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Bifurcations in the hydrogen atom in the presence of a circularly polarized microwave field
and a static magnetic field
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In a classical model, the dynamics of the hydrogen atom subjected to a circularly polarized microwave field
and a magnetic field is shown to belong to the family of so-called biparametric quadratic Hamiltonians. The
energy-level structure is studied in terms of the parametric bifurcations.@S1050-2947~97!05209-8#

PACS number~s!: 32.60.1i, 03.65.Sq, 02.90.1p
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I. INTRODUCTION

As Lee, Brunello, and Farrelly show in@1#, the dynamics
of a hydrogen atom in the presence of a circularly polariz
~CP! microwave field crossed with a magnetic fieldB ~de-
noted as CP3B! presents two different behaviors. On th
one hand, the electron can be confined in a region of sp
that includes the nucleus; on the other hand, it is possibl
confine the electron, while moving on circularly Kepleria
orbits, in a region of space that excludes the nucleus.
second behavior is because the fields are used to create
yond the Stark saddle point, a minimum where stable mo
can be maintained. Moreover, the problem treated in a re
ence frame rotating with the microwave field frequency
sembles the quasi-Penning trap proposed in@2#; the depth of
the well depends on the microwave field frequency and
the magnetic-field strength.

In this paper, and solely from the standpoint of classi
mechanics, we study the CP3B problem when the electron
is located near the nucleus, that is to say, in a region inte
to the Stark saddle point. The CP3B problem is a noninte-
grable system with three degrees of freedom because
the energy is an integral. To simplify the discussion,
reduce our study to a planar@two-dimensional~2D!# model.
However, even the planar model is nonintegrable and
two degrees of freedom.

We can regard the CP3B problem as a perturbed Keple
rian system and apply to it the methods of celestial mech
ics. Considering the relatively simple nature of the pertur
tions, a Lie transformation is sufficient to carry out
‘‘normalization.’’ The Lie transformation@3–5# is easy to
build if it is not carried out to excessively high orders. In t
present case, it is carried out to the first order. From
procedure results a normalized Hamiltonian that admit
new integral: the Keplerian term~i.e., the principal quantum
number n). Thus, after normalization, the planar CP3B
problem becomes integrable. From this reduction, as Co
et al. @6# and Depritet al. @7# did for the quadractic Zeema
effect and for the Stark quadratic Zeeman effect, our tas
to study the evolution of the phase flow, that is to say,
existence and stability analysis of the equilibria points,
possible parametric bifurcations between them, as wel
their consequences in the energy-levels structure.
561050-2947/97/56~3!/1839~5!/$10.00
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The paper is organized as follows: Section II is dedica
to defining the problem and then, by means of a Delau
normalization, an integrable approximation is obtained.
transforming the phase space of the normalized Hamilton
to a two-dimensional sphere, the problem is shown to bel
to the family of so-called biparametric quadratic Hamilt
nians@8#. In Sec. III the stability of the equilibria, the bifur
cations between them, and the phase flow evolution of
normalized Hamiltonian are analyzed. Finally, in Sec. IV t
energy-level structure of the problem is studied.

II. HAMILTONIAN AND EQUILIBRIA

In atomic units, the Hamiltonian for the CP3B problem,
in the dipole approximation, is given by

H5
1

2
~Px

21Py
21Py

2!2
1

Ax21y21z2
1

wc

2
~xPy2yPx!

1
wc

2~x21y2!

8
1 f ~x cosv f t1y sinv f t !, ~1!

where the magnetic field is taken to lie along the positivez
direction. In Eq.~1! vc is the cyclotron frequency,v f is the
CP field frequency, andf is the electric field strength. Going
to a frame rotating with the CP frequencyv f , it is possible
to eliminate the explicit time dependence in Eq.~1!, produc-
ing the Hamiltonian@1#

H5
1

2
~Px

21Py
21Pz

2!2
1

Ax21y21z2

2S v f2
wc

2 D (xPy2yPx)1
vc

2~x21y2!

8
1 f x, ~2!

wherex, y, andz are assumed to refer to the rotating fram
Now, due to the fact that trajectories with initial condition
z5Pz50 remain always in thex-y plane, we focus our at-
tention on the planar~2D! model. The corresponding 2D
Hamiltonian takes the form
1839 © 1997 The American Physical Society
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H5
1

2
~Px

21Py
2!2

1

Ax21y2
2S v f2

vc

2 D ~xPy2yPx!

1
vc

2~x21y2!

8
1 f x. ~3!

We note that whenv f50 ~static electric field! the problem
reduces to the planar hydrogen atom subjected to cro
electric and magnetic fields@9# and whenvc50 the problem
reduces to that of an orbiting dust particle under radiat
pressure@10#. In order to examine the dynamics, it is conv
nient to scale coordinates and momenta according to

x85vc
2/3x, y85vc

2/3y, Px85vc
21/3Px , Py85vc

21/3Py .

After dropping the primes, the Hamiltonian~3! converts to
the form

K5
H

vc
2/3

5
1

2
~Px

21Py
2!2

1

Ax21y2
2S V2

1

2
D ~xPy2yPx!

1
1

8
~x21y2!1Fx, ~4!

where F5 f /vc
2/3, V5v f /vc , and the dynamics depend

only on the three parametersK, V, andF. It is worth to note
that the Hamiltonian~4! defines an integrable system in th
casesV5 1

2 @11# andF50 @10,12#.
We can split the Hamiltonian~4! as the sumK5K0

1K1 with

K05 1
2~ Px

21Py
2!2

1

Ax21y2
,

K152~V2 1
2 !~xPy2yPx!1 1

8 ~x21y2!1Fx,

where the first termK0 defines a pure Keplerian system. A
this point, for negative values ofK0 ~bounded orbits!, a nor-
malization in the usual sense~cf., e.g.,@13#! allows one to
reduce the planar CP3B problem to a dynamical system
with one degree of freedom. As Depritet al. @7# did for the
Stark quadratic Zeeman effect, we perform the normaliza
in the Delaunay variables (I 1 ,I 2 ,I 3f1 ,f2 ,f3).1 However,
since we are treating with a 2D system, we use the pla
Delaunay variables (I 2 ,I 3 ,f2 ,f3), where I 2 is the magni-
tude of the orbital angular momentum,I 3 is the principal
action,f2 is the argument of the perinucleus, andf3 is the
mean anomaly. The Delaunay normalization@16# is a canoni-
cal transformation

~ I 2 ,I 3 ,f2 ,f3!→~ I 28 ,I 38 ,f28 ,f38!

1For a more complete definition see@14#; the notations adopted in
this paper are those of@15#.
ed

n

n

ar

that convertsK into a function that does not depend on t
mean anomalyf38 . To first order, we getK8 simply by av-
eraging the functionK over the mean anomalyf3 . Carrying
out this operation and dropping the primes in the avera
variables, the normalized Hamiltonian comes out as the s

K85K081K18 ,

K0852
1

2I 3
2

,

K1852~V2 1
2 !I 21 3

16e2I 3
42 3

2FeI3
2cos2 ,

wheree5A12I 2
2/I 3

2 is the eccentricity of the Keplerian elec
tronic orbits. This normalized Hamiltonian, in the limitV
51

2, falls into the category described by Farrelly and Uz
@12#.

Becausef3 is ignorable inK8, the momentumI 3 is an
integral of the motion. Moreover,K08 may be neglected and
the normalized Hamiltonian reduces to

K85K1852~V2 1
2 !I 21 3

16e2I 3
42 3

2FeI3
2cosf2 . ~5!

We do not enter into the details of the algebraic operati
involved in constructing the normalized Hamiltonian oth
than noting that they were executed with the symbolic p
cessorMATHEMATICA @17#.

It is worth noting that the maps ofK8 on the cylinders
(f2 ,I 2) do not cover the entire phase space because
exclude the pointse50 ~circular orbits! at which the argu-
ment of perinucleusf2 is not defined. This singularity, a
Deprit and Ferrer show@18#, disappears when the system
handled in the variables

u5e cosf2 , v5e sinf2 , w56A12e256
I 2

I 3
,

~6!

where we recognize the Cartesian components of the Ru
Lenz vector and the norm of the angular momentumI 2 di-
vided by I 3 . In this new map (u,v,w), since

u21v21w251,

the phase space consists of a unit radius sphere. In t
coordinates, the points withw.0 (I 2.0) stand for Keple-
rian ellipses traveling in a direct~prograde! sense, while
those points withw,0 (I 2,0) represent Keplerian ellipse
traveling in a retrograde sense. Moreover, any point in
equatorial circlew50 (I 250) corresponds to a straight lin
passing through the origin. Finally, the north~south! pole
corresponds to circular orbits (e50) traveling in a direct
~retrograde! sense.

In coordinates (u,v,w) the HamiltonianK8 becomes the
function

K85 3
16 I 3

42 3
16 I 3

4w22~V2 1
2 !I 3w2 3

2FI 3
2u, ~7!
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The first term on the right-hand side may be neglected
cause it is a constant. After an overall multiplication of E
~7! by 23I 3

4/8 and defining the new parameters (P,Q),

P5
8

3I 3
3S V2

1

2D , Q5
4

I 3
2
F, ~8!

we can write Eq.~7! as

K85 1
2 w21Pw1Qu ~9!

and the normalized CP3B problem is regarded as a dynam
cal system represented by a biparametric quadratic Ha
tonian on the unit sphereS2. This class of Hamiltonians wa
studied by Lanchares and Elipe@19#. Taking into account the
Liouville-Jacobi theorem and the Poisson brackets betw
variables (u,v,w),

@u,w#5w, @v,w#5u, @w,u#5v,

the equations of motion associated withK8 are

u̇5~u;K1!52v~P1w!,

v̇5~v;K1!5u~w1P!2wQ, ~10!

ẇ5~w;K1!5Qv.

Equations~10! present the symmetry

~v,t !→~2v,2t !,

which indicates that the phase flow is time-reversal symm
ric with respect to the planev50. Consequently, equilibria
if any, must lie in the planev50. The phase flow is deter
mined for the most part by the equilibrium points and th
stability. Equilibrium points are the local extrema ofK8 on
S2, e.g., the roots of the system made on the right-hand
of Eq. ~10! equal to 0 together with the relationu21v2

1w251. With regard to the equilibrium points, stability, an
bifurcations between equilibria as parameters (P,Q) evolve,
Lanchares and Elipe@19# found a bifurcation curve given by
the hypocycloidP2/31Q2/351 and a bifurcation segmen
given by (P50, uQu,1). In this way, whenP2/31Q2/3

.1 ~points outside the hypocycloid!, there are only two iso-
lated stable equilibria, while whenP2/31Q2/3,1, excluding
the segment (Q50, uPu,1) ~points inside the hypocyc
loid!, there are four isolated equilibria~three stable and on
unstable!. Finally, when (Q50, uPu,1) the system pre-
sents two isolated stable equilibria and one infinite set
nonisolated equilibria in the minor circleu21v2512P2. In
relation to the bifurcations between equilibria, Lanchares
Elipe showed that three types of bifurcations take place
teardrop bifurcation when the hypocycloid is crossed, e
cluding the pathP50; a pitchfork bifurcation when the hy-
pocycloid is crossed, following the pathP50; and anoyster
bifurcation when, inside the hypocycloid, the axisQ50 is
crossed.

Substituting the values of parametersP andQ in the hy-
pocycloid, we obtain the surface of bifurcation
e-
.

il-

n

t-

r

e

f

d
a

F 8

3I 3
3S V2

1

2D G 2/3

1F 4

I 2
3G 2/3

51, ~11!

which is plotted in Fig. 1~a!. Since V>0 and F>0, this
surface appears truncated by the planesV50 andF50. As
we observe in Fig. 1~b!, the resultant curves of the intersec-
tion between Eq.~11! with planes of I 35 const are also
hypocycloids with an axis of symmetry located atV5 1

2. In
other words, the qualitative dynamics exhibited is the same
for all values ofI 3 . We also note that these hypocycloids
appear also truncated atV50 ~planar E3B! for values of

I 3.( 4
3 )1/3 @see Fig. 1~b!#. This is because

uPu<1, V<0,

and Eq.~11! with V50 determines a bifurcation curve in the
parametric plane (I 3 ,F) for the planarE3B problem.

III. GLOBAL PHASE PORTRAIT AND BIFURCATIONS

Fixing a value ofI 3 , the hypocycloid~11! determines a
partition in the parametric plane (V,F) in such a way that
the phase portrait is different depending on which region
~inside, outside, or on the hypocycloid! the parameters are.
The traditional technique to build the phase portrait is to plot
the trajectories by integrating numerically the equations of
motion and has been used to produce the successive plots
Fig. 2. The figure shows the phase flow evolution of the

FIG. 1. ~a! Surface of bifurcation.~b! Different intersection
curves between Eq.~11! with planes ofI 35 const.
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FIG. 2. Phase flow evolution of the system fo
I 351.
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system forI 351. As we have already noted, the phase fl
is symmetric with respect to the planev50 and the equilib-
ria, when they exist, are namedM1 , M2 , M3 , andM4 .

The sequence begins with the special valueV5 1
2 ~i.e.,

paramagnetic term absent! andF50.3, i.e., inside the hypo
cycloid. SinceV5 1

2 (P50), the phase flow is symmetri
with respect to the meridianw50 and there are four equi
libria. Only the equilibriumM2 , which is stable and locate
in ~21,0,0!, lies in theu,0 hemisphere. On the other han
the other three equilibria are in theu.0 hemisphere: the
pointsM3 andM4 are stable, while the remaining pointM1
is unstable and located in~1,0,0!. As V increases~decrease!,
the symmetry with respect to the planew50 is broken and
the unstable equilibriumM1 migrates towards the stabl
equilibrium M3 (M4). Finally, equilibriaM1 andM3 (M4)
coalesce when the parametersV andF are on the hypocyc-
loid. As we observe in Fig. 2, the bifurcation that takes pla
is a teardrop bifurcation. Once the hypocycloid is crosse
the phase flow consists of circulations aroundM 4 andM1 or
aroundM3 andM1 .

The bifurcation along the axisV51
2 is quite different.

While for F. 1
4 (Q.1) the phase flow consists of pure r

tations around theu axis, whenF5 1
4 a pitchfork bifurcation

appears and the stable equilibriumM1 splits into three
points: one unstableM1 and two stableM3 andM4 .

WhenV andF are inside the hypocycloid andF tends to
zero whileM3 (M4) tends to the north~south! pole, the two
homoclinic orbits grow asF approaches zero. Finally, whe
F50, both homoclinic orbits meet one another along
e

e

minor circleu21v2512P2. This bifurcation is another ex
ample of anoysterbifurcation. In relation toM3,4, they are
located at~0,0,61!. At this point, we have to remark that th
presence of the minor circle of nonisolated equilibria is sp
rious: it is because the problem is treated in the frame
reference rotating with the CP frequency.

IV. ENERGY-LEVEL STRUCTURE

The above study of global phase portrait and bifurcatio
provides insight into the energy-level structure. In this wa
when (V5 1

2 ,F) are inside the hypocycloid, there are tw
types of energy states corresponding to levels aroundM3,4
~the so-called low-energy symmetrical vibrational moti
@20–22# and levels aroundM1 ~the so-called high-energy
rotational motion@20–22#!. These two topological differen
kinds of states are separated by a separatrix passing thr
M2 . The separatrix is also a path along which tunneli
occurs, lifting the degeneracy between vibrational sta
@21#. When the hypocycloid is crossed along the segm
V5 1

2 ~i.e., pitchfork bifurcation takes place!, both classes of
vibrational levels disappear and a new class of low-ene
rotational states emerges.

The symmetry between the vibrational states is brok
when ~VÞ 1

2,F! are inside the hypocycloid. Accordingly
three classes of states result: two vibrational states aro
M3,4 and a rotational state localized aroundM1 . When the
hypocycloid is crossed~i.e., teardrop bifurcation occurs!, one
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class of vibrational levels disappears and the rotational st
and a single class of vibrational states remain.

V. CONCLUSION

We have found that the normalized CP3B 2D problem
presents a bifurcation surface in the space of parame
(V,F,I 3). In this way, the problem shows three kinds
bifurcations: thepitchfork bifurcation, theteardrop bifurca-
tion, and theoysterbifurcation, depending on how the bifur
cation surface is crossed. The phase flow evolution of
tt.

-

.

.

es

rs

e

system was studied and a compact geometrical picture o
energy-level structure of the problem was provided.
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