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Bifurcations in the hydrogen atom in the presence of a circularly polarized microwave field
and a static magnetic field
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In a classical model, the dynamics of the hydrogen atom subjected to a circularly polarized microwave field
and a magnetic field is shown to belong to the family of so-called biparametric quadratic Hamiltonians. The
energy-level structure is studied in terms of the parametric bifurcai&i€50-294{@7)05209-9

PACS numbg(s): 32.60:+i, 03.65.Sq, 02.96:p

I. INTRODUCTION The paper is organized as follows: Section Il is dedicated
to defining the problem and then, by means of a Delaunay
As Lee, Brunello, and Farrelly show [d], the dynamics normalization, an integrable approximation is obtained. By
of a hydrogen atom in the presence of a circularly polarizedransforming the phase space of the normalized Hamiltonian
(CP) microwave field crossed with a magnetic fiddd(de- to a two-dimensional sphere, the problem is shown to belong
noted as CRB) presents two different behaviors. On the to the family of so-called biparametric quadratic Hamilto-
one hand, the electron can be confined in a region of spad@ans[8]. In Sec. Ill the stability of the equilibria, the bifur-
that includes the nucleus; on the other hand, it is possible toations between them, and the phase flow evolution of the
confine the electron, while moving on circularly Keplerian normalized Hamiltonian are analyzed. Finally, in Sec. IV the
orbits, in a region of space that excludes the nucleus. Thenergy-level structure of the problem is studied.
second behavior is because the fields are used to create, be-
yond the Stark saddle point, a minimum where stable motion
can be maintained. Moreover, the problem treated in a refer-
ence frame rotating with the microwave field frequency re-  |n atomic units, the Hamiltonian for the GfB problem,
sembles the quasi-Penning trap propose@inthe depth of  in the dipole approximation, is given by
the well depends on the microwave field frequency and on
the magnetic-field strength.

Il. HAMILTONIAN AND EQUILIBRIA

In this paper, and solely from the standpoint of classical _ } 2, p2, p2y_ 1 We _
mechanics, we study the G problem when the electron H= (Pt Py Py) W +yZ+ 22 T XPmYR
is located near the nucleus, that is to say, in a region interior 2 90 o
to the Stark saddle point. The GB problem is a noninte- W (X“+y*) .
grable system with three degrees of freedom because only + 8 +1(x cosurt+y sinwt), @)

the energy is an integral. To simplify the discussion, we
reduce our study to a planfiwo-dimensional2D)] model.
However, even the planar model is nonintegrable and h
two degrees of freedom.

awhere the magnetic field is taken to lie along the positive
direction. In Eq.(1) w, is the cyclotron frequencyy; is the
CP field frequency, anil is the electric field strength. Going

We can regard the CPB problem as a perturbed Keple- X . L :
rian system and apply to it the methods of celestial mechang Zli:;é}?a?er?:\aetlggp\ﬂléti? t?gee%:pféiziiré?iﬁ IItEIJ? %Orsfjﬂe

ics. Considering the relatively simple nature of the perturba- oo
tions, a Lie transformation is sufficient to carr;) out a'm9 the Hamiltoniar{1]

“normalization.” The Lie transformatio{3-5] is easy to

build if it is not carried out to excessively high orders. In the "y 1(P2+ P24 p2)

present case, it is carried out to the first order. From this =5l TPy T T T ———

procedure results a normalized Hamiltonian that admits a 2 XTty't+z

new integral: the Keplerian teritie., the principal quantum W wg(x2+y2)

number n). Thus, after normalization, the planar B —(wf—?)(xPy—yPX)JrTJrfx, 2
problem becomes integrable. From this reduction, as Coffey

et al.[6] and Depritet al.[7] did for the quadractic Zeeman

effect and for the Stark quadratic Zeeman effect, our task isvherex, y, andz are assumed to refer to the rotating frame.
to study the evolution of the phase flow, that is to say, theNow, due to the fact that trajectories with initial conditions
existence and stability analysis of the equilibria points, thez=P,=0 remain always in th&-y plane, we focus our at-
possible parametric bifurcations between them, as well atention on the planaf2D) model. The corresponding 2D
their consequences in the energy-levels structure. Hamiltonian takes the form
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1 1 o that convertsC into a function that does not depend on the
H==( P)2(+ P —————| wy— = (xPy—yPy) mean anomalyps. To first order, we gek’’ simply by av-
2 y X2+y2 2 . . .

v eraging the functiorlC over the mean anomaly;. Carrying
w2(x2+y?) out this operation and dropping the primes in the averaged
CT+fx_ ©) variables, the normalized Hamiltonian comes out as the sum

We note that wherw;=0 (static electric fieldl the problem K'=Ko+K1,

reduces to the planar hydrogen atom subjected to crossed
electric and magnetic field®] and whenw,=0 the problem
reduces to that of an orbiting dust particle under radiation Ko=——,
pressurd 10]. In order to examine the dynamics, it is conve- 2|§
nient to scale coordinates and momenta according to

) ) o s Ki=—(Q-3)l+ e’ 3- 3 Felicos,
X'=0*, y'=0Yy, Pi=w0;"P,, Py=w; Py
wheree= \/1—1%/12 is the eccentricity of the Keplerian elec-

After dropping the primes, the HamiltonidB) converts to  tronic orbits. This normalized Hamiltonian, in the limti

the form =3, falls into the category described by Farrelly and Uzer
[12].
Becauseg; is ignorable ink’, the momentur ; is an
. i: 1(P2+ 02y 1 B Q_E (XPy—yP.) integral of the motion. Moreovek’; may be neglected and
w§’3 20 XY /—x2+y2 2 Y X the normalized Hamiltonian reduces to
1 TR 1 3.214_3 2
+§(X2+y2)+]-"x, 4) K'=Ki=—=(Q—3)l+ 5€ 13— 3 Felscosp,. (5

We do not enter into the details of the algebraic operations
where F=f/0??, Q=w(/w,, and the dynamics depends involved in constructing the normalized Hamiltonian other
c ! ’ . . .
only on the three parameteks Q, andF. It is worth to note than noting that they were executed with the symbolic pro-
that the Hamiltoniar(4) defines an integrable system in the CESSOMATHEMATICA [17].

cases= % [11] and F=0 [10,17]. It is worth noting that the maps o€’ on the cylinders
We can split the Hamiltoniar{4) as the sumk=K, (#2.1,) do not cover the entire phase space because they
+ K, with exclude the pointe=0 (circular orbitg at which the argu-

ment of perinucleusp, is not defined. This singularity, as
Deprit and Ferrer showl8], disappears when the system is
Lo o 1 handled in the variables
Ko=3(Pi+PY) — 5
VXe+y
|
u=e cosp,, v=esing,, w==xl-e =t|—,
IClz—(Q—%)(xPy—yPX)+%(x2+y2)+]-'x, 3 (6)
where the first ternk’y defines a pure Keplerian system. At where we recognize the Cartesian components of the Runge-
this point, for negative values df, (bounded orbits a nor-  |enz vector and the norm of the angular momentiyndi-
malization in the usual sengef., e.g.,[13]) allows one to  vided byls. In this new map @,v,w), since
reduce the planar CRB problem to a dynamical system
with one degree of freedom. As Depet al.[7] did for the

2,20 w2
Stark quadratic Zeeman effect, we perform the normalization uttvirwi=1,

é[he phase space consists of a unit radius sphere. In these
éoordinates, the points witw>0 (I,>0) stand for Keple-
rian ellipses traveling in a diredfprogradeé sense, while
those points withw<<0 (1,<0) represent Keplerian ellipses
traveling in a retrograde sense. Moreover, any point in the
equatorial circlev=0 (lI,=0) corresponds to a straight line
passing through the origin. Finally, the nortbouth pole
corresponds to circular orbitse€0) traveling in a direct
(Io,03,¢2,03)— (15,15, 5, b3) (retrograde sense.

In coordinates ,v,w) the HamiltonianK’ becomes the
function

Delaunay variableslg,l3,¢,,¢3), wherel, is the magni-
tude of the orbital angular momenturty is the principal
action, ¢, is the argument of the perinucleus, atd is the
mean anomaly. The Delaunay normalizati@6] is a canoni-
cal transformation

1 . e . . .
For a more complete definition s®4]; the notations adopted in 3.4 3,42 1 3.2
this paper are those ¢15]. K'=15l3— 1513w = (Q—3)l3w— 5 Fl3u, (7)
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The first term on the right-hand side may be neglected be
cause it is a constant. After an overall multiplication of Eq.
(7) by —3I‘3‘/8 and defining the new parametei?,Q),

SRETR
i "‘5"% Sres
TeTRRSSEo0

P ( l) Q=5F ® -
[ p— R = — 4 3
3 ' 27 2
33 2 I3 3
2 SRR 2, 4
we can write Eq(7) as 1 o @
o AN ARy
K'=3w?+Pw+Qu 9 0 Ty I
3
and the normalized CRB problem is regarded as a dynami-
cal system represented by a biparametric quadratic Hami
tonian on the unit spher§?. This class of Hamiltonians was 2
studied by Lanchares and Elip#9]. Taking into account the
Liouville-Jacobi theorem and the Poisson brackets betwee
variables (,v,w), 0.4
1,=08
[uw]=w, [v,w]=u, [w,u]=v, 0.3} ®
the equations of motion associated with are F I;= (4/3)”3
0.2
u=(u;Ky)=—v(P+w), I3=13
0.1
v=(v;K)=u(w+P)—wQ, (10
W=(W;IC1)=QU. 0.2 0.4 0.6 0.8 1 1.2

Q

Equations(10) present the symmetry
FIG. 1. (a) Surface of bifurcation(b) Different intersection

23
=1, (11

4
15

(v,0)—(—v,—t), curves between Ed11) with planes ofl ;= const.

which indicates that the phase flow is time-reversal symmet- 8 1\ 1%°

ric with respect to the plane=0. Consequently, equilibria, ﬁ Q_§ +

if any, must lie in the plan@=0. The phase flow is deter- 3

mined for the most part by the equilibrium points and theiryhich is plotted in Fig. (a). Since Q=0 and F=0, this

stability. Equilibrium points are the local extrema 6f on  gyrface appears truncated by the plafiesO andF=0. As

&%, e.g., the roots of the system made on the right-hand sidge observe in Fig. (b), the resultant curves of the intersec-

of Eq. (10) equal to O together with the relation™+v"  tion between Eq(11) with planes ofl;= const are also

+w?= 1. With regard to the equilibrium points, stability, and hypocycloids with an axis of symmetry located@t=3. In

bifurcations between equilibria as parametd?s@) evolve,  other words, the qualitative dynamics exhibited is the same

Lanchares and ElipeL9] found a bifurcation curve given by for all values ofl;. We also note that these hypocycloids

the hyEOC)(gﬂOgJ PIZCI;IZ ?j’3=|1 t?]hd a bifurﬁati(;rLISngrggent appear also truncated &=0 (planar ExB) for values of

given by (P=0, . In this way, when 13 ; L

>1 (points outside the hypocycloidthere are only two iso- 1s>(3) ™ [see Fig. ). This is because

lated stable equilibria, while wheR?*+Q%*<1, excluding IPl<1, Q=0

the segment @=0, |P|<1) (points inside the hypocyc- ' ’

loid), there are four isolated equilibrighree stable and one and Eq.(11) with Q=0 determines a bifurcation curve in the

unstablg. Finally, when Q=0, |P|<1) the system pre- parametric planelg,F) for the planarExB problem.

sents two isolated stable equilibria and one infinite set of

nonisolated equilibria in the minor circlé+v?=1—P?2. In . GLOBAL PHASE PORTRAIT AND BIFURCATIONS

relation to the bifurcations between equilibria, Lanchares and

Elipe showed that three types of bifurcations take place: a Fixing a value ofl 3, the hypocycloid(11) determines a

teardrop bifurcation when the hypocycloid is crossed, ex- partition in the parametric plan&)(F) in such a way that

cluding the patilP=0; apitchfork bifurcation when the hy- the phase portrait is different depending on which region

pocycloid is crossed, following the pafh=0; and amoyster  (inside, outside, or on the hypocycloithe parameters are.

bifurcation when, inside the hypocycloid, the ax)s=0 is  The traditional technique to build the phase portrait is to plot

crossed. the trajectories by integrating numerically the equations of
Substituting the values of parametétsandQ in the hy-  motion and has been used to produce the successive plots of

pocycloid, we obtain the surface of bifurcation Fig. 2. The figure shows the phase flow evolution of the
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Q=172
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FIG. 2. Phase flow evolution of the system for
|3: 1

system forl;=1. As we have already noted, the phase flowminor circleu?+v2=1— P2, This bifurcation is another ex-

is symmetric with respect to the plane=0 and the equilib- ample of anoysterbifurcation. In relation toM 34, they are

ria, when they exist, are naméd,;, M,, M3, andM,. located ai0,0,+1). At this point, we have to remark that the
The sequence begins with the special vafde; (i.e.,  presence of the minor circle of nonisolated equilibria is spu-

paramagnetic term absgrindF=0.3, i.e., inside the hypo- rious: it is because the problem is treated in the frame of

cycloid. SinceQ=3 (P=0), the phase flow is symmetric reference rotating with the CP frequency.
with respect to the meridiaw=0 and there are four equi-
libria. Only the equilibriumM,, which is stable and located

in (—1,0,0, lies in the.u<.0 hemisphere. On th.e other hand, IV. ENERGY-LEVEL STRUCTURE
the other three equilibria are in the>0 hemisphere: the
pointsM3; andM, are stable, while the remaining poikt; The above study of global phase portrait and bifurcations

is unstable and located {1,0,0. As Q) increasesdecreasg  provides insight into the energy-level structure. In this way,
the symmetry with respect to the plame=0 is broken and when (Q=3,7) are inside the hypocycloid, there are two
the unstable equilibriumM; migrates towards the stable types of energy states corresponding to levels ardind
equilibrium M3 (M,). Finally, equilibriaM,; andM 5 (M,) (the so-called low-energy symmetrical vibrational motion
coalesce when the parametétsandF are on the hypocyc- [20-22 and levels aroundvi; (the so-called high-energy
loid. As we observe in Fig. 2, the bifurcation that takes placerotational motion[20—22). These two topological different
is a teardrop bifurcation. Once the hypocycloid is crossed, kinds of states are separated by a separatrix passing through
the phase flow consists of circulations arog andM; or ~ M,. The separatrix is also a path along which tunneling
aroundM; andM; . occurs, lifting the degeneracy between vibrational states
The bifurcation along the axi§)=3 is quite different. [21]. When the hypocycloid is crossed along the segment
While for F>3 (Q>1) the phase flow consists of pure ro- Q=1 (i.e., pitchfork bifurcation takes plageboth classes of
tations around the axis, whenF = 1 a pitchfork bifurcation  vibrational levels disappear and a new class of low-energy
appears and the stable equilibriuM; splits into three rotational states emerges.
points: one unstabl# ; and two stableM; and M. The symmetry between the vibrational states is broken
When() and F are inside the hypocycloid anBitends to  when (Q#3,F) are inside the hypocycloid. Accordingly,
zero whileM 3 (M,) tends to the nortlisouth pole, the two  three classes of states result: two vibrational states around
homoclinic orbits grow as- approaches zero. Finally, when M3, and a rotational state localized aroult}. When the
F=0, both homoclinic orbits meet one another along thehypocycloid is crossed.e., teardrop bifurcation occyrone
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class of vibrational levels disappears and the rotational statesystem was studied and a compact geometrical picture of the
and a single class of vibrational states remain. energy-level structure of the problem was provided.

V. CONCLUSION
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