other side, we can conclude that, for a wide range
appear—orbit 9 in the center plot of Fig. 4 and its symmetricof values of§, the phase space shows regular structure. The
with respect to the axis—that never pass through the origin. reason of this fact lies on that the effect of the octupolar
perturbation can be mitigated by working with a cyclotron
IV. DISCUSSION frequencyw, much bigger than the axial one,, i.e., §
. ] . ] . <), corresponding to the usual experimental conditions:
Despite all the orbits considered in the previous analysighe so-callechierarchy conditionarrives from the fact that
being bounded orbits, not all of them have a physical meansjow magnetron motion is necessary in order to get an almost
ing. In addition to being bounded orbits, they must be conpermanent ion confinemefi]. In this sense, foy<0.38,
by the arrangement of the electrodes, and the orbits argf the periodic orbitsR, andR,. These periodic orbits are
bounded by the corresponding equipotential curve of conmgicating that the behavior of the system is very near to its
stant energy, we can guarantee that, for a givemll the  jntegrable limit(harmonic motioh for a—0. However, the
orbits will be real orbits if the equipotential curve remains general effect of increasing the control parameteis a
confined between the electrodes. This fact is illustrated "bumping process through which periodic orbits emanate
Fig. 5. Whenéis small, the equipotential curve spreads overfrom vertical oscillations on the axis and they continuously

a wide region of the axis. Hence, most of the orbits around gnnroach thex,y) plane until ending aghorizonta) oscilla-
R, will have a big size, and, therefore, unphysical meaningyjons in that plane.

while orbits aroundR; will have a small size, being real
trapped orbits. Whe#itends tod, , the equipotential curve is
mainly localized along th& axis and, therefore, most orbits
aroundR; could be too large in size to be physical, while M. Lara recognizes support from the Spanish Ministry of
orbits aroundR, will be real trapped orbits. A compensated Technology and Sciend@roject No. ESP2002-02329]. P.
behavior takes place for 0s35<0.5 because the equipoten- Salas recognizes support from the Spanish Ministry of Tech-
tial curve is well confined inside the trap—a situation usuallynology and Sciencéroject No. BFM2002-03157and from
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