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We study the classical dynamics of the rare gas-dihalogen Ne· · ·Br2 complex in its ground electronic
state. By considering the dihalogen bond frozen at its equilibrium distance, the system has two degrees
of freedom and its potential energy surface presents linear and T-shape isomers. We find the nonlinear
normal modes of both isomers that determine the phase space structure of the system. By means of
surfaces of section and applying the numerical continuation of families of periodic orbits, we detect and
identify the different bifurcations suffered by the normal modes as a function of the system energy.
Finally, using the Orthogonal Fast Lyapunov Indicator (OFLI), we study the evolution of the fraction of the
phase space volume occupied by regular motions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that nonlinear classical and semiclassical me-
chanics have proven to be very useful for interpreting the quantum
dynamics of real atomic and molecular systems, even when the
classical dynamics is chaotic and the quantum dynamics is strongly
mixed [1]. Due to the simplicity of the model, the hydrogen atom
in the presence of external fields is the keystone system on which
all nonlinear classical tools have been successfully applied [2]. In
particular, the studies of the periodic orbits and the correspond-
ing phase space structure provide a very useful information that
can be compared with the behavior of the corresponding quantum
system and with the experiments [1,3]. Since the pioneering work
of Gutzwiller [4], many authors (see, e.g., Ref. [5] and references
therein) have stated a clear relation between classical periodic or-
bits and quantum eigenfunctions.

In relation to molecules, and in spite of the difficulties of
dealing with in general more complex systems, a wide variety
of molecular systems have been studied by using periodic orbit
theory. In this sense, among a plethora of works, we refer the
reader to those of Efstathiou and Contopoulos [6], Farantos [7] and
Ezra [8].

A nice example where classical dynamics is playing an impor-
tant role are the rare gas-dihalogen van der Walls molecules. These
molecules are simple systems where several phenomena can be
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studied by combining classical and quantal studies. In particular,
much effort has been paid to the study of the vibrational predis-
sociation [9,10] and photodissociation [11] of these molecules. In
these processes, nonlinear dynamics is particularly useful to un-
derstand the decay of the complex due to the energy transfer from
the dihalogen bond to the weak van der Waals bond. However,
not much attention has been paid to the vibrational dynamics of
the rare gas around the dihalogen dimer. With this kind of study,
widely applied in the LiCN and HCP molecules [12], it is possible
to determine the structure of the phase space. As it is well known,
periodic orbits are the backbone of the phase space. Moreover, they
play an important role because they are essential to understand
some quantum features as the localization of quantum states along
unstable periodic orbits [13].

With this in mind, here we focus on the evolution of the phase
space structure of one of these rare gas-dihalogen complexes: the
Ne· · ·Br2 complex in the ground electronic state. This study is
based on a systematic searching of periodic orbits by using nu-
merical continuation of families of periodic orbits. The Letter is
organized as follows. In Section 2 we describe the potential energy
surface and the Hamiltonian we used in the study. We find the
basic periodic orbits (normal modes) that determine the funda-
mental phase space structure in Section 3. In Section 4 we detect
and classify by numerical continuation the different bifurcations
that determine the evolution of the phase space. In Section 5 we
study the evolution of the fraction of the phase space volume oc-
cupied by regular motions as a function of the energy. Finally, in
Section 6 the main results are summarized.
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Fig. 1. Equipotential curves of the potential energy surface V (R, θ, re).

2. The Hamiltonian

We consider the motion of a Ne atom around a Br2 molecule
which bond coordinate r is frozen at its equilibrium distance re ≈
2.281 Å. By considering that the total angular momentum of the
molecule is zero, the dynamics of the Ne atom around the Br2
dimer is described by the two-dimensional Hamiltonian [14]

H= P 2
R

2μ2
+ 1

2

(
1

μ2 R2
+ 1

μ1r2
e

)
P 2

θ + V (R, θ, re). (1)

In Hamiltonian (1), R is the distance of the Ne atom to the Br–
Br center of mass, θ is the angle between R and re , (P R , Pθ ) are
the canonical momenta conjugated of R and θ and μ−1

1 = m−1
Br +

m−1
Br and μ−1

2 = m−1
Ne + (2mBr)

−1 are the diatomic and triatomic
reduced masses. Finally, V (R, θ, re) is the potential energy surface
describing the interaction of the Ne atom with the Br2 molecule.
Throughout the Letter atomic units are used.

In order to perform classical calculations, an analytical potential
energy surface (PES) is the most suitable choice. We built the PES
from the ab initio data calculated in [10]. Using these data and
following the collocation procedure also reported in Ref. [10], an
expansion in Legendre polynomials Pλ(cos θ) allows one to write
the PES as

V (R, θ, re)

=
∑
λ

{
5∑

i=1

αiλ
[
e−2βi(R−γi) − 2e−βi(R−γi)

] − δλ

R6
− ηλ

R8

}

× Pλ(cos θ), λ = 0,2,4,6,8, (2)

where the parameters are listed in Table II of Ref. [10]. Note that
as for λ = 0,2,4,6,8 the Legendre polynomials are periodic func-
tions of period π , the potential energy surface V (R, θ, re) and the
Hamiltonian H are also periodic functions of the same period in
the θ angle.

In Fig. 1 the equipotential curves of (2) are shown. At R =
8.479433 a.u. and θ = 0 and θ = π the PES has two equivalent
minima P L of energy EL = −0.000427 a.u. These minima corre-
spond to the linear isomer of the molecule. At R = 6.798360 a.u.
and θ = π/2 and θ = 3π/2 the potential energy surface V (R, θ, re)

presents two additional minima P T of ET = −0.000388 a.u. which
correspond to the so-called T-shape isomer. The linear and T-shape
potential wells are kept apart by a separatrix passing through
four saddle points P S of energy E S = −0.000219 a.u. located at

R = 8.383587 a.u. and θ = 0.876222, θ = 2.265371, θ = 4.017815
and θ = 5.406964.

From the shape of V (R, θ, re) we deduce that the Ne atom can
move in different regions of motion. There is one region of rota-
tional orbits for energies above the isomerization barrier E S and
four regions of vibrational orbits for energies below E S . When the
energy E of the atom is below E S , the atom is in a vibrational
mode because it is always confined inside one of the four poten-
tial wells. In other words, the Ne atom is mainly aligned along the
linear or the T-shape configurations and cannot reach large values
of R . When in a rotational mode (energy bigger than the isomer-
ization barrier E S ), the atom can travel from one potential well
to other and, depending on the energy and initial conditions, can
reach large values of R .

The Hamiltonian equations of motion read

θ̇ =
(

1

μ2 R2
+ 1

μ1r2
e

)
Pθ ,

Ṗθ = −∂V (R, θ, re)

∂θ
,

Ṙ = P R

μ2
,

Ṗ R = P 2
θ

μ2 R3
− ∂V (R, θ, re)

∂ R
. (3)

The equilibrium points of the above Hamiltonian flow are the crit-
ical points of the PES V (R, θ, re) together with the conditions
P R = Pθ = 0. Moreover, if we consider initial conditions Pθ = 0
and θ = 0, π/2, π or 3π/2 it is straightforward to see that in the
above equations we obtain θ̇ = Ṗθ = 0, which corresponds to pure
analytic vibrational rectilinear periodic orbits passing through each
of the critical points P L and P T of V (R, θ, re). We name these rec-
tilinear orbits as L1 and T1, respectively.

3. Phase space structure

The computation of Poincaré surfaces of section is a common
way to illustrate the structure and evolution of the phase space of
a two-degrees Hamiltonian dynamical system. The construction of
a surface of section is a delicate task because it should be trans-
verse to the flow [15]. In our problem a good choice is to define
the surfaces of section as the intersection of the phase trajecto-
ries with the (θ, Pθ ) plane for P R = 0. We choose this surface of
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Fig. 2. (a) Poincaré surfaces of section for P R = 0 and (b) for θ = π in the linear configuration. Both surfaces of section are calculated for the same energy E = −0.00039 a.u.

Fig. 3. The blue and red colored lines are, respectively, the rectilinear normal modes L1 and T1 and the angular normal modes L2 and T2. Examples of quasiperiodic orbits
around these periodic orbits are also shown. Figures have been calculated for energies E = −0.00039 a.u. (a), and E = −0.00037 a.u. (b). (For interpretation of the colours in
this figure, the reader is referred to the web version of this Letter.)

section because all the orbits (both rotational and vibrational) will
cross it at any time, e.g., we can guarantee that this surface of sec-
tion is transverse to the Hamiltonian flux.

The surface of section is generated by numerical integration
of the Hamiltonian equations of motion (3). These equations are
solved by means of an explicit eight order Runge–Kutta algorithm
with stepsize control and dense output [16].

Under the conditions of this surface of section and taking into
account the Hamiltonian (1), the available region in the plane
(θ, Pθ ) of the surface of section is determined by the possible val-
ues of the momentum Pθ that are given by the equation

Pθ = ±
√

2
μ2μ1r2

e R2

μ2 R2 + μ1r2
e

[
E − V (R, θ, re)

]
. (4)

In Fig. 2a we show the surface of section for an energy E =
−0.00039 a.u. This energy is above the energy EL of the linear
minimum P L and below the energy ET of the T-shape minima P T .
Due to the symmetry of the Hamiltonian, the complete surface of
section for this energy presents two equal disjoint regions around
θ = 0 and θ = π that correspond to “trapped” motions inside each
of the two potential wells of the linear isomer (for simplicity we
only show in Fig. 2a the region around θ = π ). In this surface of

section all the orbits are ordered defining invariant closed curves
around two stable fixed points (periodic orbits) located at (0,0)

and (π,0) respectively. These fixed points correspond to the vi-
brational rectilinear orbits L1 (see Fig. 3a). In Fig. 2a is also shown
a zoom of the upper and lower parts of the surface of section.
In these zooms there appear two more stable fixed points which
correspond to the same arch-like periodic orbit named as L2 (see
Fig. 3a). A complementary vision of the phase space structure is
given by computing the surface of section θ = π in the (R, P R)

plane. In this case, the limit of the available region in the (R, P R)

plane is given by the equation

P R = ±
√

2μ2
[

E − V (R,π, re)
]
. (5)

It is worth noting that the rectilinear orbit L1 is tangent to the flux
in this Poincaré map and it corresponds to the curves (5). When
this surface of section is computed for the same value of E (see
Fig. 2b) we observe a similar phase space structure as in Fig. 2a,
being the central fixed point the periodic orbit L2.

From the phase plots of Fig. 2, we deduce that the phase space
in the linear potential energy well is organized around the periodic
orbits L1 and L2. Then, the nearer a quasiperiodic orbit is to L1
the greater its orientation is along this periodic orbit. On the other
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Fig. 4. (a) and (b) are, respectively, the surfaces of section for P R = 0 of the T-shape θ = π/2 isomer and the linear θ = π isomer. The figure (c) is the surface of section for
θ = π of the same linear isomer. All the surfaces of section are calculated for the same energy E = −0.00037 a.u.

hand, the quasiperiodic orbits near L2 show an arch-like shape. In
Fig. 3a examples of these two kind of motions are shown.

In fact, it is worth noting that the periodic orbits L1 and L2 are,
respectively, the radial and the angular nonlinear normal modes of
the linear isomer.

When the energy E is above ET and below E S , the Ne atom can
live trapped inside any of the four potential wells of V (R, θ, re). In
this energy interval, surfaces of section will show four disjoint re-
gions of motion. The surfaces of section in Fig. 4 correspond to an
energy value E = −0.00037 a.u. slightly above E T . For this energy,
the linear and the T-shape phase space regions show regular mo-
tion. For simplicity we only show the surfaces of section of the
T-shape θ = π/2 isomer (Fig. 4a) and the linear θ = π isomer
(Fig. 4b–c). The dynamics in the T-shape isomer regions (Fig. 4a)
is organized around three fixed stable points located at the θ axis
which are the nonlinear normal modes of the T-shape isomer. In-
deed, the central fixed point is the vibrational rectilinear orbit T1
while the other two stable fixed points correspond to the same
periodic orbit. This periodic, named as T2, is again an arch-like pe-
riodic orbit. In Fig. 3b are depicted the periodic orbits T1 and T2
as well as two representative quasiperiodic orbits.

In the linear isomer regions, Fig. 4b–c shows that, besides the
appearance of two islands of resonances, the phase space shows a
similar structure as in Fig. 2.

4. Evolution of the nonlinear normal modes

From the above study we have determined the four normal
modes of the system. These normal modes are the fundamental
families of periodic orbits of the system because their numerical
continuation generated by the variations of the energy E and the
computation of the stability parameter of each family will help us
in understanding the dynamics of the problem.

As it is well known, the linear stability of a periodic orbit is
determined from the eigenvalues of the monodromy matrix. Since
we are dealing with a Hamiltonian problem, the eigenvalues ap-
pear in reciprocal pairs, and as a consequence of the invariance
of the Hamiltonian equations of motion we have one trivial eigen-
value λ0 = 1 with multiplicity 2. Then, the stability index

k = λ + 1/λ (6)

is normally used [17], where the condition k real and |k| < 2 ap-
plies for linear stability, and the critical values k = ±2 mean that
a new family of periodic orbits has likely bifurcated from the orig-
inal one. Therefore, stability diagrams where the stability index is
presented versus the parameter generator of the family are com-
monly used.

At this point, we proceed as follows. By using the numerical
software AUTO [18] we carry out the numerical continuation of the

families of the four normal modes that emanate from these solu-
tions. The stability diagram of every periodic orbit of each family
as a function of the energy E is also computed. From this diagram,
we can detect values of the energy for which possible bifurcations
take place. Bifurcations produce qualitative changes in the phase
space structure. In the present study, when a bifurcation is found,
we calculated the surfaces of section when energy is slightly less
and slightly larger than its value at bifurcation, in order to illus-
trate the effect of bifurcation.

4.1. Linear configuration

We begin considering the linear isomer and its angular nonlin-
ear normal mode. The diagram in Fig. 5 shows the evolution of the
stability index of the family of the periodic orbits corresponding to
this normal mode. This diagram gives the stability parameter k of
this family in the interval −4 × 10−4 a.u. � E � −1.2 × 10−4 a.u.
We call this family with the same name as the corresponding pe-
riodic orbit L2. The evolution of this family is depicted in blue in
Fig. 5. As it can be seen in the figure, this family L2 suffers four
different bifurcations, and it is always stable until the last bifurca-
tion which takes place at E ≈ −1.9×10−4 a.u. The first bifurcation
occurs for E ≈ −3.86 × 10−4 a.u. when the stability index reaches
the critical value k = 2 in a tangential way (without crossing it).
This is a double pitchfork bifurcation [19] in which four new pe-
riodic families (two stable ones and two unstable ones) emanate
from the L2 family. The two new stable families have the same
stability index values, and thus, both branches are represented in
Fig. 5 by the same continuous red line. The same occurs with the
two new unstable families (dashed red line).

This bifurcation is visualized in Fig. 6 by means of surfaces
of section for θ = π . In Fig. 6a, when E = −3.9 × 10−4 a.u., the
SOS only exhibits one fixed center point corresponding to the an-
gular normal mode L2. This periodic motion is depicted in blue
in the (θ, R) plane in Fig. 6c–d. After the bifurcation, for E =
−3.82 × 10−4 a.u., two new center points and two saddle points
arise in the SOS emanating from L2, see Fig. 6b. The two new sta-
ble periodic motions are drawn in red in the (θ, R) plane in Fig. 6d.
The orbits of both motions have the same shape in this plane but
they are traveled in opposite directions.

The second bifurcation takes place for E ≈ −3.08 × 10−4 a.u.
when the stability index reaches the critical value k = −2. This is
a double period-doubling bifurcation [19] in which four new pe-
riodic families (two stable ones and two unstable ones) emerge
from the normal mode L2. All these new periodic orbits have dou-
ble period of L2 and, therefore have a periodicity m = 2 [19]. The
two new stable families have the same stability index values, and
therefore, both branches are represented in Fig. 5 by the same con-
tinuous clear green line. The same happens with the two new un-
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Fig. 5. Stability diagram of the families of the periodic orbits emanating from the angular nonlinear normal mode of the linear isomer as a function of the energy E . Dashed
lines stand for unstable periodic orbits. (For interpretation of the colours in this figure, the reader is referred to the web version of this Letter.)

Fig. 6. First bifurcation of the angular nonlinear normal mode family in the linear isomer. Surfaces of section for θ = π before (a) and after (b) the double pitchfork bifurcation.
Stable periodic orbits before (c) and after (d) bifurcation. Red line represents the new stable periodic orbits arisen from the bifurcation. (For interpretation of the colours in
this figure, the reader is referred to the web version of this Letter.)

stable families (dashed clear green lines). Fig. 7 represents the evo-
lution of the surface of section θ = π through this bifurcation, as

well as the stable periodic motions involved in it. The orbit in the
(θ, R) plane of this periodic motion is shown in blue in Fig. 7c–d.
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Fig. 7. Second bifurcation of the angular nonlinear normal mode family in the linear isomer. Surfaces of section for θ = π before (a) and after (b) the double period-doubling
bifurcation. Stable periodic orbits before (c) and after (d) bifurcation. Red line represents the new stable periodic orbits arisen from the bifurcation. (For interpretation of the
colours in this figure, the reader is referred to the web version of this Letter.)

After bifurcation occurs, see Fig. 7b for E = −3.06 × 10−4 a.u., four
new center points and four new saddle points appear in the SOS
emerged form L2. Each pair of the four new center points cor-
responds to each one of the two new stable periodic motions.
Fig. 7d shows as a red line the orbit of these two new stable mo-
tions plotted in the (θ, R) plane. The orbit shape of these two
motions are the same, but they are traveled in opposite direc-
tions.

The third bifurcation occurs for E ≈ −2.46 × 10−4 a.u., it is also
a double period-doubling one and, thus it is very similar to the
previous bifurcation. Two new stable periodic families and two
new unstable ones arise from the angular normal mode L2, see
Fig. 5. All these new families have twice the period of L2, that
is, they have multiplicity m = 2. As it can be seen in Fig. 8a–b,
the surfaces of section θ = π show that a region of chaotic mo-
tions surrounding these periodic motion has already appeared for
this energy range. This chaotic region increases quickly after the
bifurcation. The orbit of the angular normal mode L2 has taken a
W-like shape in the (θ, R) plane for this energy, see the blue line
in Fig. 8c–d. The orbits of the two new stable periodic motions
emerged from this bifurcation are shown as red and orange lines
in Fig. 8d. It is important to note that, unlike all the previous stable
periodic motions, the shapes of these new ones are not symmetric
with respect to the θ = π axis in the (θ, R) plane, but they are as
mirror reflections one each other.

The last bifurcation in the angular normal mode L2 of the lin-
ear isomer takes place for E ≈ −1.9 × 10−4 a.u., when the stability
index crosses the critical value k = 2, see Fig. 5. This is a pitchfork
bifurcation in which the angular mode L2 changes its stability be-

coming an unstable periodic motion (k > 2). At the same time, two
new periodic stable motions with the same period of L2 arise from
it. For this energy range, Fig. 9a–b shows that most of the surface
of section is filled by chaotic motions. The center fixed point corre-
sponding to L2 before bifurcation, transforms after it into a saddle
point and two nearby center points corresponding to the two new
stable periodic motions. The orbits of these two new stable mo-
tions plotted in the (θ, R) plane are shown as red and orange lines
in Fig. 9d. As it happens in the previous bifurcation, the shapes of
these new periodic motions are not symmetric with respect to the
θ = π axis in the (θ, R) plane, but they are as mirror reflections
one each other. As this energy range is above the isomerization
energy barrier E S , the equipotential curves of Fig. 9c–d are not
closed because the potential wells of both isomers are connected
in these situations. Nevertheless, the periodic motions involved in
this bifurcation are confined in the potential well of the linear iso-
mer.

On the other hand, the radial nonlinear normal mode of the
linear isomer follows a much simpler evolution with the energy.
Fig. 10a shows the stability diagram of the family of the periodic
orbits corresponding to this normal mode. This diagram gives the
stability parameter k of this family in the interval −4×10−4 a.u. �
E � −0.5 × 10−4 a.u. We call this family with the same name as
the corresponding periodic orbit L1. The evolution of this family
is depicted in blue in Fig. 10a. This family L1 only suffers one
bifurcation, as it can be seen in that figure. This bifurcation oc-
curs for E ≈ −2.16 × 10−4 a.u., when the stability index crosses
the critical value k = −2. This is a period-doubling bifurcation in
which the normal mode L1 changes its stability becoming unstable,
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Fig. 8. Third bifurcation of the angular nonlinear normal mode family in the linear isomer. Surfaces of section for θ = π before (a) and after (b) the double period-doubling
bifurcation. Stable periodic orbits before (c) and after (d) bifurcation. Red and orange lines represent the two new stable periodic orbits arisen from the bifurcation. (For
interpretation of the colours in this figure, the reader is referred to the web version of this Letter.)

Fig. 9. Fourth bifurcation of the angular nonlinear normal mode family in the linear isomer. Surfaces of section for θ = π before (a) and after (b) the pitchfork bifurcation.
Periodic orbits before (c) and after (d) bifurcation. Red and orange lines represent the two new stable periodic orbits arisen from the bifurcation. (For interpretation of the
colours in this figure, the reader is referred to the web version of this Letter.)
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Fig. 10. Bifurcation of the radial nonlinear normal mode family in the linear isomer.
(a) Stability diagram of the family of the periodic orbits as a function of the en-
ergy E . Surfaces of section for P R = 0 before (b) and after (c) the period-doubling
bifurcation. Periodic orbits before (d) and after (e) bifurcation. Red line represents
the new stable periodic orbit arisen from the bifurcation. (For interpretation of the
colours in this figure, the reader is referred to the web version of this Letter.)

and simultaneously a new periodic stable motion emerges from L1,
represented as a red line in Fig. 10a. This new stable motion has
twice the period of L1, and thus a multiplicity m = 2.

In order to visualize this bifurcation in a clearer way, we have
made use of surfaces of section for P R = 0 instead of the previ-

ous one θ = π , because in the last one, the radial normal mode L1
appears as the limit of the SOS. Fig. 10b–c shows the SOS P R = 0
before (b) and after (c) the bifurcation takes place. In these figures
it can be seen how the fixed center point corresponding to L1 be-
comes a saddle point and two new center points along the Pθ = 0
axis. These two new center points correspond to the new stable
periodic motion of multiplicity m = 2. For this energy range, great
part of the SOS is covered by chaotic motions. Fig. 10d–e shows as
a green line the orbit of the radial mode L1 plotted in the (θ, R)

plane, as well as the orbit of the new stable periodic motion (red
line) arisen from the bifurcation. As the energy considered after
the bifurcation, E = −2 × 10−4 a.u., is above the isomerization en-
ergy barrier E S , the SOS of Fig. 10c and the equipotential curve
of Fig. 10e are not closed because in that case, the potential wells
of both isomers are connected. However, the periodic motions in-
volved in this bifurcation remain confined in the well of the linear
configuration. Moreover, around the periodic orbits involved in this
bifurcations there exist islands of regular motion confined in the
well of the linear configuration.

4.2. T-shape configuration

With regards to the T-shape isomer, we also begin considering
the angular nonlinear normal mode. Fig. 11a shows the stability
diagram of the family of the periodic orbits corresponding to this
normal mode. This diagram gives the stability parameter k of this
family in the interval −3.8 × 10−4 a.u. � E � −2.2 × 10−4 a.u. We
call this family with the same name as the corresponding periodic
orbit T2. As it can be seen in this figure, the evolution of the T2
family with the energy, represented by a blue line, is only affected
by a bifurcation, that takes place for E ≈ −2.75 × 10−4 a.u., when
the stability index crosses the critical value k = 2. This is a pitch-
fork bifurcation in which the normal mode T2 changes its stability
becoming unstable, and simultaneously two new periodic stable
motions emerge from T2. Both new stable periodic motions have
the same stability index values, and thus, they are represented
with the same red line in Fig. 11a.

As we are considering now the T-shape configuration whose
potential well is centered at θ = π/2, this bifurcation is better vi-
sualized in Fig. 11b–c making use of surfaces of section for θ =
π/2. The angular normal mode T2, that appears before the bifur-
cation as a fixed center point located at the P R = 0 axis (Fig. 11b),
transforms after bifurcation into a saddle point and two new cen-
ter points situated symmetrically with respect to the P R = 0 axis
(Fig. 11c). Each one of these new center points corresponds to one
of the two new stable periodic motions emerged from this bifur-
cation. As it also can be seen in these figures, most of the SOS
is filled by chaotic motions for this energy range. It is important
to note that in the T-shape configurations chaotic motions appear
more quickly than in the linear one. In Fig. 11d–e the orbit of the
normal mode T2 is plotted in the (θ, R) plane as a blue line. The
orbits of the two new stable periodic motions are also represented
by red and orange lines in Fig. 11e. It is interesting to note that,
unlike the normal mode T2, the shapes of these new periodic mo-
tions are not symmetric with respect to the θ = π/2 axis, but they
are as mirror reflections one each other.

On the other hand, Fig. 12a shows the stability diagram in the
interval −4 × 10−4 a.u. � E � −1.5 × 10−4 a.u. of the family of
the periodic orbits T1 corresponding to the radial nonlinear nor-
mal mode of the T-shape isomer. The evolution of this family with
the energy, that is represented in this figure by the blue line, is
only affected by a bifurcation for E ≈ −2.65 × 10−4 a.u., when the
stability index crosses the critical value k = −2. This is a period-
doubling bifurcation in which the radial normal mode T1 changes
its stability becoming unstable, and at the same time a new pe-
riodic stable motion emerges from T1. This new stable family,
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Fig. 11. Bifurcation of the angular nonlinear normal mode family in the T-shape iso-
mer. (a) Stability diagram of the family of the periodic orbits as a function of the
energy E . Surfaces of section for θ = π/2 before (b) and after (c) the pitchfork bi-
furcation. Periodic orbits before (d) and after (e) bifurcation. Red and orange lines
represent the two new stable periodic orbits arisen from the bifurcation. (For inter-
pretation of the colours in this figure, the reader is referred to the web version of
this Letter.)

plotted as a red line in Fig. 12a, has twice the period of T1 and
a multiplicity m = 2.

This bifurcation is portrayed in Fig. 12b–c by means of surfaces
of section for P R = 0. The new center points correspond to the

Fig. 12. Bifurcation of the radial nonlinear normal mode family in the T-shape iso-
mer. (a) Stability diagram of the family of the periodic orbits as a function of the
energy E . Surfaces of section for P R = 0 before (b) and after (c) the period-doubling
bifurcation. Periodic orbits before (d) and after (e) bifurcation. Red line represents
the new stable periodic orbit arisen from the bifurcation. (For interpretation of the
colours in this figure, the reader is referred to the web version of this Letter.)

new stable periodic motion of multiplicity m = 2. For these energy
values, similar to those of the previous bifurcation of the angu-
lar mode, great part of the SOS is covered by chaotic motions.
Fig. 12d–e shows as a green line the orbit of the radial normal
mode T1 plotted in the (θ, R) plane, as well as the orbit of the
new stable periodic motion (red line) emerged from the bifurca-
tion.
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Fig. 13. Evolution of the OFLI indicator as function of time for (a) a regular trajectory
and (b) a chaotic trajectory. Initial conditions of both orbits has been taken from
Fig. 9b. (For interpretation of the colours in this figure, the reader is referred to the
web version of this Letter.)

Fig. 14. (a) Fraction f of the phase space volume occupied by regular trajectories in
the accessible linear (green line) and T-shape phase space volumes as a function of
the energy E < E S . (b) Evolution of the fraction f for energy E > E S . (For interpre-
tation of the colours in this figure, the reader is referred to the web version of this
Letter.)

5. Chaotic behavior

As we observe in the gallery of surfaces of section through-
out the Letter, as the energy increases, the regions of stochasticity
grow in size. A clear way to illustrate this fact is to measure the
fraction f of the phase space volume occupied by regular trajec-
tories. To do this, for a given value of the energy E , we have nu-
merically calculated the Orthogonal Fast Lyapunov Indicator (OFLI)
[20] of a large number of orbits (around ten thousand) with ini-
tial conditions filling the accessible phase space volume. The OFLI
indicator has been computed up to a cut-off value of 0.5 picosec-
onds. This time value is long enough for the system to display its
regular or chaotic behavior. Fig. 13 shows the evolution of the Lya-

punov indicator as a function of time for a chaotic trajectory and
a regular trajectory with initial conditions taken from the surface
of section of Fig. 9b. In this figure we observe that, after a short
time integration, the OFLI indicator is able to distinguish between
regular and chaotic trajectories.

Taking into account that when the energy of the system is be-
low the saddle point energy E S , the Ne atom remains confined
inside the linear or the T-shape potential wells, we carry out the
calculation of the fraction f in the following way. On the one side,
in the energy interval E L < E < E S we compute the fractions of
regular trajectories in the linear ( f L ) and in the T-shape ( f T ) dis-
joints phase space volumes. The results of these computations are
shown in Fig. 14a. On the other hand, because when E > E S the
linear and the T-shape space regions are connected, we calculate a
unique fraction f corresponding to this global phase space region.
The result of the calculation is presented in Fig. 14b.

In Fig. 14a the evolution of f T indicates that until energy val-
ues near E = −0.0003 a.u. the T-shape phase space is filled with
regular orbits. From this energy value, a quick decrease of f T takes
place, in such a way that for values of E close to −0.00023 a.u.
most of the phase space is chaotic ( f T ≈ 0). We find a similar be-
havior in the phase space region of the linear configuration. Form
energy values close to −0.00026 a.u., the fraction f L decreases, al-
though due to the presence of the island around the periodic orbit
L1, it remains above 0.18.

The evolution of the fraction f when the energy is bigger than
E S is shown in Fig. 14b. As the energy increases, the percentage
f of regular orbits decreases, being nearly zero for energy values
bigger than −0.0001 a.u.

6. Conclusions

In the present work, we have studied the classical dynamics of
the rare gas-dihalogen Ne· · ·Br2 complex in its ground electronic
state. Owing to the fact that the van der Waals bond between the
Ne atom and the Br2 dimer is much weaker than the dihalogen
bond, we have considered this bond frozen at its equilibrium dis-
tance, and therefore we have treated this molecular complex as
a system of two degrees of freedom. We have also restricted our
study to the case in which the total angular momentum of the
complex is taken to be zero.

Under these assumptions, the potential energy surface of the
system has two pairs of minima: one pair corresponds to the two
equivalent linear configurations of the complex, and the other pair
corresponds to the T-shape configurations. These four potential
wells are separated by four saddle points.

By direct inspection of the equations of motion and using suit-
able Poincaré surfaces of section, we have found four stable basic
periodic orbits that determine the phase space structure of the sys-
tem. These basic periodic motions are the nonlinear normal modes
of both linear and T-shape isomers. Each one of both configurations
has one radial normal mode and one angular mode. Moreover,
by means of the surfaces of section and applying the numerical
continuation of families of periodic orbits, we have studied the
evolution the normal modes of both isomers as a function of the
system energy.

We have detected and identified the different bifurcations suf-
fered by the normal modes, as well as the new periodic orbits
emanated from the bifurcations. For increasing values of the en-
ergy, the angular mode of the linear isomer undergoes a sequence
of four bifurcations: a double pitchfork one, two consecutive dou-
ble period-doubling ones, and at last a simple pitchfork one, in
which this normal mode becomes unstable. Each one of the other
normal modes only suffers one bifurcation: either a pitchfork one
or a period-doubling one, in which they turn into unstable periodic
motions.
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Although some of the detected bifurcations take place for en-
ergy values above the isomerization energy barrier, we have found
that the orbits of the normal modes and the new periodic mo-
tions involved in the bifurcations remain confined in the potential
well of the corresponding isomer. On the other hand, even though
the shape of the orbits of the normal modes are always symmet-
ric with respect to the angular coordinate for all considered energy
values, we have detected that in some of the bifurcations, the new
arisen periodic orbits lose this kind of symmetry in their shapes.

With respect to the evolution of the phase space, for small val-
ues of energy, the phase space presents quite regular structure
with quasiperiodic motions organized around the normal modes of
both configurations. Nevertheless, for increasing values of the en-
ergy, the regularity of the system dynamics decrease because the
phase space begins to be filled by growing regions of chaotic mo-
tions. By means of the Orthogonal Fast Lyapunov Indicator (OFLI),
we have studied the evolution of the fraction of the phase space
volume occupied by regular motions. In this way, we have found
that the dynamics of the T-shape isomer loses its regularity much
more quickly than the linear isomer dynamics. For energy values
above the isomerization energy barrier the system dynamics is al-
most completely dominated by chaotic motions.

There are some potential directions for future studies. In partic-
ular, the extension of this study when the total angular momentum
of the complex is not zero is now under consideration.
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