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We investigate the classical dynamics of a hydrogen atom near a metallic surface in the presence of a
uniform electric field. To describe the atom-surface interaction we use a simple electrostatic image model.
Owing to the axial symmetry of the system, the z-component of the canonical angular momentum P� is an
integral and the electronic dynamics is modeled by a two degrees of freedom Hamiltonian in cylindrical
coordinates. The structure and evolution of the phase space as a function of the electric field strength is
explored extensively by means of numerical techniques of continuation of families of periodic orbits and
Poincaré surfaces of section. We find that, due to the presence of the electric field, the atom is strongly
polarized through two consecutive pitchfork bifurcations that strongly change the phase space structure. Fi-
nally, by means of the phase space transition state theory and the classical spectral theorem, the ionization
dynamics of the atom is studied.

DOI: 10.1103/PhysRevA.76.052903 PACS number�s�: 34.50.Dy, 45.20.Jj, 34.10.�x, 82.20.Db

I. INTRODUCTION

When a slowly moving atom or ion approaches a metallic
surface, the mutual interaction leads to electronic processes
of great interest in physics �see, e.g., �1� and references
therein�. In particular, due to the large size of the atom and
the weak binding of the excited electron, Rydberg atoms are
especially sensitive to the perturbations induced by a nearby
metal surface. In this sense, and even at large distances from
the surface, image charge effects strongly distort the elec-
tronic states and reorganize the energy levels of the atom �2�.
Moreover, as the atom approaches the surface, the outer elec-
tron is captured by the surface and the atom ionizes �3�. After
this charge transfer process, the positive ion is attracted to
the surface by its image charge and finally it is neutralized by
an Auger process. A fundamental question involved in a
charge transfer process is to determine how far from the
metallic surface the ionization of the atom takes place, i.e., to
know the ionization distance. In this sense, in most of the
experiments, an external static electric field perpendicular to
the surface is applied in such a way that, when the electric
field is strong enough, its Coulombic force on the ion is able
to counteract the metallic attraction. Then the ion escapes the
surface providing an experimentally observable signal �4–8�
that allows one to determine the distance to the surface
where the atom ionizes.

Moreover, theoretical studies show that when the atom
approaches the surface or when the electric field strength
increases, before the ionization, the electron falls on a Stark-
type regime in which some electronic wave functions are
strongly oriented either toward or opposite to the surface
�4,6,8�. This feature has been used in experiments to study
the ionization of xenon Rydberg atoms near an Au�111� sur-
face �7�.

In practice, when the interaction with the metallic surface
is described by a suitable mathematical model, the charge
transfer process at hand can be included into the family of
Rydberg atoms in external fields. It belongs to this family, for
instance, the well-known problem of a Rydberg atom inter-
acting with a strong magnetic field �the quadratic Zeeman
effect� �9�. All members of this family share the property that
quantum and classical worlds overlap with the result that
classical mechanics is able to explain with astonishing accu-
racy many quantum properties �10�.

At this point, and in the framework of classical mechan-
ics, we study in this paper the dynamics of a Rydberg atom
perturbed by an external static electric field and by a nearby
metallic surface. In particular, because most of the theoreti-
cal studies have been done with hydrogen �2,11�, we use this
atom in our approach. With this atom choice the interaction
of the Rydberg electron with the nucleus is purely Coulom-
bic. Because the interactions with the metal surface take
place relatively far from the surface, the surface-atom poten-
tial is assumed to be simple in form. Then for a hydrogen
atom, an image model �2,11,12� is suitable. As we will see
through the paper, our goal is twofold. On the one hand, we
show that from a classical point of view, the Stark regime
takes place through two consecutive pitchfork bifurcations.
When the system reaches this regime, two rectilinear orbits
are the backbone of the phase space. One of the orbits is
oriented toward the surface while the other one is oriented to
the vacuum. On the other hand, the ionization mechanics of
the atom is explained by using the modern theory of phase
space transition state �13�. Under this approach, we are able
to obtain analytically the geometric structures that in phase
space regulate the ionization of the atom as well as to calcu-
late efficiently the ionization probability of the atom as a
function of the electric field strength.

The paper is organized as follows. Section II is devoted to
the posing of the problem. From the assumed image model,
we manage a two degrees of freedom Hamiltonian system.
We establish the relevant parameters controlling the dynam-
ics and, by analyzing the critical points of the effective po-
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tential, we can understand part of the dynamics. In Sec. III,
we study the evolution of the fundamental families of peri-
odic orbits that determine the phase space structure. We find
the bifurcations that lead to the Stark regime. In Sec. IV we
use the phase space transition state theory to determine the
geometric structures that govern the capture of the electron
by the metallic surface. In Sec. V we use the results of the
previous section and the classical spectral theorem of Pollak
�15� to determine the ionization probability of the atom. The
results are compared to a brute-force Monte Carlo calcula-
tion. Finally, in Sec. VI we summarize the results.

II. PROBLEM

Let us consider the motion of an electron in a Coulombic
field induced by an infinitely massive nucleus of charge e
�0 at the origin of the coordinate system. The metallic sur-
face is located at the plane z=−d and an electric field of
strength F�0 along the z axis is superimposed. In cylindri-
cal coordinates �� , z , � , P� , Pz , P�� and atomic units
�a.u.�, the electronic Hamiltonian of the system is given by

H = E =
P�

2 + Pz
2

2
+

P�
2

2�2 −
1

��2 + z2
+ Fz +

1
��2 + �2d + z�2

−
1

4�d + z�
, �1�

where the last two terms account for the image model de-
scribing the interaction of the hydrogen atom with the me-
tallic surface �12�. Owing to the axial symmetry, the z com-
ponent P� of the angular momentum is conserved and Eq.
�1� defines a two degree-of-freedom dynamical system. Be-
sides P� and the energy E, the system depends on the exter-
nal parameters d and F. Here in this paper we reduce our-
selves to the case P�=0. At this point, it is useful to scale
coordinates and momenta in the form

r� = r/d, P� = d1/2 P .

After dropping primes, Hamiltonian �1� becomes

H� = E = E d =
P�

2 + Pz
2

2
−

1
��2 + z2

+
1

��2 + �2 + z�2

−
1

4�1 + z�
+ fz , �2�

and the dynamics depends only on the scaled energy E
=E d and on the scaled electric field f =F d2. Then, by
keeping E and f constant and simultaneously changing E, F,
and d, we can explore different regions where the classical
dynamics remains invariant.

It is useful to study the shape of the effective potential
U�� ,z� in Eq. �2�,

U��,z� = −
1

��2 + z2
+

1
��2 + �2 + z�2

−
1

4�1 + z�
+ fz , �3�

through the determination of its critical points, which are the
roots of the equations Uz=0 and U�=0,

Uz =
�U��,z�

�z
= f +

1

4�1 + z�2 +
z

��2 + z2�3/2

−
2 + z

��2 + �2 + z�2�3/2 = 0,

U� =
�U��,z�

��
=

�

��2 + z2�3/2 −
�

��2 + �2 + z�2�3/2 = 0. �4�

Due to the Coulombic term, the effective potential U�� ,z�
shows an infinite potential well at the origin. The critical
points Ps= ��s ,zs� of U�� ,z�, when they exist, take place on
the z axis ��s=0�. By substituting �s=0 in Eq. �4�, the values
of zs are the roots of the following equation:

Z�z� = R�z� − S�z� = 0, �5�

where R and S are

R�z� = f +
z

�z�3
, S = −

1

4�1 + z�2 +
1

�2 + z�2 . �6�

The direct application of the Bolzano theorem as well as the
increasing and decreasing behavior of R and S ensure that
these functions intersect always once and only once in the
interval �−1,0�. Then the effective potential U�� ,z� presents
a unique critical point Ps= �0,zs� in that interval. Moreover,
zs is the real root of the following polynomial equation aris-
ing from Eq. �5�

P�z� = − 16 − 48z + �− 52 + 16f�z2 + �− 28 + 48f�z3

+ �− 7 + 52f�z4 + 24fz5 + 4fz6 = 0. �7�

For f =0, P is a four-degree polynomial, and the analytic
expression of zs is given by

zs = − 1 +�− 5 + 4�2

7
� − 0.693 673.

By substituting Ps in the corresponding Hessian matrix, we
readily obtain that Ps is a saddle point whose energy is Es
�−1.492 218. For f �0, P is a six-degree polynomial equa-
tion and it is not possible to obtain the analytic expression of
zs. However, we can express asymptotically the coordinate zs
in terms of f as

zs�f� = − 0.693673 + 0.044466f + 0.006259f2 + 0.000220f3

+ O�f4�

From the above expression of zs we deduce that, as f in-
creases, zs approaches zero. In Fig. 1 is depicted the behavior
of U�� ,z� for two different values of f . Because P�=0, the
orbital plane �� ,z� is always perpendicular to the x-y plane.
Then, although � is a cylindrical coordinate, in this case it
can be considered as a Cartesian coordinate in the orbital
plane with positive and negative values and it is more illus-
trative to plot the figures in coordinates �±� ,z�. From a
physical point of view, the saddle point Ps is the ionization
channel through which the electron can be captured by the
metallic surface.
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III. PHASE SPACE STRUCTURE

In this section we are interested in the evolution of the
phase space governed by the Hamiltonian �2� which depends
on the parameters �E , f�. The phase space structure is mainly
characterized by the number and stability of the periodic or-
bits. Once a periodic orbit is calculated, the stability of that
orbit can also be computed, which sheds light on the charac-
ter of phase space in the vicinity of the orbit. The continua-
tion of families of periodic orbits generated by variations of
any of the system’s parameters and the computation of the
stability parameter of the family helps then in understanding
the dynamics of the problem.

As it is well known, the linear stability of a periodic orbit
is determined from the eigenvalues of the monodromy ma-
trix. Since we are dealing with a Hamiltonian problem, the
eigenvalues appear in reciprocal pairs, and as a consequence
of the invariance of the Hamiltonian equations of motion we
have one trivial eigenvalue �0=1 with multiplicity 2. Then,
the stability index

k = � + 1/� �8�

is normally used, where the condition k is real and �k��2
applies for linear stability, and the critical value k= ±2
means that a new family of periodic orbits has likely bifur-
cated from the original one. Therefore stability diagrams
where the stability index is presented versus the parameter
generator of the family are commonly used. Since we work

with a system of two degrees of freedom, the computation of
Poincaré surfaces of section allows us to illustrate the phase
space structure.

At this point, we proceed as follows: First, we fix a value
of the parameter f for which periodic solutions exist in the
phase space. Then, by using the numerical software AUTO

�16� we carry out the numerical continuation of the families
of periodic orbits—by varying one parameter, while the other
remains constant—that emanate from those solutions. The
stability diagram of every periodic orbit of each family as a
function of the corresponding parameter is also computed.
From this diagram, we can detect values of the parameter for
which possible bifurcations take place. Bifurcations produce
qualitative changes in the phase space structure. When a bi-
furcation is found, the study is completed by calculating the
corresponding surfaces of section.

Moreover, because for P�=0 there is no centrifugal bar-
rier, the electron can reach the origin and then Hamiltonian
�2� presents a singularity. To avoid the numerical problems
involved with this singularity, we perform the so-called Levi-
Civita regularization �17�. This procedure starts with a
change to semiparabolic coordinates �u ,v�,

� = uv, z = �u2 − v2�/2.

Next, we define a new scaled time �= t / �u2+v2�. Finally,
after an overall multiplication by u2+v2, the Hamiltonian �2�
reads

Ĥ = 2 =
Pu

2 + Pv
2

2
− E�u2 + v2� +

2�u2 + v2�
�4u2v2 + �4 + u2 − v2�2

−
u2 + v2

2�2 + u2 − v2�
+

f

2
�u4 − v4� . �9�

The Hamilton equations of motion arising from Eq. �9� are

u̇ = Pu, Ṗu = u�2E − 2fu2 −
2�− 1 + v2�

�2 + u2 − v2�2

−
16�4 + u2 − 3v2�

�u4 + �− 4 + v2�2 + 2u2�4 + v2��3/2	 ,

v̇ = Pv, Ṗv = v�2E + 2fv2 +
2�1 + u2�

�2 + u2 − v2�2

−
16�4 + 3u2 − v2�

�u4 + �− 4 + v2�2 + 2u2�4 + v2��3/2	 . �10�

In searching for particular solutions of Eq. �10�, we find the
following:

�1� Rectilinear orbits along the v axis �u=0� always exist.
They correspond to rectilinear orbits along the negative z
axis. For historical reasons, we name these orbits as I �

−.
�2� Rectilinear orbits along the u axis �v=0� always exist.

They are named as I �
+, and they correspond to rectilinear

orbits along the positive z axis.
To get an overall vision of the phase space structure

where the two particular solutions exist, we fix a value of f
=0, extensively studied by Simonovic �18�, and compute the
surface of section by numerical integration of the equations
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FIG. 1. Upper panel: Equipotential curves of the effective po-
tential U�� ,z� for scaled electric field f =0.5. Lower panel: Effective
potential U�� ,z� for �=0 and f =0 �solid line� and f =0.5 �dashed
line�.
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of motion �10�. The surface of section is defined as the pro-
jection of the phase trajectories on the u=0 plane with Pu
	0. Under these conditions, the available region of the sur-
face of section is limited by the curves

Pv = ±�4 + 2Ev2 + fv4 +
v2

2 − v2 −
4v2

�16 − 8v2 + v4
.

�11�

It is worth noting that rectilinear orbits I �
− are tangent to the

flux in this Poincaré map and they correspond to the curves
�11�. To compute the surface of section, we fix E=−2 be-
cause for this energy the electron is confined into the infinite
potential well and its dynamics is still close to the integrable
limit E→−� �18�. The corresponding surface of section for
E=−2 is shown in Fig. 2 where we distinguish four impor-
tant structures:

�i� The stable central fixed point �0, 0� corresponds to the
rectilinear orbit I �

+. Hence the levels around this point are
vibrational-type quasiperiodic orbits with the same symme-
try patterns as I �

+; that is to say, mainly localized along the
positive z axis. We name these levels as V�

+.
�ii� The two stable fixed points symmetrically located on

the v axis, named C, correspond to almost circular orbits
traveling in opposite directions. When the energy E
0, they
become circular with coordinates �±2 /�1−4E ,0�. The levels
around these points are rotational-type quasiperiodic orbits
with the same symmetry patterns as C.

�iii� The above three regions are kept apart by a hetero-
clinic orbit �separatrix� passing through the two unstable �hy-
perbolic� fixed points located at the Pv axis. We name these
points as H. When the energy E
0, these points H have
coordinates �0, ±�2� and they are unstable rectilinear orbits
with coordinates u=v, that is to say, they correspond to rec-
tilinear orbits along the � axis.

�iv� Finally, and taking into account that the limit of the
surface of section is the rectilinear orbit I �

−, the levels above
the separatrix H are vibrational quasiperiodic orbits mainly
oriented along the negative z axis. These vibrational levels
are denoted as V�

−. We note that, while the stability of the
fixed points appearing inside the surface of section can be
established at a glance, the stability of I �

− �the limit of the
surface of section� must be determined by using the Index
theorem. In this way, because the domain D of the surface of
section is homeomorphic to a two-dimensional sphere, the

sum of the indexes of the fixed points must be 2. Because the
surface of section shows two unstable critical points �with
index −1� and three stable fixed points �with index 1�, the
index of the periodic orbit I �

− must be 1 in order to keep
fixed the Euler characteristic to 2. Then, I �

− is a stable peri-
odic orbit.

Note that, although the system is nonintegrable, all the
phase orbits are confined to adiabatic invariant tori in accor-
dance to a near integrable behavior. This is the expected
result when the energy is smaller than the escape energy
Es�f =0�=−1.492 218.

Therefore there are available four periodic orbits for f
=0 from which we start the continuation procedure. For the
fixed value E=−2, we compute the family that emanates
from each periodic orbit as f varies. The stability diagram of
these families is shown in Fig. 3. This diagram gives the
stability parameter k of each family in the interval 0� f
� fs, where fs�0.751 391 is the value at which the energy
E=−2 is equal to the saddle point energy Es. We call each
family with the same name as the corresponding periodic
orbit. The family I �

− is always stable �see Fig. 3�a��. After a
careful look to Fig. 3�b�, we see that at the values f1
�0.016 875 and f2�0.031 875 two consecutive bifurcations
take place because in their vicinity the families H and C
terminate on the positive z axis: First, the unstable family H
at f1, and then the stable family C at f2. From f � f2 to f
� fs, there are no more bifurcations.
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-1 -0.5 0 0.5 1
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v

FIG. 2. Poincaré surface of section for scaled energy E=−2 and
scaled electric field f =0.
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The described behavior is easily visualized by computing
surfaces of section for some convenient values of f ranging
in the interval 0� f � fs. For f =0.01 �see Fig. 4�a�� the sur-
face of section presents the same qualitative structure as Fig.
2. However, due to the presence of the electric field, the
unstable fixed points H moved toward the stable central point
I �

+. Then as we approach f1, the fixed points H become pro-
gressively periodic orbits along the positive z axis. Note that
the fixed points C are also simultaneously moving along the
v axis toward the fixed point I �

+. When the electric field
reaches the value f1, the collapse between the fixed points H
and I �

+ occurs. From this collision, only I �
+, which becomes

unstable, survives �see Fig. 4�b�� and a pitchfork bifurcation
takes place. As the electric parameter tends to f2, the fixed
points C approach I �

+ �see Fig. 4�c��. When f = f2, a second
pitchfork bifurcation occurs: C and I �

+ come into coinci-
dence in such a way that only I �

+ survives, becoming stable
�see Fig. 4�d��. After this bifurcation the phase space is made
of vibrational orbits and there is a smooth evolution from
vibrational V�

+ to vibrational V�
− orbits: The nearer the orbit is

to I �
+ �I �

−�, the greater its orientation is along the positive
�negative� z axis. In this way, from the second bifurcation, a
Stark-type regime prevails. Roughly speaking, the electric
field polarizes the atom along the z axis because the orbits
are mainly oriented along the z direction.

It is worth noting that this classical Stark behavior has a
quantum counterpart. Indeed, theoretical studies �5,6� have
revealed that wave functions are strongly oriented along that
direction. In particular, this fact can be observed in Fig. 4 of
Ref. �6�, where two opposite strongly oriented states are de-
picted for an applied electric field of F=2.8�10−6 a.u. and
an atom-surface separation d=670 a.u. The parameters used
in that figure correspond to scaled values f �1.3 and E�
−3.3. When the surface of section with these scaled param-
eters is computed �see Fig. 5�, we find that the classical
phase space shows a clear Stark structure.

IV. IONIZATION DYNAMICS

When the energy E of the electron is bigger than the es-
cape energy Es, the electron has access to the ionization
channel located along the negative z axis and can be captured
by the metallic surface. In Fig. 6 two surfaces of section are
shown for E=−2 and for values of f for which Es�E=−2.
We note that, in regularized coordinates, the escape channel
is located along the v axis in such a way that, when Es�E
the surface of section is not a bounded region because the
rectilinear orbit I �

− �the limit of the surface of section� is the
first orbit to ionize. However, although E�Es, not all trajec-
tories escape because part of the phase space remains iso-
lated from the ionization channel due to the presence of the
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FIG. 4. Evolution of the Poincaré surfaces of section as a func-
tion of the scaled electric field f for scaled energy E=−2.
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stability island around I �
+. When f increases, more and more

orbits have access to the ionization channel and the “hole” in
the corresponding surface of section grows whereas the sta-
bility island around I �

+ becomes smaller �see Fig. 6�b��.
Hence the presence of the electric field increases the number
of initial conditions that lead to escape and therefore the
ionization probability grows.

A deeper understanding of the ionization of the atom is
obtained when we face the problem from the point of view of
chemical reaction dynamics. From this regard, to be captured
by the metallic surface, the electron must overcome a poten-
tial energy barrier and this process resembles a chemical re-
action. In reaction dynamics, the transition state theory �19�
postulates the existence of a minimal set of states in phase-
space, the transition state �TS�, that all reactive trajectories
cross and which is never encountered by nonreactive trajec-
tories. In other words, there exists a dividing surface in
phase-space that separates “reactants” from “products.”
However, the problem of how to construct analytically the
TS remained as an open question until Wiggins and co-
workers �13,14� developed phase space transition state
theory �PSTST�. This theory is based on the new geometrical
insights for nonlinear Hamiltonian systems and its main goal
is to provide an algorithmic procedure to determine analyti-
cally the geometrical objects that separate “reactants” from
“products.”

Moreover, the use of the PSTST together with a classical
spectral theorem developed by Pollak in the 1970s �15� pro-
vide an elegant and very efficient way to calculate the phase
space volume of initial conditions that give rise to escape
trajectories. In the next section we apply this method to com-
pute the ionization probability in our problem.

We start with some brief remarks on PSTST. Let us con-
sider a generic n-degrees of freedom Hamiltonian
H�x1 , . . . ,xn , px1

, . . . , pxn
� with an equilibrium point of

center�center� ¯ �saddle type, usually named as
“saddle” type. At this point, we use the Poincaré-Birkhoff
normalization procedure to perform, in the neighborhood of
the saddle, a local sequence of canonical transformations be-
tween the original �old� coordinates �x1 , . . . ,xn , px1

, . . . , pxn
�

and the normal form �new� coordinates
�q1 , . . . ,qn , p1 , . . . , pn� that lead the Hamiltonian H to its nor-
mal form K. For more details on normal forms we refer the
reader to �20� and references therein. The key feature of this
procedure is that, when it is in normal form, the new Hamil-
tonian is expressed as a function of a set of new n integrals
�J1 , . . . ,Jn−1 ,I�,

K = K�J1, . . . ,Jn−1,I� ,

where I= �pn
2−qn

2� /2 and Ji= �pi
2+qi

2� /2, i=1, . . . ,n−1. In
the language of reaction dynamics, �qn , pn� are the so-called
reaction coordinates while the remaining ones are referred to
as bath coordinates. Once the normal form is computed to
the desired degree of accuracy, in the neighborhood of the
saddle point the dynamics takes place on the
�2n−1�-dimensional energy surface given by K. In the nor-
mal form coordinates, the Hamilton equations of motion take
the following form:

q̇i =
�K
�Ji

�J1, . . . ,Jn−1,I�pi, i = 1, . . . ,n − 1,

ṗi = −
�K
�Ji

�J1, . . . ,Jn−1,I�qi, i = 1, . . . ,n − 1,

q̇n =
�K
�I

�J1, . . . ,Jn−1,I�pn,

ṗn =
�K
�I

�J1, . . . ,Jn−1,I�qn. �12�

From Eq. �12� it is clear that qn= pn=0 and K=const is a
�2n−3�-dimensional invariant manifold. Moreover, it is a
normally hyperbolic invariant manifold �NHIM� �21�. Nor-
mal hyperbolicity means that, under the linearized dynamics,
the growth and decay rates of tangent vectors normal to the
manifold �the “reaction”� dominate the growth and decay of
the tangent vectors tangent to the manifold. In this way, a
NHIM acts like a higher-dimensional saddle point.

The NHIM is the limit �“equator”� of a
�2n−2�-dimensional sphere obtained by setting qn=0 and
K=const. This �2n−2�-dimensional sphere is the TS. The TS
is locally a surface of no return: when a trajectory crosses the
TS, it must leave before it �possibly� later reintersects the TS
�13�. The NHIM divides the TS in two hemispheres with
pn�0 and pn�0. The half with pn�0�pn�0� is always
crossed by forward �backward� reactive trajectories.

Because the NHIM is unstable in nature, it has attached
stable Ws and unstable Wu manifolds which act like multi-
dimensional separatrices. These surfaces are
�2n−2�-dimensional spherical cylinders given by setting, re-
spectively, pn=−qn and pn=qn in K. Note that Ws and Wu

have the right dimensionality to divide the energy shell and
thence they are impenetrable barriers in phase space �14� that
separate reactive from nonreactive trajectories. Hence the
�2n−2�-dimensional stable and unstable surfaces bound a re-
gion in the �2n−1�-dimensional energy surface K that is di-
vided into two components by the TS. All reacting trajecto-
ries start in one component, cross the TS, and enter the other
component.

At this point, we apply the PSTST to our problem follow-
ing six steps.

�i� We fix in Hamiltonian �2� a given value of f and then
we find numerically the saddle equilibrium point Ps
= ��s ,zs , P�s

, Pzs
�= �0,zs ,0 ,0�. This equilibrium is of center

�saddle type and the PSTST applies.
�ii� By means of a translation we move Ps to the origin.

Then, the Hamiltonian �2� reads

H =
1

2
�P�

2 + Pz
2� −

1
��2 + �z + zs�2

+
1

��2 + �z + zs + 2�2

−
1

4�z + zs + 1�
+ f�z + zs� . �13�
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�iii� In order to prepare the above Hamiltonian for trans-
formation into normal form, we perform a Taylor expansion
of Eq. �13� around the saddle point Ps.

�iv� By using the symbolic manipulator MATHEMATICA,
we compute the normal form K of the expanded Hamiltonian
up to degree 14. At this point it is important to understand
that K is expressed as a function of the normal form coordi-
nates denoted as ��N ,zN , P�N

, PzN
� and that K is integrable

because the quantities J= �P�N

2 +�N
2 � /2 and I= �PzN

2 −zN
2 � /2 are

the new �approximate� integrals. Then, the normal form is
expressed as

K = K�J,I� = 

i=1

N

Ki�J,I� ,

where Ki are homogeneous polynomials of degree i in J and
I.

�v� Once the normal form is computed, we obtain the
NHIM, the TS, Ws, and Wu by setting in K, respectively,
J=0, zN=0, PzN

=−zN, and PzN
=zN. The TS half with PzN

�0 is the capture half TSc, while the one with PzN
�0 is the

escape half TSe.
�vi� Due to the fact that the normal form provides the

direct and inverse transformations between the normal form
coordinates and the original coordinates, we have the expres-
sions of the coordinates �� ,z , P� , Pz� as a function of the
coordinates ��N ,zN , P�N

, PzN
�. By introducing in these �in-

verse� transformations the above conditions J=0, zN=0,
PzN

=−zN, and PzN
=zN, we have the parametric expressions of

the NHIM, the transition state, and the stable and unstable
manifolds in the original coordinates �� ,z , P� , Pz�. These ex-
pressions can be used, among other things, to visualize these
structures.

In particular, from a normal form calculated for E=−2 and
f =0.9, projections in the original coordinates of these four
structures are shown in Fig. 7�a�. We note that, because our
system has two degrees of freedom, the NHIM is a periodic
orbit whose projection onto the configuration space bridges
the corresponding equipotential �see Fig. 7�b��.

V. IONIZATION PROBABILITY

In this section we compute the ionization probability by
means of a procedure that combines the phase space transi-
tion state and a classical spectral theorem. This procedure
has been recently developed by Waalkens et al. �22� and its
main feature is that it is computationally much more efficient
than the standard brute-force Monte Carlo sampling method.

For fixed values of the energy E and the electric field f ,
according to that procedure, we calculate the ionization prob-
ability as

P =
Ve

Vo
,

that is, the fraction of the energy surface volume Ve of initial
conditions in the neighborhood of the hydrogen atom in
phase space which leads to escape, over the total energy
surface volume Vo of the atom neighborhood in phase space.
We consider as atom neighborhood the phase space volume
limited by the zero velocity curve for the energy E under
consideration and the escape half TSe.

In order to calculate the volume Ve, we make use of the
classical spectral theorem shown by Pollak �15� in the con-
text of bimolecular collisions, and conjectured by Brumer
et al. �23�. This theorem states that the volume swept out in

TABLE I. Results for the average passage time �t� through the
atom neighborhood, the flux �TSc

through TSc, the energy surface
volumes Ve and Vo, and the ionization probabilities P=Ve /Vo and
P� obtained with both procedures.

f �t� �TSc
Ve Vo P=Ve /Vo P�

0.9 2.93 0.34 1 8.99 0.11 0.12

1 2.88 0.57 1.64 9.07 0.18 0.18
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FIG. 7. �Color online� For E=−2 and f =0.9, projections in the
original coordinates of the NHIM, the transition state TS, and the
stable and unstable manifolds Ws and Wu.
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phase space by a set of classical trajectories is the integral of
the passage time, that is, the amount of time spent by the set
of trajectories in that phase space volume. According to this
theorem, if we chose the initial conditions of the set of tra-
jectories in the capture half of the transition state, TSc, the
volume Ve would be given by

Ve = 
TSc

td�NdP�N
.

Now, if we define the average passage time �t� that these
trajectories spend in the atom neighborhood until they reach
the escape half TSe as

�t� =


TSc

td�NdP�N


TSc

d�NdP�N

,

the volume Ve can be written in this form,

Ve = �t�
TSc

d�NdP�N
= �t��TSc

,

�TSc
being the flux through the TSc. Taking into account the

Stokes theorem, �TSc
can be directly computed as the action

of the NHIM,

�TSc
= �

NHIM
d�NdP�N

= 2J ,

where J is readily obtained from the normal form K by solv-
ing the equation K=K�J ,0�=E.

The total energy surface volume Vo of the atom neighbor-
hood in phase space is calculated by means of the following
Monte Carlo sampling procedure. After choosing a hyper-
cube in phase space containing the complete atom neighbor-
hood, we uniformly sample initial conditions inside the hy-
percube. Then we check whether the corresponding point lies
inside the atom neighborhood. Therefore the total energy sur-
face volume Vo is given by

Vo =
nin

nt
Vhcube,

with Vhcube being the volume of the hypercube, nt the total
number of sampled initial conditions, and nin the number of
initial conditions inside the atom neighborhood.

In Table I, we show the results obtained with this proce-
dure for two values of the electric field f , and for a fixed
energy E=−2. The average time �t� has been numerically
calculated by choosing about 125 000 initial conditions uni-
formly distributed on the TSc and then averaging the corre-
sponding passage times. We have computed a converged
value of Vo with samples of about nt�108. As it was ex-
pected, the average passage time �t� that ionization trajecto-
ries spend in the atom neighborhood decreases with f ,
whereas the flux �TSc

, the volume Ve, and the ionization

probability P=Ve /Vo increase with f . These results are in
qualitative agreement with the evolution of the Poincaré sur-
faces of section in Fig. 6.

In order to compare these results with those provided by
the standard time-consuming brute-force Monte Carlo proce-
dure, we have sampled initial conditions in the atom neigh-
borhood in phase space with the same value of energy E=
−2. Then we have integrated the Hamilton equations of mo-
tion until they reach either the TSe or a large fixed cutoff
time tcutoff=500. This cutoff time has been chosen in such a
way that ionization for t� tcutoff is very unlikely. In Fig. 8 we
show the ionization probability curves P�t� versus time t for
both values of f . The ionization probabilities saturate for t
→� at values which depend on the energy and f . These
saturation values P� should coincide with the ionization
probabilities P=Ve /Vo calculated with the previous proce-
dure. For this comparison, Fig. 8 shows as horizontal lines
the values of P=Ve /Vo for the corresponding values of f . In
the last column of the table, we also show the saturation
values of P� obtained with the brute-force method. As it can
be seen, the agreement between the results of both proce-
dures is very good.

It is worth noting that the method based on the classical
spectral theorem and the PSTST is computationally much
more efficient than the standard brute-force Monte Carlo
sampling procedures. In fact, for this problem, the efficiency
ratio is roughly much more than 1:1000 for a cutoff time of
500 used in the brute-force method.

VI. CONCLUSIONS

In the present work, we have studied the classical dynam-
ics of a hydrogen atom near a metallic surface in the pres-
ence of a uniform electric field normal to the surface. Due to
the large size of a Rydberg atom, the interaction with the
metallic surface takes place relatively far from the surface.
Therefore we have used a simple electrostatic image model
to describe the atom-surface interaction. Owing to the axial
symmetry of the system, the z component P� of the angular
momentum is conserved, and hence the system, expressed in

20 40 60 80 100
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P
(t
)

f = 0.9

f = 1

PSTST Prediction
Brute-force Monte Carlo method

Ionization probability P(t) for ε = -2

t

P 8

P 8

FIG. 8. �Color online� Ionization probability curves Pt obtained
with the Monte Carlo sampling method for a uniform distribution of
initial conditions in the atom neighborhood for two different values
of the scaled electric field f . The horizontal lines represent the cor-
responding values provided by the alternative method which com-
bines the classical spectral theorem and the PSTST theory.
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cylindrical coordinates has two degrees of freedom. After
scaling coordinates and momenta, the Hamiltonian depends
only on two parameters: the scaled energy E and the electric
field strength f . We have restricted our study to the case
P�=0.

By means of numerical continuation of families of peri-
odic orbits and Poincaré surfaces of section, we have exten-
sively explored the structure and evolution of the system
phase space as a function of the electric field strength f . We
have found that, as f increases, the atom is strongly polarized
through two consecutive pitchfork bifurcations, reaching a
Stark-like regime where the electron orbits are mainly ori-
ented normally to the metallic surface. This classical Stark
behavior has its quantum confirmation �5,6� with the local-
ization of wave functions in the vicinity of the polarized
classical electron periodic orbits.

The ionization dynamics of the atom has been also inves-
tigated by means of the phase space transition state theory
�PSTST�. We have calculated the ionization probability as a

function of f making use of a recently developed procedure
that combines the PSTST and a classical spectral theorem. It
is worth noting that this method is computationally much
more efficient than the standard time-consuming brute-force
Monte Carlo sampling procedures. The results of the ioniza-
tion probabilities we have computed with both procedures
are in very good agreement, as it can be seen in Table I.
Moreover, these results are also in qualitative agreement with
the evolution of the structure of the Poincaré surfaces of
section as f increases for energies bigger than the electron
escape energy Es.
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