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Numerous dynamical systems are represented by a quadratic Hamiltonian with the phase space
on the S? sphere. In this paper, for the unique class of quadratic Hamiltonians depending on three
parameters, we analyze the equilibria and the occurrence of parametric bifurcations; we obtain
the surfaces of bifurcation in the space of parameters. We describe, in the context of quadratic
Hamiltonians, a special type of bifurcation associated with a nonelementary fixed point; we name it

a double teardrop bifurcation.

PACS number(s): 03.20.+i, 03.65.Sq, 46.10.+z

I. INTRODUCTION

Perturbation methods have brought new insights in the
analysis of nonlinear dynamical Hamiltonian systems [1].
By means of averaging or normalization techniques, the
original nonintegrable Hamiltonian is replaced by an in-
tegrable approximation that is built so as to give good
agreement with the real dynamics.

In a large number of cases the resulting Hamiltonian
proves to be quadratic in a set of variables that gener-
ate an su(2) algebraic structure. In these variables the
system has a singular noncanonical bracket tensor, and
a conserved quantity, called the Casimir invariant, exists
due to the degeneracy of the bracket [2,3]. The topology
of the phase space is defined by a constant-energy sphere
(Hopf sphere).

We find this type of problem in classical mechanics,
e.g., in the rigid body in torque free motion [4-6], the
motion of atoms in electric and magnetic fields [1,7-9], in
studies on molecules [10], in the context of Hamiltonian
chaos in nonlinear optical polarization dynamics [11,12],
in the detection of frozen orbits in the artificial satel-
lite theory [13,14], and in galactic dynamics [15], among
others.

In most of the cases previously mentioned, parametric
bifurcations have been detected by numerical analysis for
concrete values of the parameters of the system, which
means that most of the dynamics of the system is un-
covered. These facts motivated several authors to make
a classification depending on the parameters. Indeed,
when such a classification is available, together with the
different bifurcations occurring in each class, it becomes
easy, for a given parametric quadratic Hamiltonian, to
identify the bifurcations inherent to it. For biparamet-
ric quadratic Hamiltonians, a complete classification has
already been done in [16], and the parametric bifurca-
tions and global phase flow representation is contained
in [17,18]. For more than two parameters, the classifica-
tion of the types of Hamiltonian is given in [19].
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In this paper, we deal with the unique triparametric
quadratic Hamiltonian. This Hamiltonian is equivalent
to case 5 in the work of David et al. [ 12, p. 348], cor-
responding to the one-beam problem with birefringence
and that was left unanalyzed because of its complexity
[12, p. 364]; thus, new bifurcations might be expected,
and indeed, this is the case.

From this triparametric quadratic Hamiltonian, we de-
rive the equations of the motion and the equilibria (Sec.
II) and the regions in the parametric space where they
exist. The boundaries of these regions (a cone and a
conoid) determine the parametric bifurcations (Sec. III).
The stability of the equilibria in each region is obtained
(Sec. 1V), and the phase flow evolution is described in
Sec. V. The biparametric case [11,17,18] is recovered as
a particular case of the triparametric one.

II. HAMILTONIAN AND EQUILIBRIA

Let us consider a Hamiltonian system with one degree
of freedom in a set of variables u, v, w such that they gen-
erate an su(2) algebraic structure, that is, their Poisson
brackets satisfy the relations

(u;v) = w, (v;w) =, (wiu) =v. (1)
According to these relations, the variables (u, v, w) lie on
a two-dimensional sphere S2. For the sake of simplifying
the notation we assume the radius of the sphere is equal
to unity, that is,

W+ +w?=1. (2)

Once the symplectic structure is defined, we shall con-
sider dynamical systems represented by a Hamiltonian
that is a quadratic form in these spherical coordinates.
Its general expression is
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H = %Au2 + %sz + %sz + Duv + Euw + Fow
+Lu+ Mv + Nw,

where the coefficients are real parameters independent of
the variables. Under an action of the SO(3) group (see
[16]) the Hamiltonian is reduced to

H = %uz + %sz + %sz + Lu+ Mv + Nw. (3)
A complete classification of this type of Hamiltonian sys-
tem in terms of the number of free parameters is made
in [19].

The global phase flow and its bifurcations for the bi-
parametric cases have been studied in [17,18]. In the
present paper we focus our attention on Hamiltonians of
the type (3) that depend on three parameters. As was

established in [19], there is only one triparametric case:

1 1
H= 5uz + 5Pv2 + Qu + Rv. (4)
The presence of symmetries simplifies the analysis of the
phase portrait. The Hamiltonian H is invariant under
the transformations

w  — —w,
(’U., Q) — (‘u,_Q)a (5)
(v, R) — (—v,—R).

The first symmetry shows that the phase flow is symmet-
ric with respect to the plane w = 0, and the other two
show that it is sufficient to study nonnegative values of
the parameters Q and R.

Taking into account the Liouville-Jacobi theorem and
the relations (1), the equations of the motion are

1t = (u;H) = w(Pv+ R),
v = (;H) = —w(u+Q), (6)
w= (w;H) =v(u+ Q) —u(Pv+ R).

I

These equations present the symmetries

(w,t) —  (—w,—1),
(v, Q,t) — (—u,—Q, 1),
(’UvR?t) S (_Uv—R7_t)7

which correspond to the symmetries (5).

In some particular cases, the system (6) is easily inte-
grable. Indeed, when P = 0 and R = 0, the right hand
member of the first equation vanishes and the motion
is made of pure rotations around the u axis with con-
stant angular velocity (@ + u). In the case that P =1,
Q@ = 0, and R = 0, the situation is analogous, but now
the rotations are around the w axis with constant angular
velocity w.

Equilibria are one of the main sources of information
on the phase flow. The equilibria are the roots of the
system made of the right hand members of (6) equaled
to zero, together with the constraint (2).

For some particular values of the parameters, the sys-
tem presents degeneracies, that is, the set of equilibria
is dense, or in other words, there are nonisolated equi-
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libria. The parameters for which this happens are the
above mentioned. Indeed, (i) for P = 0, R = 0, and
|Q| < 1, all points on the small circle v* + w? = 1 — Q2
are equilibria, and (ii) for P =1, Q@ = 0, and R = 0 the
equator (w = 0) of S? is made of equilibria. The isolated
equilibria are obtained depending on the value of w.

A. w#0

The first equation of the system (6) vanishes for v =
—R/P, the second one when v = —Q, and for these val-
ues of v and v, the third equation vanishes too. Taking
into account that the points must lie on the sphere (2),
we find two equilibria, namely,

Eo = (—Q, —R/P,\/T— Q2 — R2/P2>
and

E, = (—Q, —R/P,—\/1-Q% — R2/P2) .

N.B. For the existence of these points the condition Q2 +
R?/P?% < 1 must hold, i.e., these equilibria only exist in
the interior of the set

F={PQ.R)|R<P1-Q"} (7)

In the boundary 8F, the two points Ey, F; merge into
only one, (—Q,—R/P,0). Consequently, 0F defines a
surface of parametric bifurcation in the parameter space.
Such a surface (Fig. 1) is not differentiable along the
segment P = R = 0, |Q| < 1, that coincides precisely
with the first degenerate case above mentioned.

This surface is a ruled surface, and is named a conoid
[20, p. 194]; its level contours on the plane P = const
are ellipses, one of its semiaxes of constant length equal
to the unit, and the other of variable length (P). The

P

FIG. 1. Surface of bifurcation 8F = R? = P*(1 — Q?) for
equilibria with w # 0.
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level contours on the plane Q@ = const are straight lines,
passing through the point P = 1. The intersection of
the surface with the plane R = 0 are two parallel lines
Q = +1.

B.w=0

Now, the first two equations of (6) are equal to zero
and the third one vanishes in the following two cases:

u=0, v==1 when P=1, Q@ =0, (8)
and
uR
= —— 1 0-
v A-Puto when P#1, Q# (9)

Let us consider now the relation (9). In this case, and
remembering that the variables are on the sphere (2),
it follows that the first component of the equilibria (u)
must fulfill the following polynomial equation:

Aw) = (W2 = 1) [(1 - P)u+Q)* + R?u®2=0. (10)

Between the roots of the polynomial 4 and the equilibria
there is a one-to-one correspondence, for A is > 0 iff |u| >
1. By virtue of the Bolzano theorem [21, p. 96], there
exist, at least, two equilibria in the plane w = 0, since
A(-1) = R%? >0, A(0) = —Q? <0, and A(1) = R? > 0.

The polynomial A was obtained from (9), that is, for
P # 1. Thus, the transformation (Q*, R*) — (Q,R)
defined by

Q" =Q/(1-P),

is regular and converts A into

R*=R/(1-P) (11)

Au) = (u? — 1) (u + Q*)% + R**u? = 0. (12)

Equation (12) coincides exactly with Eq. (8) of [17],
which determines the equilibria for the biparametric
quadratic Hamiltonian (H = fu? + Q*u + R*v).

Let us recall that in this biparametric case, the para-
metric bifurcation line was characterized as the curve
on which the equilibria were nonelementary fixed points,
that is, points whose Poincaré index is zero. This type of
singular point may be considered to be the coalescence
of a center and a saddle point. The singularity [22,23]
corresponds to an inflection point of the potential energy
and the singular point must be regarded as unstable. The
bifurcation line is the hypocycloid of four cusps,

Q*Z/S +R*2/3 — 1,

that by means of the inverse transformation of (11) is
converted into the surface
3G = Q¥ + R?® = (1 — P)¥/3, (13)

that is a cone (Fig. 2), with its vertex at the point Q =
0,P = 1,R = 0. The intersection with this cone on the
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FIG. 2.

Surface
+R?/3 = (P — 1)?/3 for equilibria with w = 0.

of bifurcation 8G =

plane P = const is an hypocycloid of four cusps, whereas
the intersection with planes Q = const or R = const are
two straight segments. Obviously, the cross of the cone
G with the coordinate plane R = 0 are two straight lines
passing through the vertex Q =0,P =1,R = 0.

In the exterior of the set G = {(P,Q, R) | Q*/>*+ R?/® <
(1 — P)?/3}, there are only two equilibria lying on the
equator w = 0; in the interior of G there are four such
points; and just on the boundary O8G, there are three
equilibria with w = 0.

N.B. Setting P = 0 in the surfaces (7) and (13), we
recover the bifurcation lines of the biparametric Hamil-
tonian studied in [17]; analogously, setting R = 0, we
recover the bifurcation lines corresponding to the other
biparametric Hamiltonian studied in [18].

III. PARAMETRIC BIFURCATIONS

From the analysis above made, for a given value of
parameters @, P, and R, the phase flow will depend on
the relative position of this point (in the QPR space of
parameters) with respect to the two surfaces F and 8G.
The existence of the symmetries (5) allows us to restrict
the analysis to values non-negative of the parameters Q
and R.

To study the crossing of the two surfaces 8F and 9G,
we take the sections of them with planes P = P, = const.
The section of the conoid F with such a plane is the
ellipse

2, B _ 1 14

CHp =1 (14)

whose semiaxes are 1 and P;. On the other hand, the

section of the cone 9G is the hypocycloid of four cusps
(astroid),
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QY3 + RY3 = (1 — Py)?/3. (15)
Since we consider only the first quadrant (Q, R > 0), the
ellipse (14) is concave (i.e., d2R/dQ? < 0), whereas the
astroid (15) is convex (i.e., d2R/dQ? > 0). Both curves
decrease continuously as functions of Q.

The ellipse cuts the coordinate axes at the points
(Q,R) = (0,|P|) and (Q,R) = (1,0); the astroid cuts
it at the points (Q,R) = (0,|]1 — P|) and (Q,R) =
(|11 — P|,0). Since for

Poe(0,})=1-P>P and 1-P<1,

Pye(2,0)=|1-P|<P and |1-P|>1,
it follows that in these intervals the curves intersect one
another once.

However, for
Py€(3,2)=|1-P|<P and [1-P|<]1,
and because of the different convexity, the curves do not

intersect.

For

Py € (-00,0) = |[1—P|>|P| and |1-P|>1,
and it follows that either the curves do not intersect or
they cross one another twice. However, from the plots of
the surfaces, it seems that both surfaces (for P < 0) are
tangent, that is, the two crossing points merge into only
one. Let us prove that this is the case.

Different representations for the ellipse (14) and the
hypocycloid (15) are

[

O'(Po) = <(1 - Po) [m

and

s = ([iz) o » o) ).

and both points coincide when &« = 3. The common point
is obtained for a value of 7 given by

1 P
sin7 = ———— cos’T = —l d

11— P’ |1 - P’

and these relations only hold for Py < 0. That is, when
P < 0, the conoid (7) and the cone (13) are tangent
to one another. For 1/2 < P < 2, the surfaces do not
intersect (the cone is inside the conoid) (Fig. 3).

It turns out that the division of the space of parameters
(Q, P, R) can be visualized by means of four cuts across
the P axis as it is depicted in Fig. 4; the regions are
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ellipse : o = (|1 — Py|sin® 7, |1 — Py|cos®7),
with 0<7 <7/2, (16)

hypocycloid : ¥ = (sinT, |Po| cos T),

with 0<7 <7/2. (17)
The tangent vectors to these curves are, respectively,
o' = (3|1 — Py|sin® 7 cos 7, —3|1 — Py| cos® T sinT)
and
' = (cos T, —|Po|sinT).

Let us see under what conditions these vectors are par-
allel. In this case,

3|1 — Py|sin®? 7 cosT = acosT
and
—3|1 — Py|cos® 7sinT = —a|Py|sinT,
with a a parameter, that is,
3|1 — Py|sin?7 =« and 3|1 — Py|cos®’ T = a|Py|,
that when substituted into (16) and (17) give the points

on the ellipse and on the hypocycloid for which the tan-
gent vectors are parallel:

aPo

|" a-n [m]m)

labeled, in the figure, with capital letters and the primes
stand for those regions with a qualitatively equivalent
phase flow. Besides, we have to account for the loci where
there are nonisolated equilibria, namely, the point P =1,
Q@ = 0, R = 0 [the vertex of the cone (13)] and the
segment P = 0, R = 0, |Q| < 1 [the edge of the surface

(M)
IV. STABILITY

Explicit linear stability boundaries for equilibria of a
one-degree-of-freedom Hamiltonian flow are determined
by the characteristic polynomial. Since eigenvalues occur
in positive and negative pairs +J, it is possible to reduce
the degree of the characteristic polynomial by a factor of
2 [24]. Therefore, a reduced characteristic polynomial of
the form Q(o) = 0 — A is obtained and the equilibrium



FIG. 3. The two surfaces of parametric bifurcations: the
conoid 8F and the cone 8G.

is stable if A > 0 with stability boundary at A = 0.

All the above indicates that determining the stability
of the equilibria of a one-degree-of-freedom Hamiltonian
flow is not a difficult task. However, in the previous state-
ment, the coordinates of the equilibrium are supposed to
be known, whereas in the present paper we deal with
equilibria for which we do not know explicitly their co-
ordinates. Nevertheless, we will show that it is possible
to determine the stability of the fixed points albeit their
coordinates are not known.

To begin with, we linearize the equations of the motion
(6), from which we obtain the characteristic polynomial

A%+ [(u +Q)(u+Q — Pu)

+(Pv + R)(Pv—v + R) + Pw?| )

+ [(Pv + R)(u+ Q — Pu)
+(u+Q)(v — Pv — R)P:| w. (18)

Note that, contrary to what was mentioned previously,
eigenvalues do not occur in pairs. This is due to the
Casimir function [2,3] C = u?+v%+w?, which introduces
a noncanonical formalism and, consequently, the phase
flow is lying on the sphere S2.
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A. Stability of E; and E; (w # 0)

The equilibria Ey and E; only exist in the interior of
F, that is, when R? < P%(1 — Q?). For these points, the
characteristic polynomial (18) becomes

RZ
A% 4+ Puwir= 23+ (1—Q2— ﬁ) P

The eigenvalue A = 0 is due to the condition
udu + vév + wédw = 0

resulting from the variation of the Casimir. Thus, the
reduced characteristic polynomial is

2 2 A2 2 R2 P.
M4 Pu? =N+ (1-Q° - 55 ) P.

Taking into account that w? is always positive, we find
that Eg and FE; are stable iff P > 0, and Ey and E; are
unstable iff P < 0.

B. Stability of the equilibria in the plane w = 0

The equilibria placed on the plane w = 0 are given by
Egs. (9) and (10). By substituting (9) into (18), there
results

QF® + [u(1—P)+Q]°
[v(1-P) + QI

Thus, the linear stability boundaries are determined by
the two relations

A% 4 (Q + u) (19)

u=—-Q
and

_Q1/3Q2/3 +R2/3
1-P

U = Ug =

and, besides, u still must fulfill (10); that is to say, when
either

A-Q) =Q*[R*+(Q*-1)P?]| =0

2/3 p4a/3
Afwo) = Tz (@ + B¥9* - (1= P)*] =0

It is worth noting that the stability boundaries are, pre-
cisely, the surfaces 8F and 3G defined above. Therefore,
the stability of an equilibrium in the plane w = 0 re-
mains unchanged in each region in which the space of
parameters is divided (see Fig. 4).

Let us analyze, for instance, the stability in the region
C, that is, the intersection of the sets F and G with P >
1. For a such a point, we have -1 < —Q < —Q/(1-P) <
up < 1 and evaluating polynomial A there result
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FIG. 4. Division of the space of parameters for different
cuts across the P axis.

A(-1) = R? > 0,
A(-Q)=Q* [R? + (922— 1)P?] <0,
A(-Q/(1 - P)) = %5 >0,

2/3 p4/3
Auo) = S5 [(Q¥® + R¥/*)* — (1 - P)?] < 0,

A(1) = R? > 0,

which means that for u € [—1, 1] there are four equilibria.
From Eq. (19), it is easily checked that the fixed points
such that u € [-Q,—Q/(1—P)] and u € [-Q/(1—P), uq)
are stable, whereas u € [—1,—Q] and u € [ug,1] are
unstable ones.

The stability of the other cases is obtained in a similar
way. The stability-instability transition is depicted in
Fig. 5.

V. GLOBAL PHASE PORTRAIT

Since the Hamiltonian (4) has only one degree of free-
dom, it is integrable, and its trajectories are the curves
obtained as the intersection of the two surfaces, the
Hamiltonian # and the sphere S2, that is to say, the tra-
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jectories are the contour levels of the Hamiltonian on the
sphere. To visualize the evolution of the phase flow when
the parameters evolve, we will travel through the differ-
ent regions and their boundaries along different paths.

There are several possible paths threading the regions
in the space of parameters; from these, we choose those
describing most of the bifurcations and for them, we draw
the phase portrait (see Figs. 6-8). We find that a pitch-
fork bifurcation occurs when the surface (7) is crossed
and a teardrop bifurcation when (13) is traversed. Ba-
sically these two bifurcations govern the transition from
one region to another.

In addition to these cases, worthy regions for study
are those where nonisolated equilibria exist, and also, the
coordinate planes, which divide regions where the phase
flow configuration is topologically equivalent due to the
existing symmetries. These cases were already studied
[17,18]; the bifurcations are of the types butterfly and
oyster, therein described, and the reader is addressed to
these references for details.

Besides, in the region P < 0 (see Fig. 8), where the
two surfaces (7) and (13) are tangent to each another,
we describe in the context of quadratic Hamiltonians on
the sphere, a special type of bifurcation associated with
a nonelementary fixed point. Next, we describe in detail
the bifurcations occurring in that hemispace. (N.B. In
planar dynamical systems, this bifurcation has been al-
ready found; see, for instance, the book of Guckenheimer
and Holmes [25, p. 385]).

A. P < 0. Bifurcations through the four regions

To analyze in this case how the phase portrait evolves,
let us move in the space of parameters along the path T,
a circle around the tangent point of the surfaces (7) and
(13) in the plane P < 0, for instance P = —2. It crosses
the regions A, D', E and D”. The phase flow evolution
along the path is depicted in Fig. 8.

FIG. 5. Stability in the different regions.
Continuous lines stand for stable points and

\
: i dashed lines for unstable equilibria.
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View from the
negative u-axis

)

View from the
positive u-axis

=¢

FIG. 6. Evolution of the phase flow for P = 3.

In region A, the flow comsists of rotations around two
stable points (P; and P») on the plane w = 0. When
the path crosses the cone (13) and comes in region D’
a teardrop bifurcation takes place: one of the periodic
orbits becomes an homoclinic loop that emanates from
a degenerate equilibrium, P3 (with Poincaré index 0) on
the equator of the sphere. Once inside region D’, another
homoclinic orbit emanates from the new equilibrium, now
unstable, surrounding a new stable fixed point Py, lo-
cated on the plane w = 0. As the path moves in towards
the region E the homoclinic loops tend to be tangent at

w
P=03
u

|

NG
@

View from the
negative v-axis

)

View from the
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View from the
negative u-axis

e (D

View from the
positive u-axis

FIG. 8. Evolution of the phase flow through the path I for

P = -2.
ION
N / /
=i
0.75&/ u 0.9 <

¢

positive v-axis

&

FIG. 7. Evolution of the phase flow for P = 0.3.

FIG. 9. Evolution of the phase flow through the common
point of tangency between the two surfaces, the cone and he
conoid, for P = —2. A double teardrop bifurcation appears at
this point.
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P53, and the two loops of the figure-eight shape are tan-
gent exactly at the conoid (7). Once inside this surface,
the unstable point Pj5 splits into three points, two unsta-
ble (Eo and E,) along the meridian (and symmetric with
respect to the equator) and P; that now becomes stable.
Although it may appear as a new kind of bifurcation, we
recognize in it a pitchfork bifurcation.

As we move through region E along the path I', the
homoclinic orbit surrounding P, abates, and again, at
the conoid, the three equilibria Ey, Es5, and P, merge at
only one point (P,), and the two homoclinic surrounding
P; and P, respectively, are tangent. Once the conoid
is traversed, the figure-eight shape appears, and as we
approach the cone, the loop containing Pz diminishes its
size, and vanishes exactly at the cone. At this surface,
P; and P, merge into only one point (P;) with Poincaré
index 0. Once the cone is passed, this unstable point
disappears, and the homoclinic orbit emanating from it
now becomes a periodic orbit, and the phase flow con-
tains only two stable points, as it was at the beginning
of the trip.

B. P < 0. Bifurcations through the tangent line

The direct transition from outside the cone to the inner
part of the conoid (through its mutual line of tangency)
is very special, since it consists of the evolution from a
phase flow with only two equilibria to another with six
equilibria. Let us describe how it happens.

For the sake of simplicity, we fix the negative value of
P (P = —2, for instance); thus, we consider the evolution
through the tangent point between the hypocycloid and
the ellipse. The phase portrait is represented in Fig. 9.

In region A, there are only two equilibria on the equa-
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tor (w = 0) that are stable, and the phase portrait is
made of periodic orbits surrounding them. As the pa-
rameters approach the tangent point, one periodic orbit
remains almost unaltered, whereas the periodic orbits
close to it start to widen and distort, creating a kind
of twofold womb where two new stable equilibria will be
born. Indeed, just at the tangent point (in parameter
plane), the unmodified orbit changes to be infinite pe-
riodic; the point of this orbit with w = 0 and v > 0
becomes a degenerate unstable equilibrium. As soon as
the tangent point is crossed, this equilibrium splits into
four equilibria, two unstable (Ey and E;), and two stable
on the equator. We name this a double teardrop bifurca-
tion.

VI. CONCLUSIONS

For the unique triparametric quadratic Hamiltonian on
the unit sphere, a complete description of the paramet-
ric bifurcations and of the phase flow is presented. The
bifurcation surfaces in the parametric space have been
obtained. The biparametric case is recovered as a partic-
ular case of the triparametric one. A bifurcation termed
the double teardrop bifurcation is reported.
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FIG. 1. Surface of bifurcation 8F = R? = P%*(1 — Q?) for
equilibria with w # 0.



FIG. 2. Surface of bifurcation &G
+R*3 = (P — 1)*/? for equilibria with w = 0.



FIG. 3. The two surfaces of parametric bifurcations: the
conoid dF and the cone 9G.



