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Saddle-node bifurcation for Rydberg atoms in parallel electric and magnetic fields

J. P. Salas
Area de Fı´sica Aplicada, Universidad de La Rioja, 26004 Logron˜o, Spain
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~Received 24 December 1997!

A comprehensive study of the hydrogen atom in the presence of parallel electric and magnetic fields is
presented from the standpoint of classical mechanics for a nonzero magnetic quantum numberm. The transi-
tion from pure Zeeman effect to Stark effect is explored intensively by means of Poincare´ surfaces of section
for a pair ofm values and for different values of the field strengths. It is found that the transition from pure
Zeeman effect to Stark effect passes through asaddle-nodebifurcation.@S1050-2947~98!01507-8#

PACS number~s!: 32.60.1i, 03.65.Sq, 02.90.1p
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I. INTRODUCTION

This paper is the third one of a series of articles that
authors dedicate to the classical study of the SQZE probl
The first one~Deprit et al. @1#! deals with the analytic study
of the normalized problem when the magnetic quantum nu
berm is not zero using action angle variables closely rela
to those introduced in the treatment of the pure Zeeman
fect @2–4#. In this perturbative model it is proven that th
transition from the pure Zeeman to pure Stark effect pas
through ateardropbifurcation whenm is below the critical
value mc5n/A5. However, this result is obtained after a
eraging the results from asymptotic expansions and the
vergence and the domain of validity are not discuss
Therefore, it was necessary to obtain the same results
means of different techniques in order to validate them.

The objective of this article is to state a classical desc
tion of the phase space~electronic! structure for Rydberg
atoms in the presence of parallel electric and magnetic fi
@the Stark quadratic Zeeman effect~SQZE! problem# when
the magnetic quantum numberm is not zero by applying the
method of the Poincare´ surfaces of section@5#.

In the second paper of the series~Salaset al. @6#!, the
problem is treated when the magnetic quantum numberm is
zero, the so-called polar case. In this case, by means of
turbation methods and Poincare´ surfaces of section, the evo
lution from the Zeeman to the Stark effect is explained as
result of twopitchfork bifurcations.

The literature on this subject is rather extensive, so m
so that for a review we refer the reader to the theoret
works of Braun and Solove’v@7#, Waterlandet al. @8#, Far-
relly et al. @9#, Braun@10#, Deprit et al. @1#, and Milczewski
and Uzer@11#, and to the experimental works of Caccia
et al. @12–14#.

For the present nonpolar case (mÞ0), we consider that
as in the previous works in the literature, the electric a
magnetic interactions are weak compared to the Coulom
field. With this assumption, the system is very close to
integrable limit, which corresponds to the nonperturbed R
dberg atom. In this way, only the regular regime in the SQ
needs to be taken into account. This hypothesis will a
allow us to compare the results here obtained with th
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obtained by means of the perturbative study of our first w
@1#.

The paper is organized as follows: in Sec. II the proble
is briefly stated. In Sec. III, for a pair ofm values and for
different values of the field strengths, we explore the evo
tion of the surfaces of section when the transition from
Zeeman to the Stark effect takes place. Special attentio
paid to the stability of the fixed points appearing in the s
faces of section, in the bifurcations between them and in
relation with the experimental and theoretical investigatio
of Caccianiet al. @12–14#. In Sec. IV we relate the evolution
of the dimensionless orbital elements of the periodic orb
appearing in the surfaces of section to the evolution of
dimensionless orbital elements of the equilibria of the n
malized problem. Finally, Sec. V contains a short discuss
about the results.

II. PROBLEM

In cylindrical coordinates and atomic units, the hydrog
atom in the presence of parallel electric and magnetic fie
is described by the two-dimensional Hamiltonian@9#

H5E5
1

2 S Pr
21Pz

21
m2

r2 D2
1

Ar21z2
1

g2

8
r21 f z, ~1!

wherez is the coordinate parallel to the fields,g and f are,
respectively, the magnetic and electric field strengths anm
is thez component of the angular momentumL . We suppose
m to be nonzero. Now, according to@15#, it is convenient to
scale coordinates and momentar̂5g2/3r , P̂5g21/3P. After
dropping hats in the coordinates and momenta, Hamilton
~1! becomes

Ĥ5Hg22/35e5
1

2 S Pr
21Pz

21
m̂2

r2 D2
1

Ar21z2

1
1

8
r21Fz, ~2!
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FIG. 1. Evolution of the Poincare´ surfaces of section, periodic orbits, and quasiperiodic levels as a function of the parameterF for m
50.28 ande521.
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and the classical dynamics depends only on the three sc
parameterse5g22/3E, m̂5g1/3m, andF5g24/3f . The pa-
rameterF represents the relative influence of the magne
and the electric field strengths.

We use the Poincare´ surfaces of section technique to fo
mulate a description of the classical electronic structure
the problem: by keepinge andm̂ constant and by tuning th
parameterF, we can explore the structure of the surfaces
section as the system evolves from the pure Zeeman e
(F50) to the Stark effect. Moreover, we will show that th
behavior described by means of surfaces of section coinc
qualitatively with the behavior found by means of classi
perturbation methods.

We define the surface of section asz50, Pz.0. Under
these conditions, the surface of section appears as a cl
region in the plane (r,Pr) bounded by the curvesPr5
6(2e12/r2m2/r22 1

4 r2)1/2. We remark that this limit
does not depend on the parameterF. Moreover, it is worth
noting that whenF50, the limit of the surface of section
corresponds to an equatorial periodic orbit~z and Pz are
permanently equal to zero!.

We take a constant energye521 because, for a wide
led
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range of values ofF, the classical orbits are bounded, i.e
the energy remains below the Stark saddle-point energy@16#.
The valuee521 defines a scaled principal quantum numb
n̂51/A22e50.707 1067 and a critical scaled magne
quantum numberm̂c5n̂/A550.316 2277, and in accordanc
with the classical perturbation studies@1,8,9#, two different
transitions from pure Zeeman effect to Stark effect are
pected depending on the value of the parameterm̂. For m̂
.m̂c the transition is produced in a natural way: the Zeem
rotational states are gradually replaced by the Stark vib
tional states. However, form̂,m̂c , the transition passe
through a teardrop bifurcation@1#.

III. EVOLUTION OF THE POINCARE SURFACES OF
SECTION

To begin with, we take two values ofm̂, namely, m̂
50.36.m̂c and m̂50.25,m̂c . For the casem̂50.36, the
evolution of the surfaces of section, the corresponding p
odic orbits as well as the quasiperiodic orbits forF varying
from 0 to 0.35, are shown in Fig. 1. The sequence beg
with the pure Zeeman effect@F50, Fig. 1~a!#: the surface of
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436 PRA 58J. P. SALAS AND V. LANCHARES
section shows a single elliptic~stable! fixed point on the axis
Pr50, labeled asC, that corresponds to an almost circul
periodic orbit, also labeled asC. This orbit is exactly circular
when e→2`. As we already pointed out, the limit of th
surface of section corresponds to an equatorial periodic o
labeled as EQ. The orbits aroundC execute quasiperiodic
rotational motion. From the point of view of quantum m
chanics, we may associate these rotational levels with qu
tum states which wave functions are mainly located on
planez50: the so-called Cacciani’s levels of class III@12–
14#. This configuration for the Zeeman effect has be
widely described by several authors@3,17#.

When the electric field is turned on@F50.1, Fig. 1~b!#,
the symmetry of the Zeeman effect is broken and the fi
point C appears displaced from the axisPr50. Accordingly,
the nature of this periodic orbit changes, and its eccentri
increases. Furthermore, we observe a new stable fixed p
in the upper part of the surface of section. The presenc
this fixed point is due to the fact that whenFÞ0, the limit of
the surface of section does not correspond to any peri
orbit and, as a consequence, a new fixed point appears i
surface of section. We label this fixed point as EQ. The
pearance of this new periodic orbit is not associated with
kind of bifurcation because, when the surface of section
defined on a finite and closed space, orbits can appear
disappear at the boundary@18#. Due to this new configura
tion, the quasiperiodic orbits aroundC change in such a way
that they belong to a mixed regime of vibrational and ro
tional states. We associate these levels with quantum s
whose wave functions are a mixture of Cacciani’s levels
classes III and I. On the other hand, the quasiperiodic or
around EQ also belong to a different mixed regime of vib
tional and rotational states: these levels correspond to q
tum states whose wave functions are a mixture of Caccia
levels of classes III and II. These two classes of motion
kept apart by means of a special kind of separatrix that c
tains no fixed point: both classes of motion evolve in
smooth way from one class to another@8#.

As the parameterF increases, the described trend cont
ues@see Fig. 1~c!#. Finally, when the Stark effect dominate
@see Fig. 1~d! for F50.35#, the fixed pointsC and EQ reach
almost stationary position. The quasiperiodic orbits arou
these points are vibrational levels: the levels aroundC be-
long to Cacciani’s class II, and those around EQ belong
Cacciani’s class I.

Note that, because of the integrability of the pure St
effect, its corresponding surface of section would sim
give concentric circles and each orbit would contribute w
a fixed point. However, in our SQZE formulation even
infinitesimal g value ~i.e., F→`, e→2`! is enough to
change the phase space structure of the pure Stark effe

In the casem50.25, whenF50, the corresponding sur
face of section appears in Fig. 2~a!. This figure shows two
different regions of motion; their separatrix passes throug
hyperbolic ~unstable! fixed point that corresponds to an a
most circular periodic orbit labeledC. The stable fixed
points correspond to two symmetric elliptic orbits, label
E1 andE2. The quasiperiodic orbits aroundE1 correspond
to the vibrational Cacciani’s levels of class I and tho
aroundE2 with the vibrational Cacciani’s levels of class I
On the other hand, quasiperiodic orbits aroundC correspond
it
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to the rotational Cacciani’s levels of class III. Because th
three kinds of levels have been already depicted for the c
m50.36, for the sake of simplicity, we do not represent a
picture of quasiperiodic orbits for the present casem
50.25.

The presence of the Stark effect brings again a break
of the Zeeman symmetry. Indeed, for small values ofF (F
50.001), the two separatrix lobes are not symmetric beca
the upper one shrinks@Fig. 2~b!#. In this way, the stable fixed
points E1 and C begin to approach each other, and th
corresponding periodic orbitsE1 andC evolve to a common
configuration. Consequently, the vibrational levels arou
E1 gradually disappear, while levels aroundE2 remain vi-
brational of class I. Moreover, we can also detect a chang
the nature of the levels around the separatrix. Theref
while the levels far away from the separatrix stay rotatio
~class III!, the levels near the separatrix present a mix
regime between rotational and vibrational levels.

Once again, as in casem50.36, the limit of the surface o
section does not correspond to any periodic orbit. In t
way, the equatorial orbit EQ forF50, is compelled to
evolve to a new periodic orbit located, as a fixed point, ins
the surface of section. However, this orbit is not at a glan
observable. To detect this point, it is necessary to enlarge
aforementioned zone of the surface of section in Fig. 2~b! in
order to observe the presence of a like-arch quasiperio
orbit. It is inside this quasiperiodic orbit where the fixe
point EQ is located. To obtain with accuracy the coordina
of the periodic orbit inside, we have developed a method
searching periodic orbits based on the following correlat
function C(t):

C~ t !5e2@zi ~ t !2z0#2
e2@r i ~ t !2r0#2

e2@Pzi
~ t !2Pz0

#2
e2@Pr i

~ t !2Pr0
#2

,
~3!

where (r0 ,z0 ,Pr0
,Pz0

) are the initial conditions of an orbit

When C(t) is applied to a periodic orbit, this function pre
sents isolated peaks with height close to 1 for values of
time t that are multiple of the periodT. However, when
applied to quasiperiodic orbits, the functionC(t) presents
several peaks with height smaller than 1. The application
the function~3! to a set of orbits with initial conditions ove
a grid of points on the surface of section in Fig. 2~b!, allows
us to obtain the coordinates of the periodic orbit EQ forF
50.001, which corresponds to an almost equatorial orbit

WhenF increases, the described trend of the pointsE1
and C continues, in such a way that whenF50.0025, the
upper separatrix lobe has almost disappeared, causing
collapse between periodic orbitsE1 andC. Accordingly, the
vibrational character of the outer levels near the separa
increases.

Finally, when the Stark parameter reaches the valueF
50.005, the collapse between equilibria has occurred,
equilibriaE1 andC disappear@see Fig. 2~c!#. A saddle-node
bifurcation takes place. Note that this bifurcation may
associated with theteardropbifurcation accounted by Depri
et al. @1# in the normalized problem, which was also intuite
for concrete values of the quantum numbersm and n, by
Waterlandet al. @8#, Uzeret al. @19#, and Farrellyet al. @9#.
As a consequence of this bifurcation, the vibrational levels
class I aroundE1 disappear.
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FIG. 2. Evolution of the Poincare´ surfaces of section and periodic orbits as a function of the parameterF for m50.36 ande521.
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After the saddle-nodebifurcation, as the influence of th
Stark effect increases, the evolution of the surfaces of sec
is similar to that found in the casem.mc @see Figs. 2~d!–
2~f!#. However, it is necessary thatF reaches values greate
than 0.05 in order that the fixed point EQ clearly appears
the surface of section. Finally, whenF takes the value 0.2
the Stark configuration is reached@see Fig. 2~f!#.
on

n

IV. NUMERICAL VERSUS ANALYTICAL RESULTS

The evolution of the Poincare´ surfaces of section de
scribed above matches qualitatively well with the evoluti
obtained in the work of Depritet al. @1# by means of pertur-
bative methods, for bothm,mc and m.mc . There is a
direct correspondence between fixed points in the surface
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FIG. 3. Comparison of the dimensionless orbital elements of the periodic orbits appearing in the normalized~a!, ~b! and in the complete
~c!, ~d! problems near the bifurcation.
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section and the equilibria in the normalized phase spa
Moreover, the saddle-node bifurcation observed form,mc
accounts for theteardropbifurcation reported in@1#.

In order to highlight this correspondence, we pay att
tion to the evolution of the dimensionless orbital elements
the periodic orbits represented by the fixed points on
surfaces of section and the equilibria of the normalized pr
lem. That is to say, we will show that this correspondence
not only qualitative but quantitative. The dimensionless
bital elements are the eccentricitye and the inclinationi . We
will follow a similar scheme used by Laraet al. @20# to cor-
roborate the existence of frozen orbits for the zonal sate
problem@21#.

It is worth noting that while each equilibrium of the no
malized problem represents a Keplerian orbit, the perio
orbits on the surfaces of section are ‘‘quasi-Keplerian.’’
this way, for each periodic orbit on the surface of section
take the ‘‘mean Keplerian orbit’’ by averaging the orbit
elements

ê5E
0

T

e~ t !dt, î 5E
0

T

i ~ t !dt,

where e(t) and i (t) are derived from the instantaneou
Runge-Lenz vectorA and the angular momentumL ~see, for
instance, the work of Deloset al. @22#!.

For the further discussion, we note that there is not
exact correspondence between the parameters that co
the respective influence of electric and the magnetic field
the numerical and in the normalized studies. Whilel50 in
the normalized problem1 indicates that there is no magnet

1In the normalized problem 0<l<1 is an adjustable paramete
that controls the relative influence of the electric and the magn
fields: forl50 there is only electric field and forl51 there is only
magnetic field.
e.
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field, this situation is not possible for the numerical stud
unlessF→`. This is the reason why we focus on the valu
of the orbital elements and not on the values of the para
etersl andF.

We perform the comparison of results for the casem
50.28,mc . This value of m yields a value ofb5m̂/n̂
50.395 9798 in the normalized case. Because in both stu
the same bifurcation takes place, we guess the existenc
‘‘critical’’ values of eccentricity and inclination associate
with this bifurcation. In this way, it is convenient to study th
evolution ofe and i around the values ofl andF for which
the bifurcation occurs. In this sense, we analyze the beha
of the eccentricity and the inclination when 0.98<l<1 and
0<F<0.005.

In Figs. 3~a! and 3~b! we observe the evolution of th
eccentricity and the inclination of the equilibria in the no
malized study. We observe that, in both cases, the eccen
ity and the inclination of the orbits taking part in the teardr
bifurcation come into coincidence. The critical values of e
centricity and inclination areec50.203 andi c51.145.

Finally, Figs. 3~c! and 3~d! show the evolution of the
eccentricity and inclination of the equilibria in the numeric
study. In this figure, we observe qualitatively the same e
lution as in Figs. 3~a! and 3~b!. A more detailed observation
reveals that the critical values for which the saddle-node
furcation takes place areêc50.222 andî c51.141, which are
in a good agreement with those already found for the n
malized study. Similar good agreement is obtained for val
of the eccentricity and inclination of the rest of the period
orbits.

V. CONCLUSIONS

We have shown that the transition from the pure Zeem
effect to the Stark effect is produced by a saddle-node bi
cation. Moreover, a remarkable analogy between the ph

ic
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space structure uncovered by means of surfaces of se
and the phase portrait of the normalized Hamiltonian
demonstrated. Finally, we find that the classical electro
structure matches the quantum Stark structure of
hydrogenic diamagnetic structure detected in experime
studies.
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