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Saddle-node bifurcation for Rydberg atoms in parallel electric and magnetic fields
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A comprehensive study of the hydrogen atom in the presence of parallel electric and magnetic fields is
presented from the standpoint of classical mechanics for a nonzero magnetic quantum mumbertransi-
tion from pure Zeeman effect to Stark effect is explored intensively by means of Poswdaees of section
for a pair of m values and for different values of the field strengths. It is found that the transition from pure
Zeeman effect to Stark effect passes througtaddle-nodebifurcation.[S1050-29478)01507-9

PACS numbds): 32.60:+i, 03.65.Sq, 02.96:p

[. INTRODUCTION obtained by means of the perturbative study of our first work
[1].

This paper is the third one of a series of articles that the The paper is organized as follows: in Sec. Il the problem
authors dedicate to the classical study of the SQZE problenis briefly stated. In Sec. Ill, for a pair ah values and for
The first one(Deprit et al. [1]) deals with the analytic study different values of the field strengths, we explore the evolu-
of the normalized problem when the magnetic quantum numtion of the surfaces of section when the transition from the
berm is not zero using action angle variables closely relatedZeeman to the Stark effect takes place. Special attention is
to those introduced in the treatment of the pure Zeeman efeaid to the stability of the fixed points appearing in the sur-
fect [2—4]. In this perturbative model it is proven that the faces of section, in the bifurcations between them and in the
transition from the pure Zeeman to pure Stark effect passerglation with the experimental and theoretical investigations
through ateardrop bifurcation whenm is below the critical ~ of Caccianiet al.[12—14. In Sec. IV we relate the evolution
value mczn/\/g, However, this result is obtained after av- Of the dimensionless orbital elements of the periodic orbits
eraging the results from asymptotic expansions and the coppearing in the surfaces of section to the evolution of the
vergence and the domain of validity are not discusseddimensionless orbital elements of the equilibria of the nor-
Therefore, it was necessary to obtain the same results bjalized problem. Finally, Sec. V contains a short discussion
means of different techniques in order to validate them.  about the results.

The objective of this article is to state a classical descrip-
tion of the phase spacglectronig structure for Rydberg
atoms in the presence of parallel electric and magnetic fields
[the Stark quadratic Zeeman effg§QZE problem] when In cylindrical coordinates and atomic units, the hydrogen
the magnetic quantum numberis not zero by applying the atom in the presence of parallel electric and magnetic fields

method of the Poincarsurfaces of sectiofb]. is described by the two-dimensional Hamiltoni&
In the second paper of the seri€3alaset al. [6]), the

problem is treated when the magnetic quantum numbés

Il. PROBLEM

B . . 1 m2 1 2
zero, the so-called polar case. In this case, by means of per- . _ - = | p2, P24 — | — + X o2+ 1z, (1)
turbation methods and Poincasarfaces of section, the evo- 217 p JpZ+z2 8

lution from the Zeeman to the Stark effect is explained as the

result of twopitchfork bifurcations. ) ) ]
The literature on this subject is rather extensive, so muchvherez is the coordinate parallel to the fieldg,andf are,

so that for a review we refer the reader to the theoretical€Spectively, the magnetic and electric field strengthsrand

works of Braun and Solove'{7], Waterlandet al. [8], Far- IS thez component of the angular momentumWe suppose

relly et al.[9], Braun[10], Depritet al.[1], and Milczewski ™ to be nonzero. Now, according [5], it is convenient to

and Uzer[11], and to the experimental works of Cacciani scale coordinates and momerita y**r, P=y~ 3P, After

etal.[12-14. dropping hats in the coordinates and momenta, Hamiltonian
For the present nonpolar casem+£0), we consider that, (1) becomes

as in the previous works in the literature, the electric and

magnetic interactions are weak compared to the Coulombian

N2
field. With this assumption, the system is very close to its H=Hy 2= = E P24 p24 m4 1
: o . Y SN LRIy 3 2,2
integrable limit, which corresponds to the nonperturbed Ry- P p+z
dberg atom. In this way, only the regular regime in the SQZE
needs to be taken into account. This hypothesis will also n 1 24 1y ©
allow us to compare the results here obtained with those g’ '
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FIG. 1. Evolution of the Poincarsurfaces of section, periodic orbits, and quasiperiodic levels as a function of the pardihieten
=0.28 ande=—1.

and the classical dynamics depends only on the three scalednge of values ofF, the classical orbits are bounded, i.e.,
parameters= vy~ 2°E, m=y"m, and =y %3. The pa- the energy remains below the Stark saddle-point enfgirly
rameterF represents the relative influence of the magneticThe valuee= —1 defines a scaled principal quantum number
and the electric field strengths. n=1/J—2e=0.707 1067 and a critical scaled magnetic
We use the Poincarsurfaces of section technique to for- quantum numbe.mczﬁ/\/gz 0.316 2277, and in accordance
mulate a description of the cJassicaI electronic structure ofyith the classical perturbation studigk,8,9), two different
the problem: by keeping andm constant and by tuning the transitions from pure Zeeman effect to Stark effect are ex-
parameterF, we can explore the structure of the surfaces ofpected depending on the value of the paramatefFor m
section as the system evolves from the pure Zeeman effect m_ the transition is produced in a natural way: the Zeeman
(F=0) to the Stark effect. Moreover, we will show that the rotational states are gradually replaced by the Stark vibra-
behavior described by means of surfaces of section coincidefnal states. However, fom<m,, the transition passes
qualitatively with the behavior found by means of classicalthrough a teardrop bifurcatioi].
perturbation methods.
We define the surface of section as 0, P,>0. Under

.- . Ill. EVOLUTION OF THE POINCARE SURFACES OF
these conditions, the surface of section appears as a closed

SECTION
region in the plane 4,P,) bounded by the curve® =
+(2e+2lp—m?/p?>—3p?)Y2 We remark that this limit To begin with, we take two values ah, namely, m
does not depend on the parameferMoreover, it is worth  =0.36>m, and m=0.25<m,. For the casan=0.36, the

noting that whenF=0, the limit of the surface of section evolution of the surfaces of section, the corresponding peri-

corresponds to an equatorial periodic ortitand P, are  odic orbits as well as the quasiperiodic orbits $Bwvarying

permanently equal to zero from O to 0.35, are shown in Fig. 1. The sequence begins
We take a constant energy=—1 because, for a wide with the pure Zeeman effefF=0, Fig. Aa)]: the surface of
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section shows a single elliptistable fixed point on the axis to the rotational Cacciani’s levels of class Ill. Because these
P,=0, labeled a<C, that corresponds to an almost circular three kinds of levels have been already depicted for the case
periodic orbit, also labeled &. This orbit is exactly circular m=0.36, for the sake of simplicity, we do not represent any
when e— —«. As we already pointed out, the limit of the Ppicture of quasiperiodic orbits for the present case
surface of section corresponds to an equatorial periodic orbit 0.25.

labeled as EQ. The orbits arour@ execute quasiperiodic ~ The presence of the Stark effect brings again a breaking
rotational motion. From the point of view of quantum me- of the Zeeman symmetry. Indeed, for small valuesrof7#
chanics, we may associate these rotational levels with quar= 0.001), the two separatrix lobes are not symmetric because
tum states which wave functions are mainly located on théhe upper one shrinKgig. 2(b)]. In this way, the stable fixed

planez=0: the so-called Cacciani’s levels of class[l2—  points E1 and C begin to approach each other, and their
14]. This configuration for the Zeeman effect has beencorresponding periodic orbits1l andC evolve to a common
widely described by several authdz17). configuration. Consequently, the vibrational levels around

When the electric field is turned doF=0.1, Fig. 1b)], E1 gradually disappear, while levels arouB@ remain vi-
the symmetry of the Zeeman effect is broken and the fixedrational of class I. Moreover, we can also detect a change in
point C appears displaced from the afg=0. Accordingly, the nature of the levels around the separatrix. Therefore,
the nature of this periodic orbit changes, and its eccentricityvhile the levels far away from the separatrix stay rotational
increases. Furthermore, we observe a new stable fixed poifglass Il), the levels near the separatrix present a mixed
in the upper part of the surface of section. The presence degime between rotational and vibrational levels.
this fixed point is due to the fact that whén= 0, the limit of Once again, as in case=0.36, the limit of the surface of
the surface of section does not correspond to any periodigection does not correspond to any periodic orbit. In this
orbit and, as a consequence, a new fixed point appears in theay, the equatorial orbit EQ forF=0, is compelled to
surface of section. We label this fixed point as EQ. The ap€Volve to a new periodic orbit located, as a fixed point, inside
pearance of this new periodic orbit is not associated with anyhe surface of section. However, this orbit is not at a glance
kind of bifurcation because, when the surface of section i®bservable. To detect this point, it is necessary to enlarge the
defined on a finite and closed space, orbits can appear a@dorementioned zone of the surface of section in Fig) i
disappear at the boundaf§8]. Due to this new configura- order to observe the presence of a like-arch quasiperiodic
tion, the quasiperiodic orbits arou@change in such a way ©rbit. It is inside this quasiperiodic orbit where the fixed
that they belong to a mixed regime of vibrational and rota-Point EQ is located. To obtain with accuracy the coordinates
tional states. We associate these levels with quantum stat@$ the periodic orbit inside, we have developed a method for
whose wave functions are a mixture of Cacciani’s levels ofs€arching periodic orbits based on the following correlation
classes Ill and I. On the other hand, the quasiperiodic orbit§unctionC(t):
around EQ also belong to a different mixed regime of vibra- ) ) ) )
tional and rotational states: these levels correspond to quan(t)=e a1l e [ri=rol e~ [Pz (1) =Pz g =[P, (1 =Py 1%
tum states whose wave functions are a mixture of Cacciani’s ()]
levels of classes lll and Il. These two classes of motion are o i )
kept apart by means of a special kind of separatrix that conhere ©o.2o,P,,P ) are the initial conditions of an orbit.
tains no fixed point: both classes of motion evolve in aWhen((t) is applied to a periodic orbit, this function pre-
smooth way from one class to anothé&l. sents isolated peaks with height close to 1 for values of the

As the parametef increases, the described trend contin-time t that are multiple of the period. However, when
ues[see Fig. 1c)]. Finally, when the Stark effect dominates applied to quasiperiodic orbits, the functiafft) presents
[see Fig. 1d) for F=0.35), the fixed point< and EQ reach several peaks with height smaller than 1. The application of
almost stationary position. The quasiperiodic orbits aroundhe function(3) to a set of orbits with initial conditions over
these points are vibrational levels: the levels arothtbe-  a grid of points on the surface of section in FigbR allows
long to Cacciani’'s class Il, and those around EQ belong tais to obtain the coordinates of the periodic orbit EQ for
Cacciani’s class I. =0.001, which corresponds to an almost equatorial orbit.

Note that, because of the integrability of the pure Stark When F increases, the described trend of the polgis
effect, its corresponding surface of section would simplyand C continues, in such a way that whef=0.0025, the
give concentric circles and each orbit would contribute withupper separatrix lobe has almost disappeared, causing the
a fixed point. However, in our SQZE formulation even ancollapse between periodic orbiEsl andC. Accordingly, the
infinitesimal y value (i.e., F—~, e——®) is enough to vibrational character of the outer levels near the separatrix
change the phase space structure of the pure Stark effect. increases.

In the casan=0.25, whenF=0, the corresponding sur- Finally, when the Stark parameter reaches the vatue
face of section appears in Fig(@ This figure shows two =0.005, the collapse between equilibria has occurred, and
different regions of motion; their separatrix passes through aquilibriaE1 andC disappeatsee Fig. 2c)]. A saddle-node
hyperbolic (unstablg fixed point that corresponds to an al- bifurcation takes place. Note that this bifurcation may be
most circular periodic orbit labele€. The stable fixed associated with theardropbifurcation accounted by Deprit
points correspond to two symmetric elliptic orbits, labeledet al.[1] in the normalized problem, which was also intuited,
E1 andE2. The quasiperiodic orbits arourifll correspond for concrete values of the quantum numbersand n, by
to the vibrational Cacciani's levels of class | and thoseWaterlandet al.[8], Uzeret al.[19], and Farrellyet al. [9].
aroundE2 with the vibrational Cacciani’s levels of class Il. As a consequence of this bifurcation, the vibrational levels of
On the other hand, quasiperiodic orbits aro@hdorrespond class | aroundEl disappear.
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FIG. 2. Evolution of the Poincarsurfaces of section and periodic orbits as a function of the pararficher m=0.36 ande=—1.

After the saddle-nodéifurcation, as the influence of the IV. NUMERICAL VERSUS ANALYTICAL RESULTS
Stark effect increases, the evolution of the surfaces of section
is similar to that found in the case>m, [see Figs. &l)— The evolution of the Poincarsurfaces of section de-
2(f)]. However, it is necessary th& reaches values greater scribed above matches qualitatively well with the evolution
than 0.05 in order that the fixed point EQ clearly appears irobtained in the work of Deprigt al.[1] by means of pertur-
the surface of section. Finally, whef takes the value 0.2, bative methods, for botm<m, and m>m.. There is a
the Stark configuration is reachsee Fig. 2)]. direct correspondence between fixed points in the surfaces of
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FIG. 3. Comparison of the dimensionless orbital elements of the periodic orbits appearing in the norfaalit@dnd in the complete
(c), (d) problems near the bifurcation.

section and the equilibria in the normalized phase spacdield, this situation is not possible for the numerical study,
Moreover, the saddle-node bifurcation observedrferm,  unlessF—-c. This is the reason why we focus on the values
accounts for theeardrop bifurcation reported if1]. of the orbital elements and not on the values of the param-
In order to highlight this correspondence, we pay attenetersx and F.
tion to the evolution of the dimensionless orbital elements of We perform the comparison of results for the came
the periodic orbits represented by the fixed points on the=0.28<m,. This value ofm yields a value ofB=m/n
surfaces of section and the equilibria of the normalized prob=0.395 9798 in the normalized case. Because in both studies
lem. That is to say, we will show that this correspondence ishe same bifurcation takes place, we guess the existence of
not only qualitative but quantitative. The dimensionless or-critical” values of eccentricity and inclination associated
bital elements are the eccentricéyand the inclination. We  ith this bifurcation. In this way, it is convenient to study the
will follow a similar scheme used by Lawt al.[20] to cor-  gyglution ofe andi around the values of andF for which
roborate the existence of frozen orbits for the zonal satellitgy, pifurcation occurs. In this sense, we analyze the behavior

prﬂ?l'em[zﬂi R h equilibrium of th of the eccentricity and the inclination when 0s98<1 and
is worth noting that while each equilibrium of the nor- /-~ " -

malized problem represents a Keplerian orbit, the periodic In Figs. 33 and 3b) we observe the evolution of the

orbits on the surfaces of section are “quasi-Keplerian.” In 2 S o
d b eccentricity and the inclination of the equilibria in the nor-

this way, for each periodic orbit on the surface of section we~ " : .
take the “mean Keplerian orbit’ by averaging the orbital malized study. We observe that, in both cases, the eccentric-

elements ity and the inclination of the orbits taking part in the teardrop
bifurcation come into coincidence. The critical values of ec-
T A T centricity and inclination are,=0.203 and .=1.145.
é=J e(t)dt, i=J i(t)dt, Finally, Figs. 3c) and 3d) show the evolution of the
0 0 eccentricity and inclination of the equilibria in the numerical
study. In this figure, we observe qualitatively the same evo-
where e(t) and i(t) are derived from the instantaneous lution as in Figs. 8) and 3b). A more detailed observation
Runge-Lenz vectoA and the angular momentuln(see, for  reveals that the critical values for which the saddle-node bi-
instance, the work of Delost al. [22]). furcation takes place ag=0.222 and .= 1.141, which are
For the further diSCUSSiOﬂ, we note that there is not ann a good agreement with those a|ready found for the nor-
exact correspondence between the parameters that contighjized study. Similar good agreement is obtained for values

the respective influence of electric and the magnetic field iny the eccentricity and inclination of the rest of the periodic
the numerical and in the normalized studies. WhitkeO in 4 pits.

the normalized problefindicates that there is no magnetic

V. CONCLUSIONS
YIn the normalized problem €\ <1 is an adjustable parameter -
that controls the relative influence of the electric and the magnetic W€ have shown that the transition from the pure Zeeman

fields: forA =0 there is only electric field and for=1 there is only ~ effect to the Stark effect is produced by a saddle-node bifur-
magnetic field. cation. Moreover, a remarkable analogy between the phase-
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