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Numerous dynamical systems are represented by a quadratic Hamiltonian with the phase space
on the S sphere. In this paper, for the unique class of quadratic Hamiltonians depending on three
parameters, we analyze the equilibria and the occurrence of parametric bifurcations; we obtain
the surfaces of bifurcation in the space of parameters. We describe, in the context of quadratic
Hamiltonians, a special type of bifurcation associated with a nonelementary 6xed point; we name it
a double teardrop bifurcation.

PACS number(s): 03.20.+i, 03.65.Sq, 46.10.+z

I. INTRODUCTION

Perturbation methods have brought new insights in the
analysis of nonlinear dynamical Hamiltonian systems [1].
By means of averaging or normalization techniques, the
original nonintegrable Hamiltonian is replaced by an in-
tegrable approximation that is built so as to give good
agreement with the real dynamics.

In a large number of cases the resulting Hamiltonian
proves to be quadratic in a set of variables that gener-
ate an su(2) algebraic structure. In these variables the
system has a singular noncanonical bracket tensor, and
a conserved quantity, called the Casimir invariant, exists
due to the degeneracy of the bracket [2,3]. The topology
of the phase space is defined by a constant-energy sphere
(Hopf sphere).

We find this type of problem in classical mechanics,
e.g. , in the rigid body in torque free motion [4—6], the
motion of atoms in electric and magnetic fields [1,7—9], in
studies on molecules [10], in the context of Hamiltonian
chaos in nonlinear optical polarization dynamics [11,12],
in the detection of frozen orbits in the artificial satel-
lite theory [13,14], and in galactic dynamics [15], among
others.

In most of the cases previously mentioned, parametric
bifurcations have been detected by numerical analysis for
concrete values of the parameters of the system, which
means that most of the dynamics of the system is un-
covered. These facts motivated several authors to make
a classification depending on the parameters. Indeed,
when such a classification is available, together with the
diR'erent bifurcations occurring in each class, it becomes
easy, for a given parametric quadratic Hamiltonian, to
identify the bifurcations inherent to it. For biparamet-
ric quadratic Hamiltonians, a complete classification has
already been done in [16], and the parametric bifurca-
tions and global phase Row representation is contained
in [17,18]. For more than two parameters, the classifica-
tion of the types of Hamiltonian is given in [19].

In this paper, we deal with the unique triparametric
quadratic Hamiltonian. This Hamiltonian is equivalent
to case 5 in the work of David et al. [ 12, p. 348], cor-
responding to the one-beam problem with bire&ingence
and that was left unanalyzed because of its complexity
[12, p. 364]; thus, new bifurcations might be expected,
and indeed, this is the case.

Prom this triparametric quadratic Hamiltonian, we de-
rive the equations of the inotion and the equilibria (Sec.
II) and the regions in the parametric space where they
exist. The boundaries of these regions (a cone and a
conoid) determine the parametric bifurcations (Sec. III).
The stability of the equilibria in each region is obtained
(Sec. IV), and the phase flow evolution is described in
Sec. V. The biparametric case [11,17,18] is recovered as
a particular case of the triparametric one.

II. HAMILTONIAN AND EQUILIBRIA

Let us consider a Hamiltonian system with one degree
of freedom in a set of variables u, v, m such that they gen-
erate an su(2) algebraic structure, that is, their Poisson
brackets satisfy the relations

(u;v) =io, (v;io) = u, (iv;u) = v.

According to these relations, the variables (u, v, iv) lie on
a two-dimensional sphere S . For the sake of simplifying
the notation we assume the radius of the sphere is equal
to unity, that is,

u +v +to = 1. (2)

Once the symplectic structure is defined, we shall con-
sider dynamical systems represented by a Hamiltonian
that is a quadratic form in these spherical coordinates.
Its general expression is
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Q ~s + R ~ —(1 Pp) ~ ellipse: cr = (li —Ppl sin w, li —Ppl coss v),

Since we consider only the first quadrant (Q, R ) 0), the
ellipse (14) is concave (i.e. , d R/dQ & 0), whereas the
astroid (15) is convex (i.e. , d R/dQ ) 0). Both curves
decrease continuously as functions of Q.

The ellipse cuts the coordinate axes at the points
(Q, R) = (0, lPl) and (Q, R) = (1,0); the astroid cuts
it at the points (Q, R) = (0, ll —Pl) and (Q, R)
([i —Pl, 0). Since for

Pp 6 (0, 2):- 1 —P ) P and 1 —P & 1,

Pp E (2, oo):- li —Pl & P and li —Pl ) 1,

it follows that in these intervals the curves intersect one
another once.

However, for

with 0 & 7 & ~/2, (16)

hypocycloid: Z—:(sin w, lPp l
cos v),

with 0 & r & vr/2. (17)

The tangent vectors to these curves are, respectively,

o' = (3l1 —Ppl sin r cos r, —3[1 —Ppl cos v sin w)

and

Z' = (cosr, lPp—
l
sine).

Pp e (-,', 2) :~ li —Pl & P alld li —Pl & 1,
Let us see under what conditions these vectors are par-
allel. In this case,

and because of the different convexity, the curves do not
intersect.

For and

3ll —Ppl sin ecosoc = acosv

Pp E (—oo, O):- li —Pl ) lPl and li —Pl ) 1,

and it follows that either the curves do not intersect or
they cross one another twice. However, from the plots of
the surfaces, it seems that both surfaces (for P & 0) are
tangent, that is, the two crossing points merge into only
one. Let us prove that this is the case.

Different representations for the ellipse (14) and the
hypocycloid (15) are

—3
l
1 —Pp

l
cos T slil 'T = —Q

l Pp
l
sin 1,

with n a parameter, that is,

3li —Pol»n'~ = ~ and 311 —Pol cos2~ = ~IPol

that when substituted into (16) and (17) give the points
on the ellipse and on the hypocycloid for which the tan-
gent vectors are parallel:

cr(Pp) =— (1 —Pp)
3 1 —Pp

- 3/2 nPp') 3(i —P, )

- 3/2

and

Z(Pp)—:
~

3(i —P, )

- Z/2 nPp

3(1 —Po)

- i/2)
[)

and both points coincide when n = 3. The common point
is obtained for a value of w given by

labeled, in the figure, with capital letters and the primes
stand for those regions with a qualitatively equivalent
phase Bow. Besides, we have to account for the loci where
there are nonisolated equilibria, namely, the point P = 1,
Q = 0, R = 0 [the vertex of the cone (13)] and the
segment P = 0, R = 0, lQl & 1 [the edge of the surface
(7)].

2 = 1

ll —Pol
' li —P l' IV. STABILITY

and these relations only hold for Pp ( 0. That is, when
P & 0, the conoid (7) and the cone (13) are tangent
to one another. For 1/2 & P & 2, the surfaces do not
intersect (the cone is inside the conoid) (Fig. 3).

It turns out that the division of the space of parameters
(Q, P, R) can be visualized by means of four cuts across
the P axis as it, is depicted in Fig. 4; the regions are

Explicit linear stability boundaries for equilibria of a
one-degree-of-freedom Hamiltonian Bow are determined
by the characteristic polynomial. Since eigenvalues occur
in positive and negative pairs +A, it is possible to reduce
the degree of the characteristic polynomial by a factor of
2 [24]. Therefore, a reduced characteristic polynomial of
the form Q(o) = 0 —A is obtained and the equilibrium
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A. Stability of Ep and Ei (tv g 0)

The equilibria Eo and E~ only exist in the interior of
X, that is, when R & P (1 —Q ). For these points, the
characteristic polynomial (18) becomes

/'
2 R2)

+Pip %=A +i1 —Q —
2 GAPA.

The eigenvalue A = 0 is due to the condition

ubu+ vbv+ mba) = 0

resulting from the variation of the Casimir. Thus, the
reduced characteristic polynomial is

+ Pui = A +
~

1 —Q —
~

P.P'y

Taking into account that m is always positive, we find
that Eo and Eq are stable iK P ) 0, and Eo and Ej are
unstable iK P ( 0.

FIG. 3. The two surfaces of parametric bifurcations: the
conoid OT and the cone Bg.

B. Stability of the equilibria in the plane m = 0

is stable if A ) 0 with stability boundary at A = 0.
All the above indicates that determining the stability

of the equilibria of a one-degree-of-freedom Hamiltonian
flow is not a difBcult task. However, in the previous state-
ment, the coordinates of the equilibrium are supposed to
be known, whereas in the present paper we deal with
equilibria for which we do not know explicitly their co-
ordinates. Nevertheless, we will show that it is possible
to determine the stability of the fixed points albeit their
coordinates are not known.

To begin with, we linearize the equations of the motion
(6), from which we obtain the characteristic polynomial

The equilibria placed on the plane m = 0 are given by
Eqs. (9) and (10). By substituting (9) into (18), there
results

QR + [u(l —P) + Q]

[u(l P) + Q]
(19)

u=up= —Q i/3 Q2/3 + R2/3

1 —P

Thus, the linear stability boundaries are determined by
the two relations

A + (u+ Q)(u+ Q —Pu)

+(Pv + R)(Pv —v + R) + Pro A

and, besides, u still must fulfill (10); that is to say, when
either

A( —Q) =Q R g(Q —1)P =0
or

(Pv + R) (u + Q —Pu)
2/3R4/3

A(up) = (Q / +R/ ) —(1 —P) =0.
(1 —P) 2

+ (u + Q) (v —Pv —R)P ui.

Note that, contrary to what was mentioned previously,
eigenvalues do not occur in pairs. This is due to the
Casimir function [2,3] C = u2+v2+ur2, which introduces
a noncanonical formalism and, consequently, the phase
flow is lying on the sphere S .

It is worth noting that the stability boundaries are, pre-
cisely, the surfaces 0% and OQ defined above. Therefore,
the stability of an equilibrium in the plane m = 0 re-
mains unchanged in each region in which the space of
parameters is divided (see Fig. 4).

Let us analyze, for instance, the stability in the region
C, that is, the intersection of the sets P and g with P )
1. For a such a point, we have —1 & —Q & —Q j(l P)&—
up & 1 and evaluating polynomial A there result
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FIG. 4. Division of the space of parameters for difFerent
cuts across the P axis.

A( —1) =R' &0,
A( —Q) = Q' R'+(Q' —1)P' & 0,

A( —Q/(1 —P)) = (, ~), & 0,

~( )
Q R (Q2/s + R2/s)s (1 P)2 ( 0

A(1) =R &0,

which means that for u C [
—1, 1] there are four equilibria.

From Eq. (19), it is easily checked that the fixed points
such that u E [—Q, —Q/(1 —P)] and u E [

—Q/(1 P), uo]—
are stable, whereas u E [

—1, —Q] and u g [up, 1] are
unstable ones.

The stability of the other cases is obtained in a similar
way. The stability-instability transition is depicted in
Fig. 5.

jectories are the contour levels of the Hamiltonian on the
sphere. To visualize the evolution of the phase flow when
the parameters evolve, we will travel through the difer-
ent regions and their boundaries along diferent paths.

There are several possible paths threading the regions
in the space of parameters; &om these, we choose those
describing most of the bifurcations and for them, we draw
the phase portrait (see Figs. 6—8). We find that a pitch-
fork bifurcation occurs when the surface (7) is crossed
and a teardrop bifurcation when (13) is traversed. Ba-
sically these two bifurcations govern the transition from
one region to another.

In addition to these cases, worthy regions for study
are those where nonisolated equilibria exist, and also, the
coordinate planes, which divide regions where the phase
flow configuration is topologically equivalent due to the
existing symmetries. These cases were already studied
[17,18]; the bifurcations are of the types butterfly and
oyster, therein described, and the reader is addressed to
these references for details.

Besides, in the region P ( 0 (see Fig. 8), where the
two surfaces (7) and (13) are tangent to each another,
we describe in the context of quadratic Hamiltonians on
the sphere, a special type of bifurcation associated with
a nonelementary Gxed point. Next, we describe in detail
the bifurcations occurring in that hemispace. (N.B. In
planar dynamical systems, this bifurcation has been al-
ready found; see, for instance, the book of Guckenheimer
and Holmes [25, p. 385]).

A. P ( 0. Bifurcations through the four regions

V. GLOBAL PHASE PORTRAIT

Since the Hamiltonian (4) has only one degree of free-
dom, it is integrable, and its trajectories are the curves
obtained as the intersection of the two surfaces, the
Hamiltonian Q and the sphere S, that is to say, the tra-

To analyze in this case how the phase portrait evolves,
let us move in the space of parameters along the path I',
a circle around the tangent point of the surfaces (7) and
(13) in the plane P ( 0, for instance P = —2. It crosses
the regions A, D', E and D". The phase flow evolution
along the path is depicted in Fig. 8.

P= 3 A C D P=O3 A D' c'

p=-2 A Df E D" A

L
A

FIG. 5. Stability in the different regions.
Continuous lines stand for stable points and
dashed lines for unstable equilibria.

P3

P2

P3

0
C4

C
bQ

CC$

P2

P4 P4 P4
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P=3 P =-1

ikW

&&W nW

Q Q

View from the
negative u-axis

View from the
negative u-axis

View from the
positive u-axis

View from the
positive u-axis

FIG. 6. Evolution of the phase How for P = 3. FIG. 8. Evolution of the phase Bow through the path I' for
P = —2.

In region A, the How consists of rotations around two
stable points (Pt and P2) on the plane tv = 0. When
the path crosses the cone (13) and comes in region D'
a teardrop bifurcation takes place: one of the periodic
orbits becomes an homoclinic loop that emanates from
a degenerate equilibrium, Ps (with Poincare index 0) on
the equator of the sphere. Once inside region D', another
homoclinic orbit emanates from the new equilibrium, now
unstable, surrounding a new stable fixed point P4, lo-
cated on the plane w = 0. As the path moves in towards
the region E the homoclinic loops tend to be tangent at

0.75

0.2

-0-2 i

W

0.9

0.75
V

0.9

)tW

Q

Q

0.75
V

09

View from the
negative v-axis

View from the
positive v-axis

FIG. 7. Evolution of the phase Qow for P = 0.3.

FIG. 9. Evolution of the phase Bow through the common
point of tangency between the two surfaces, the cone and he
conoid, for P = —2. A double teardrop bifurcation appears at
this point.
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P3, and the two loops of the figure-eight shape are tan-
gent exactly at the conoid (7). Once inside this surface,
the unstable point P3 splits into three points, two unsta-
ble (Eo and Ei) along the meridian (and symmetric with
respect to the equator) and Ps that now becomes stable.
Although it may appear as a new kind of bifurcation, we
recognize in it a pitchfork bifurcation.

As we move through region E along the path I', the
homoclinic orbit surrounding P4 abates, and again, at
the conoid, the three equilibria Eo, E5, and P4 merge at
only one point (P4), and the two homoclinic surrounding
Pi and P4, respectively, are tangent. Once the conoid
is traversed, the figure-eight shape appears, and as we
approach the cone, the loop containing Ps diminishes its
size, and vanishes exactly at the cone. At this surface,
Ps and P4 merge into only one point (P4) with Poincare
index 0. Once the cone is passed, this unstable point
disappears, and the homoclinic orbit emanating &om it
now becomes a periodic orbit, and the phase flow con-
tains only two stable points, as it was at the beginning
of the trip.

B. P & 0. Bifurcations through the tangent line

The direct transition from outside the cone to the inner
part of the conoid (through its mutual line of tangency)
is very special, since it consists of the evolution from a
phase fIow with only two equilibria to another with six
equilibria. I et us describe how it happens.

For the sake of simplicity, we fix the negative value of
P (P = —2, for instance); thus, we consider the evolution
through the tangent point between the hypocycloid and
the ellipse. The phase portrait is represented in Fig. 9.

In region A, there are only two equilibria on the equa-

tor (to = 0) that are stable, and the phase portrait is
made of periodic orbits surrounding them. As the pa-
rameters approach the tangent point, one periodic orbit
remains almost unaltered, whereas the periodic orbits
close to it start to widen and distort, creating a kind.
of twofold womb where two new stable equilibria will be
born. Indeed, just at the tangent point (in parameter
plane), the unmodified orbit changes to be infinite pe-
riodic; the point of this orbit with m = 0 and u ) 0
becomes a degenerate unstable equilibrium. As soon as
the tangent point is crossed, this equilibrium splits into
four equilibria, two unstable (Eo and Ei), and two stable
on the equator. We name this a double teardrop bifurca-
tion.

VI. CONCLUSIONS

For the unique triparametric quadratic Hamiltonian on
the unit sphere, a complete description of the paramet-
ric bifurcations and of the phase flow is presented. The
bifurcation surfaces in the parametric space have been
obtained. The biparametric case is recovered as a partic-
ular case of the triparametric one. A bifurcation termed
the double teardrop bifurcation is reported.
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