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We study the classical dynamics of a polar diatomic molecule in the presence of a strong static
homogeneous electric field. Our full rovibrational investigation includes the interaction with the field
due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs
molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the
field strength is increased. The phase space structure and its dependence on the energy and field strength
are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase
space is characterized either by regular features or by small stochastic layers of chaotic motion.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Molecules exposed to external fields represent, in spite of its
substantial history, a very active and promising research area with
several intriguing perspectives. The recent availability of large sam-
ples of ultracold heteronuclear diatomic molecules in their ab-
solute ground state [1,2] represents an important breakthrough
in this field. These ultracold samples of polar dimers provide an
ideal laboratory to study fundamental quantum processes, e.g., the
many-body, scattering and chemical reactions dynamics. Several
theoretical investigations indicate that external fields are unique
tools to control and manipulate chemical reactions [3], collisions
[4–8], their formation [9,10], or even to create quantum computing
devices [11–13]. Initially, the experiments on molecules in electric
fields were motivated by the possibility to understand and control
molecular dynamics by modifying the orientation and alignment
of the involved species [14–17]. These experimental studies have
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been followed up by theoretical investigations of the impact of the
external fields on the internal molecular structure, specifically the
rotational dynamics [18–20]. One of the major effects for strong
fields is the appearance of pendular states for which the molecule
is oriented and/or aligned along the electric field axis. Tradition-
ally, the theoretical description of the nuclear dynamics of these
dimers exposed to an electric field is based on the rigid rotor ap-
proximation, neglecting the coupling between the vibrational and
rotational motion, and assuming a constant dipole moment and
polarizabilities for the molecule [21]. Recently, full rovibrational
descriptions were performed and, in particular, the possibility to
affect also the vibrational motion of the polar dimer has been
demonstrated for strong field strengths and certain energy regions
of the rovibrational spectrum [22–24].

In the classical framework, several studies have been dedicated
to investigate the rotational dynamics of diatomic molecules in
the presence of combined electrostatic and non-resonant polar-
ized laser field. For the case of parallel fields, the analysis of the
stability of the equilibrium points, their bifurcation and the evo-
lution of the phase flow have provided a detailed picture of the
classical dynamics and in particular of the influence on the ori-
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entation of the quantum states [25]. For the general case of tilted
fields, the phase space structure, the degree of classical chaos, the
classical–quantum correspondence for the non-integrable case, and
the phenomenon of monodromy have been investigated [26,27].
The signatures of classical and quantum chaos in the rotational
dynamics of a dimer exposed to ac electric fields were studied re-
vealing a close correspondence between classically chaotic dynam-
ics and corresponding quantum time evolution [28]. The transition
from regular motion to dynamical chaos in a classical model of
a diatomic molecules driven by a circular polarized resonant IR
field has been analyzed. In particular, it has been demonstrated
that the transition to chaos is connected with the overlapping of
vibrational–rotational nonlinear resonances and appears at rather
low radiation field intensities [29,30]. The dissociation dynamics
of a diatomic molecule driven by a bichromatic field has been
analyzed in terms of periodic bifurcations [31]. For polyatomic
molecules, it has been demonstrated that classical stationary ob-
jects, e.g., equilibria, periodic orbits, tori or manifolds, act as or-
ganizing structures for the quantum mechanical eigenstates and
their identification is needed for the spectral assignment of highly
excited levels [32].

The purpose of the present Letter is to investigate the classi-
cal dynamics of a heteronuclear diatomic molecule, with electronic
ground state of 1Σ+ symmetry, exposed to a strong homoge-
neous static electric field. We perform a full rovibrational study,
i.e., the vibration–rotation coupling is taken into account, and we
include the interaction of the external field with the molecular
electric dipole moment and polarizability. In particular, we ana-
lyze the equilibrium points, provide their classification and their
dependence on the field strength, showing that in the strong field
regime the system presents pitchfork and saddle–node bifurca-
tions, as well as two saddle connections. The phase space structure
and its evolution with the field strength and energy is studied by
means of Poincaré surfaces of section. Whereas, for low-lying en-
ergies, the phase space structure presents a quite regular structure,
for energies close to the dissociation threshold, it is characterized
by small stochastic layers of chaotic motion. As an example we will
focus on the LiCs molecule, for which we have performed several
quantum studies of its rovibrational dynamics in the presence of
electric fields [33–36].

The Letter is organized as follows. In Section 2, the two-
dimensional Hamiltonian used to describe the dynamics of the
polar dimer and the corresponding classical equations of motion
are presented. The classification of the equilibrium points as a
function of the field strength is provided in Section 3. Section 4
is devoted to the analysis of the phase space structure. The con-
clusions and outlook are provided in Section 5. Atomic units will
be used throughout, unless stated otherwise.

2. Classical Hamiltonian and equations of motion

We employ the Born–Oppenheimer approximation to describe
the dynamics of a heteronuclear dimer in its 1Σ+ electronic
ground state in the presence of a homogeneous static electric field.
Our study is focused on the field regime where perturbation the-
ory holds for the description of the field impact on the electronic
structure, whereas a nonperturbative treatment is indispensable
for the corresponding nuclear dynamics. In addition, we restrict
our study to a non-relativistic treatment and we take into account
that the interaction of the field with the molecule is via its dipole
moment and polarizability, neglecting higher order polarizability
contributions. In the rotating molecule fixed frame with the co-
ordinate origin at the center of mass of the nuclei, the classical
Hamiltonian describing the nuclear motion is given by:

H= P 2
R

2μ
+ P 2

θ

2μR2
+ P 2

φ

2μR2 sin2 θ
+ V (R, θ), (1)

V (R, θ) = ε(R) − F D(R) cos θ

− F 2

2

[(
α‖(R) − α⊥(R)

)
cos2 θ + α⊥(R)

]
, (2)

where μ is the reduced mass of the nuclei, (R, θ , φ) represent the
internuclear coordinate and the Euler angles, and P R , Pθ and Pφ

are the corresponding classical conjugate momenta. V (R, θ) is an
effective potential composed by the field-free adiabatic electronic
potential energy curve, ε(R), and the interaction of the electric
field with the electronic dipole moment function, D(R), and the
molecular polarizability, with α‖(R) and α⊥(R) being the corre-
sponding parallel and perpendicular components, respectively. The
electric field is oriented parallel to the z axis in the laboratory
frame with strength F .

Owing to the axial symmetry, Pφ is conserved, note that, Pφ

is the z-component of the angular momentum. Hence, the expres-
sion (1) defines the classical Hamiltonian of a system with two
degrees of freedom (R, θ). The present study is restricted to the
Pφ = 0 case, i.e., the corresponding magnetic quantum number is
zero. Hence, for Pφ = 0, the Hamiltonian equations of motion read
as

Ṙ = P R

μ
, θ̇ = Pθ

μR2
,

Ṗ R = P 2
θ

μR3
− ∂ε

∂ R
+ F

∂ D

∂ R
cos θ

+ F 2

2

[(
∂α‖
∂ R

− ∂α⊥
∂ R

)
cos2 θ + ∂α⊥

∂ R

]
,

Ṗθ = −∂V (R, θ)

∂θ

= −[
F D(R) + F 2(α‖(R) − α⊥(R)

)
cos θ

]
sin θ. (3)

Besides Pφ , the classical dynamics of this system depends on the
energy E =H and on the external parameter F .

3. The equilibrium points

The equilibrium points of the above Hamiltonian flux are the
critical points of the potential V (R, θ) together with the conditions
P R = 0 and Pθ = 0. By substituting these conditions in Eq. (3), it
yields

∂ε

∂ R
− F

∂ D

∂ R
cos θ − F 2

2

[(
∂α‖
∂ R

− ∂α⊥
∂ R

)
cos2 θ + ∂α⊥

∂ R

]
= 0, (4)

[
F D(R) + F 2(α‖(R) − α⊥(R)

)
cos θ

]
sin θ = 0. (5)

From Eq. (5), it is clear that the equilibrium points, when they
exist, appear at

θ1 = 0, θ2 = π, and

cos θ3 = γ (R) =
[ |D(R)|

F (α‖(R) − α⊥(R))

]
� 1.

Whereas the critical points associated to θ = 0 and π are due to
the interaction of the field with the molecular dipole moment,
those arising from cos θ3 = γ (R) are due to the molecular polar-
izability. When these three values of θ are substituted in (4), we
obtain

− ∂ε

∂ R
+ F

∂ D

∂ R
+ F 2

2

∂α‖
∂ R

= 0, (6)

− ∂ε

∂ R
− F

∂ D

∂ R
+ F 2

2

∂α‖
∂ R

= 0, (7)
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Fig. 1. (a) Electronic potential energy curve and electronic dipole moment function of LiCs. (b) Parallel α‖(R) and perpendicular α⊥(R) components of the molecular polariz-
ability.

Fig. 2. Evolution of the energy of the critical points of the effective potential V (R, θ) as a function of the electric field F . Red, green and blue colors indicate that the
corresponding critical point is a saddle point, a (relative) minimum or a (relative) maximum, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

− ∂ε

∂ R
+ F

∂ D

∂ R
γ (R) + F 2

2

[(
∂α‖
∂ R

− ∂α⊥
∂ R

)
γ (R)2 + ∂α⊥

∂ R

]
= 0.

(8)

Since the analytical forms of ε(R), D(R), α‖(R) and α⊥(R) are not
known, it is impossible to provide close expressions of the roots of
Eqs. (6), (7) and (8) as a function of the field strength. Thus, a nu-
merical study is required to obtain these roots and to investigate
the nature of the corresponding critical points.

We have taken the 7Li133Cs dimer as a prototype system for this
study. The potential energy curve ε(R) [37], electric dipole mo-
ment function D(R) [38], and the polarizabilities α‖(R) and α⊥(R)

[39] of this system are plotted in Fig. 1. The evolution of the critical
points is illustrated by the diagram of their energy as a function of
F presented in Fig. 2, where the existence of several bifurcations
is recognized. For F < 0.005867 a.u., we encounter three critical
points: P1 is a minimum, P2 a saddle point and P3 a maximum.
The contour plot of V (R, θ) for F = 2.5 × 10−3 a.u. is depicted in
Fig. 3(a), where depending on the value of the energy two differ-
ent regions of motion are distinguished. For illustrative purposes,
the potentials have been plotted for −π � θ � π , and not only in
the interval of definition of the polar angle [0,π ]. When the en-
ergy E is below the energy of the saddle point P2, the molecule is
trapped into the potential energy well around θ = π , in such a way
that, the field prevents the molecule from describing complete ro-
tations. Thence, the molecule can eventually be oriented along the
opposite electric field direction, as it corresponds to the pendular
states of dimers with a negative electric dipole moment. Note that,
as F increases in this interval, the depth of the potential well in-

creases. In contrast, when the energy surpasses the energy of P2,
the electric field is not able to trap the molecule and its motion
describes complete rotations. Moreover, the polarizability creates
an “energy hill” (the maximum P3) which, in fact, prevents the
molecular bond R from reaching large values unless across two
narrow channels located along the θ = 0 and π directions (see
Fig. 4). For comparison, Fig. 3(b) shows the shape of the effective
potential excluding the interaction with the molecular polarizabil-
ity. In this case, there only exist the critical points P1 and P2 and
the corresponding structures in phase space remain for any value
of the electric field strength.

Fig. 5 illustrates the evolution of the potential energy surface
V (R, θ) for 0.0055 a.u. � F � 0.008 a.u., i.e., in the regime shown
in the subset of Fig. 2 where several bifurcations take place. The
saddle point P2 appearing in Fig. 5(a), undergoes a pitchfork bi-
furcation for F ≈ 0.005867 a.u., which is denoted by PB in Fig. 2,
P2 becomes a minimum and gives rise to two saddle points P4.
The separatrix passing through these saddles P4 surrounds a new
potential energy well centered at P2, see Fig. 5(b). When the elec-
tric field is slightly increased reaching the value F ≈ 0.006133 a.u.,
the first saddle–node bifurcation takes place, SN1 in Fig. 2. Two
new critical points appear, a minimum P5 and a saddle point P6,
along the θ = 0 axis, see Fig. 5(c). From this bifurcation V (R, θ)

shows a new potential energy well centered at the minimum P5.
For a further increase of F , the separatrices passing through P4
and P6 approach one another and they merge at F ≈ 0.006637 a.u.
where a saddle-connection, SC, occurs, see Fig. 5(d). As we observe
in Fig. 5(e), after passing this field strength, the two separatrices
interchange the minimum they surround. A second saddle–node



Author's personal copy

460 M. Iñarrea et al. / Physics Letters A 374 (2010) 457–465

Fig. 3. Equipotential curves of the effective potential V (θ, R) with polarizability (a) and without polarizability (b). Both figures are calculated for the same electric field
strength F = 0.0025 a.u.

Fig. 4. Effective potential surface V (θ, R) for the electric field strength F =
0.0025 a.u.

bifurcation, SN2, occurs for F ≈ 0.006893 a.u., where the minimum
P2 and the saddle P6 come into coincidence and both disappear
(see Fig. 5(f)). From this value of F on, the structure of V (R, θ)

remains unchanged. This chain of bifurcations can be understood
as the route to the appearance of a new kind of oscillatory or-
bits around P5. In contrast to the vibrational orbits around P1, in
this new oscillatory mode the molecule is mainly aligned along the
θ = 0 direction. At such strong fields, the dynamics is dominated
by the interaction of the field with the polarizability. As a direct
consequence, the dimer presents this anomalous molecular orien-
tation parallel to the field direction, i.e., opposite to the orientation
due to the interaction with the dipole moment.

4. Evolution of the phase space

In this section we get a deeper physical insight of the phase
space structure of this system by analyzing the Poincaré surfaces of
section [40] as a function of the field strength F and the energy E .
We define the surface of section by the intersection of the phase
trajectories with the (θ, Pθ )-plane for P R = 0. With this selection

we ensure that all the orbits (both rotational and oscillatory) will
cross it at any time, i.e., it is guarantee that this surface of sec-
tion is transverse to the Hamiltonian flux [41]. They are generated
by the numerical integration of the Hamiltonian equations of mo-
tion (3) using an explicit Runge–Kutta algorithm of eighth order
with step size control and dense output [42].

For the Hamiltonian (1) and Pφ = 0, the region in the (θ, Pθ )-
plane defining these Poincaré surfaces of section is determined by
those values of Pθ satisfying

Pθ = ±√
2μR

{
E − ε(R) + F D(R) cos θ

+ F 2

2

[(
α‖(R) − α⊥(R)

)
cos2 θ + α⊥(R)

]}1/2

. (9)

Therefore, the limits of the surface of section correspond to the
maximum and minimum values of Pθ satisfying this equation.
The initial conditions have been chosen inside the region limited
by these extreme points, which were computed numerically. Note
that, to get a better visualization of the different phase space struc-
tures, the surfaces of section have been plotted for 0 � θ � 2π , and
not only in the interval of definition of the polar angle [0,π ].

4.1. Phase space structure: normal modes

In Fig. 6(a) we show the surface of section for an electric field
strength F = 2.5 × 10−4 a.u. and an energy of E = −0.02641 a.u.,
the corresponding potential energy surface has a similar structure
to the case discussed in Fig. 3(a). Since this energy is below the
energy of the saddle point P2, the molecule is trapped inside the
potential well of the minimum P1. All the orbits are ordered form-
ing invariant KAM tori around the stable fixed point located at
(θ, Pθ ) = (π,0). As can be analytically checked in (3), this fixed
point corresponds to a pure vibrational rectilinear periodic orbit
along the negative z axis (θ = π). In Fig. 7 this periodic orbit O V 1
and representative quasiperiodic orbits around it are presented.

A complementary vision of the phase space structure is pro-
vided by the surface of section in the (R, P R)-plane for θ = π . In
this case, the allowed region is limited by the equation

P R = ±
√

2μ
[

E − V (R,π)
]
. (10)

It is worth noting that the rectilinear orbit O V 1 is tangent to the
flux in this Poincaré map and it corresponds to the curves (10).
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Fig. 5. Evolution of the equipotential curves of the potential V (θ, R) as a function of the electric field F .

Fig. 6. Poincaré surfaces of section for P R = 0 (a) and for θ = π (b). Both figures are calculated for an electric field strength F = 0.00025 a.u. and an energy E = −0.02641 a.u.
See the text for a more detailed explanation.
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Fig. 7. The black solid lines are the rectilinear orbits O V 1 and O R . Examples of
quasiperiodic orbits around these periodic orbits are also shown. The dotted line
is the equipotential curve of electric field strength F = 0.00025 a.u. and an energy
E = −0.02641 a.u.

This surface of section for the same values of E and F is shown
in Fig. 6(b), where a similar phase space structure as in Fig. 6(a)
is observed. The rectilinear orbit O V 1 in the center of Fig. 6(a)
is now the limit of the surface of section of Fig. 6(b). This sur-
face of section is composed of concentric orbits around a central
fixed point associated to a new periodic orbit of arch-like type O R ,
which is also presented in Fig. 7. In the surface of section with
P R = 0 (Fig. 6(a)) this periodic orbit O R is located on the Pθ axis
with θ = π near the limit of the surface of section. Due to the
small variation of the radial coordinate R , this orbit is almost tan-
gent to the flux, which explains why it is not visible at a glance
in the P R = 0 Poincaré map of Fig. 6(a). From these two different
phase plots of Figs. 6(a) and 6(b), we deduce that the phase space
is organized around O V 1 and O R . Then, the closer a quasiperiodic
orbit is to O V 1 the larger its orientation is along the negative z
axis. On the other hand, the quasiperiodic orbits near O R show an
arch-like shape, see Fig. 7. Let us remark that the periodic orbits
O V 1 and O R are, respectively, the radial and the angular nonlinear
normal modes of the system [43].

When the energy of the system is larger than the energy of
the saddle point P2, the molecule is not trapped into the potential
well of the minimum P1 and can, eventually, describe complete
rotations. To illustrate this phenomenon we have analyzed this sys-
tem for the same field strength, F = 2.5×10−4 a.u., and an energy
E = −10−4 a.u. above the saddle point P2. The surfaces of sec-
tion in the planes (θ, Pθ ) for P R = 0 and (R, P R) for θ = π are
shown in Figs. 8(a) and 8(b), respectively. Compared to the case
previously discussed, the (R, P R) surface of section shows a simi-
lar structure to the one presented in Fig. 6(b), but for the (θ, Pθ )

surface of section significant modifications are encountered (see
Figs. 6(a) and 8(a)). In the present dynamics, two unstable fixed
points located at (θ, Pθ ) = (0,0) and (2π,0) appear, they corre-
spond to another pure vibrational rectilinear (θ = 0) periodic orbit
along the positive z axis, which can also be analytically checked
in Eq. (3). In this orbit, labeled as O V 2, the electric dipole mo-
ment of the molecule is aligned parallel to the electric field (see
Figs. 8(c) and 8(d)). These two unstable fixed points are connected
by a separatrix that encloses the curves of the oscillatory type mo-
tions. Outside this separatrix, there is a family of curves which
sweep out the angle θ from 0 to 2π , they correspond to complete

(quasiperiodic) molecular rotations. To obtain a global vision of the
different motions that characterize the dynamics of this system, in
Figs. 8(c) and 8(d) the periodic orbits O V 1, O V 2 and O R are de-
picted, as well as two representative quasiperiodic orbits. Finally,
note that the surfaces of section of Fig. 8 show regular behavior
which indicates that, even for energies above the saddle point P2,
the system is near integrable.

4.2. Dynamics close to the dissociation threshold

Having explored the fundamental structures in phase space,
we investigate their evolution as a function of the energy. Fig. 9
shows a gallery of surfaces of section in the energy interval
−10−4 a.u. � E � −7 × 10−5 a.u. and for F = 5 × 10−4 a.u. Since
all the changes in the structure of the surface of section take place
in the oscillatory region, these plots are restricted to the interval
−30 a.u. � Pθ � 30 a.u. The larger is the energy, the more com-
plex is the phase space shown in Fig. 9. By the increase of the
field strength, the separatrix passing through O V 2 in Fig. 8, is re-
placed by a thin stochastic layer of chaotic motion, see Fig. 9(a). In
this small layer, the motion of the molecule alternates in a random
way between complete rotations in both directions and oscillations
of large amplitude. Besides this tiny stochastic layer, the rest of
the phase space remains regular, appearing several islands of reso-
nances for a larger energy in Fig. 9(b).

For a further increase of the energy, two bifurcations take place
which provoke a change on the stability of the periodic orbits
O V 1 and O V 2. For an energy close to E = −7.3 × 10−5 a.u., see
Figs. 9(c)–(d), the periodic vibrational rectilinear orbit O V 2, ini-
tially unstable, suffers a period-doubling bifurcation [44] becom-
ing stable and giving rise to two new unstable fixed points. The
separatrix passing through these unstable points surrounds new
quasiperiodic motions around O V 2. They are oscillations of small
amplitude around the direction of the electric field, that is, around
the positive z axis. In this way, these new oscillatory motions are
different from those ones existing around the periodic orbit O V 1,
in which the molecule oscillate around the opposite direction of
the field. For an energy close to E = −7.14 × 10−5 a.u. the second
bifurcation takes place. This new bifurcation is again a period-
doubling one: from the rectilinear orbit O V 1, which becomes un-
stable, emanate two new stable fixed points (see Fig. 9(d)–(e)).
These fixed points correspond to a new oscillatory periodic mo-
tion of the molecule around the opposite direction of the field.

As the energy is further increased, see Fig. 9(f)–(g), a small
stochastic layer appears in the vicinity of the new separatrix pass-
ing through O V 1 and the amount and the size of the islands of
resonances increase. However, the phase space structure of the sys-
tem remains qualitatively the same until the dissociation threshold
is reached.

The dissociation energy threshold can be obtained by employ-
ing R → ∞ and P R → 0, Pθ → 0 in the Hamiltonian. Under these
conditions and since limR→∞ ε(R) = 0, limR→∞ D(R) = 0, the
Hamiltonian (1) takes the form

H= − F 2

2

[(
lim

R→∞α‖(R) − lim
R→∞α⊥(R)

)
cos2 θ + lim

R→∞α⊥(R)
]
.

(11)

In the dissociation limit α‖ = α⊥ = α and Eq. (11) yields the en-
ergy of the dissociation threshold Ed for θ = 0 or π :

Ed = − F 2

2
lim

R→∞α(R) = − F 2

2
(αLi + αCs). (12)

Note that the first orbits to dissociate are the periodic vibrational
rectilinear motions O V 1, O V 2 and the quasiperiodic orbits sur-
rounding them because, these orbits are localized along the dis-
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Fig. 8. Upper figures: Poincaré surfaces of section P R = 0 (panel (a)) and θ = π (panel (b)). Lower figures: The solid black lines are the periodic orbits O V 1, O V 2 and O R .
Examples of oscillatory and rotational quasiperiodic orbits around O V 1 and O R are also shown. The dotted lines are the equipotential curves of energy E = −1 × 10−4 a.u.
Note that in (d) Cartesian coordinates x = R sin θ and z = R cos θ are used. All figures are for an electric field strength F = 0.00025 a.u. and an energy E = −1 × 10−4 a.u.

sociation channels θ = 0 and π . This phenomenon is observed in
Fig. 9(h), where those orbits with θ close to 0 and π are the first to
disappear. Moreover, the atomic polarizabilities lead to a decrease
of the dissociation energy to a nonzero negative value, which de-
pends on the electric field strength F as well as on the atoms
polarizabilities. For example, for the value F = 5 × 10−4 a.u., we
obtain that Ed = −7.065 × 10−5 a.u., which is very close to the
energy of Figs. 9(g)–(h).

It is interesting to note that for energies close or greater
than Ed , quasiperiodic orbits near the periodic ones O V i have a
large extension along the R coordinate and are very narrow in the
θ angle. Moreover, the numerical computation of such orbits shows
that the molecule spends most of the time in regions with large
values of R far from the potential well. This behavior is depicted
in Fig. 10 and it is in very good agreement with the probability
densities obtained from quantum calculations [36]. Let us elabo-
rate on this last point somewhat more. The last vibrational band
ν = 54 of the 7Li133Cs dimer has two rotational excitations with
rotational quantum number J = 0 and 1. Both states have a large
extension, the expectation value for the vibrational coordinate 〈R〉
is 50.24 and 52.52 a.u. for the level with J = 0 and 1, respectively.
Even more, around 89% of their probability density is located at

R > 30 a.u. By increasing the electric field strength, the rotational
and vibrational dynamics are influenced. In the strong field regime,
these two levels show a significant orientation antiparallel to the
field axis, and their probability density is located in the region
with angles close to θ = π . In addition, their vibrational motions
are squeezed to minimize the energy, and for F = 3.4 × 10−4 it
was found 〈R〉 = 28.13 and 30.96 a.u., for the levels with J = 0
and 1, respectively.

5. Conclusions

In the present work, we have investigated the classical rovi-
brational dynamics of the alkali polar dimer LiCs in its electronic
ground state in the presence of a strong static homogeneous elec-
tric field, in the framework of the Born–Oppenheimer approxima-
tion. We have taken into account the interaction of the molecule
with the field due to both, its permanent electric dipole moment
and its polarizability. Due to the axial symmetry of the system, the
component Pφ of the angular momentum is conserved, and hence,
the system has two degrees of freedom. Our study focuses on the
case Pφ = 0, that is, a zero magnetic quantum number. We have
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Fig. 9. Evolution of the Poincaré surfaces of section P R = 0 as a function of the energy E for an electric field strength F = 5 × 10−4 a.u.

found that, for strong electric fields or energies close to the disso-
ciation threshold, the molecular polarizability of the dimer cause
relevant effects on the system dynamics. Although this work is fo-
cused in the LiCs dimer, let us point out the general validity of our
results.

The evolution of the potential energy surface and the corre-
sponding critical points of the system as a function of the electric
field strength have been explored. For increasing electric field, the
potential energy surface suffers a sequence of bifurcations, that
give rise to new critical points. Some of these critical points corre-
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Fig. 10. Temporal evolution of the R coordinate of the orbit with initial conditions θ = π , R = 45 a.u., P R = 0 and energy close to the dissociation threshold. The dotted
blue line in the right hand side figure is the equipotential energy curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

spond to system equilibria where the orientation of the molecule
is aligned parallel to the electric field.

By means of suitable Poincaré surfaces of section, we have also
analyzed the evolution of the system phase space as a function
of the energy. For small energy values, the phase space is regular
with quasiperiodic motions organized around three stable periodic
orbits: the two nonlinear normal modes (one of pure vibrational
type and another of oscillatory type) and a complete rotation for
larger energies. For energy values close to the dissociation thresh-
old, the system looses part of its regularity. A small stochastic
layer of chaotic motions appears in the vicinity of the separatrix
which keeps apart the oscillatory motions from the complete ro-
tations. In this tiny chaotic region, the dimer alternates randomly
between complete rotations in both directions and oscillations of
large amplitude. In this range of high energies, we have also found
that the phase space suffers two successive bifurcations, in one
of which the previously unstable periodic pure vibrational rectilin-
ear motion parallel to the direction of the electric field becomes
a stable periodic orbit, leading to new quasiperiodic oscillations of
small amplitude around this direction. Thus, for energies close to
the dissociation threshold the molecule can also be oriented in an
anomalous stable way parallel to the electric field direction.

With regards to the dissociation of the molecule, there exist
two dissociation channels located along the direction of the elec-
tric field, as the first orbits to dissociate are the two periodic pure
vibrational rectilinear motions and the quasiperiodic orbits sur-
rounding them.
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