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Abstract 

In the framework of classical mechanics, a study of the hydrogen atom in the presence of parallel electric and magnetic 
fields is presented when the magnetic quantum number m is zero. By means of perturbation methods and Poincark surfaces 
of section, the existence of the three states experimentally detected by Cacciani et al. (the so-called I, II, and III Cacciani’s 
states), their energy extensions, their evolution and their disappearance are explained as a result of two pitchfork bifurcations. 
@ 1998 Elsevier Science B.V. 
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1. Introduction 

During the last years, an increasing and renewed 
interest in the classical dynamics of Rydberg atoms 
in the presence of parallel electric and magnetic fields 
(the so-called SQZE problem) has led to a plethora 
of experimental and theoretical works related to this 
subject. For a review of the problem, we refer the 
reader to the works of Waterland et al. [ 11, Cacciani 
et al. [ 2-41, Farrelly et al. [ 51, Deprit et al. [ 61 and 
Milczewski and Uzer [ 71. 

In the same spirit as our previous work on this prob- 
lem when the magnetic quantum number m is not 
zero [ 61, the aim of this Letter is to complete that 
study considering the special case of m = 0: the polar 

case. Thus, it is our task to establish on both analytical 
and numerical grounds the classical dynamics in the 
polar SQZE problem. As for the case m not equal zero, 
we consider the electric and magnetic interactions to 
be weak compared to the Coulomb one, in such a way 
that the problem is amenable analytically by classical 
perturbation methods. Beside this perturbation treat- 
ment, we use the numerical method of the PoincarC 
surfaces of section [ 81 which permits one to find the 
classical phase space structure of this problem. The 
application of the Poincart5 surfaces of section to the 
case 112 not equal zero is now in progress. 

The Letter is organized as follows. Section 2 is de- 
voted to the posing of the problem. In Section 3, af- 
ter a Delaunay normalization, a classical perturbative 
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study of the truncated normalized Hamiltonian sys- 
tem is made. This study involves the analysis of the 
stability of the equilibrium points, their bifurcations 
and the phase flow evolution. The phase flow is re- 
lated with the experimental and semiclassical investi- 
gations of the Stark structure of the diamagnetic man- 
ifold of lithium carried out by Cacciani et al. [ 2-41. 
In Section 4, by means of Poincare surfaces of sec- 
tion, the transition from the Zeeman to the Stark ef- 
fect is explored intensively for different values of the 
field strengths. Again, special attention is paid to the 
stability and bifurcations of the fixed points appear- 
ing in the surfaces of section, and the relation with the 
investigations of Cacciani et al. 

2. The problem 

Let us consider the motion of an electron of mass p 
and charge fin a Coulomb field induced by a infinitely 
massive nucleus of charge e > 0 at rest. On the central 
field are superimposed a uniform constant magnetic 
field B and a uniform constant electric field f. The 
fields are parallel, that is to say, there exists a unit 
vector k fixed in space such that 

B=Bk, f=fk, 

the strengths B and f being uniformly constant and 
positive. 

Denoting by r the position of the electron with re- 
spect to the center of the Coulomb field, and adopting 
atomic units (p = e = 1 ), we find that the Hamilto- 
nian of the system is 

where o = B/2 is the Larmor frequency correspond- 
ing to the field B. For more details see Ref. [ 61. 

Clearly, the system defined by the Hamiltonian ( 1) 
is invariant for rotations about the axis k of the electric 
and magnetic fields. Accordingly, m = k - (r x P), 
that is, the projection of the total angular momentum 
of the particle on the field lines, is an integral. 

A canonical transformation that is time dependent 
allows us to formulate the problem in a frame of ref- 
erence rotating with angular velocity w. In the moving 
frame, the Larmor precession is removed at order one, 
and the Hamiltonian describing the system becomes 

H=illPI’-~+~~lkx~~~2+f(k.I). (2) 

In cylindrical coordinates (p, Z, 4, Pp, PC, P4 = m), 
the Hamiltonian (2) becomes 

?t=; p,‘+p;+“z 
( > 

1 w2 

2P2 J&7 
+ yP2 + fi, 

(3) 

where we observe that the Hamiltonian (3) defines a 
dynamical system of two degrees of freedom, depend- 
ing on the three parameters m, f and o. Throughout, 
we restrict ourselves to the manifold m = 0. In that 
case, the problem depends on the two parameters f 
and o. 

As we will see, it is convenient to introduce a fre- 
quency u and a rheostat parameter A in the interval 
[0, l] such that 

o=4a2A, f =&A- 1). (4) 

If A = 0 then w = 0, which means that the perturbation 
is caused exclusively by the Stark effect; furthermore, 
if A = 1 then f = 0 and the perturbation consists 
exclusively of the Zeeman effect. In other words, A 
controls the respective mix of the Zeeman and Stark 
effects. 

3. Classical perturbative study 

3.1. The normalized Hamiltonian 

The Hamiltonian (3) may conveniently be split into 
the sum ‘H = HO + Xi with 

X, = 2w2p2 + fz, (5) 

where the term ‘He stands for a pure Keplerian system, 
while the term 3-11 describes the presence of the two 
external fields. 

For bounded orbits, Ii0 < 0, to each negative value 
of 3-10 corresponds a frequency n and a length a which 
are, respectively, the frequency and semi-major axis of 
the Keplerian orbits. Following the Solove’v perspec- 
tive [ 6,9,10 ] , we assume that o << n and f z ao2, 
Under these conditions, the Hamiltonian Xi can be 
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treated as a first order perturbation of the Hamiltonian 

?-lo. 
Following the literature on the subject [ 1,6,11,121, 

we perform the normalization in the Delaunay vari- 
ables ’ ( 12, Zs, &, 43). The so-called Delaunay nor- 
malization [ 141 is a canonical transformation, 

that converts the function ?-t into a series expansion 
that, truncated, does not depend on the averaged mean 
anomaly #I;. We find that we do not need to carry out 
the operation beyond the first order; therefore, neglect- 
ing additional terms of higher order, we get X’ simply 
by averaging the function ‘H in Eq. (2) over the mean 
anomaly 4s. With these conventions the normalized 
Hamiltonian comes out as the sum 3-1’ = 7-f; + 7-1;. 

As 44 is negligible in X’, its conjugate moment 
14 is an integral, thus YJ-$ may be neglected and the 
normalized Hamiltonian is reduced to 

7-t’ = IFI{ = ~a2a2{~[(1 + $e2) + $e2cos2&]h 

- 3e( 1 - A) sin&}, (6) 

where e = dq is the eccentricity of the Kep- 
lerian orbits. For convenience, we will drop the primes 
on the normalized variables. We do not enter into the 
details of the algebraic operations involved in con- 
structing the normalized Hamiltonian. They were exe- 
cuted with the symbolic processor Mathematics [ 151. 

In this way, the Hamiltonian function (6) defines 
a one degree of freedom system. It remains with this 
integrable system to understand the role played by the 
parameters (the relative strength of the electric and 
magnetic fields) in the structure of the flow when those 
parameters change. 

3.2. PhaseJow on the sphere and equilibrium points 

It is worth noticing that the maps of ‘H’ on the cylin- 
ders (&,Z,) do not cover the entire phase space, be- 
cause they exclude the points e = 0 (circular orbits) at 
which the argument of perinucleus $2 is not defined. 
This singularity, as Deprit and Ferrer show [ 161, dis- 
appears when the system is handled in the following 
variables, 

’ For a definition, see Ref. [ 131; notations adopted in this Letter 
are those of Ref. [ 121. 

u = ecos&, v = esin&, 

w= *IJZX + (7) 

where we recognize the Cartesian components of the 
Runge-Lenz vector A, and the norm of the angular 
momentum 12 divided by 13. In this new map (u, v, 
w), since 

the phase space consists of a unit radius sphere S. 
In these coordinates, the points with w > 0 (12 > 0) 
stand for Keplerian ellipses traveling in a direct (pro- 
grade) sense, while points with w < 0 (12 < 0) repre- 
sent Keplerian ellipses traveling in a retrograde sense. 
Moreover, any point in the equatorial circle w = 0 
(I2 = 0) corresponds to a straight line passing through 
the origin. Finally, the north (south) pole corresponds 
to circular orbits (e = 0) traveled in a direct (retro- 
grade) sense. 

In coordinates (u, U, w) the Hamiltonian 3-1’ be- 
comes the function 

?&;&2[~(1+4u2-v2)A-3v(1-~)]. (8) 

Taking into account the Liouville-Jacobi theorem and 
the Poisson brackets between the variables (u, v, w), 

[u,vl = w, [u,wl = u, [w,ul = u, 

the equations of motion associated with ‘H’ are 

li = (u;‘F1’) = [3(A - 1) - Av]w, 

ti = (v; ‘FI’) = -4Auw, 

ti= (w;X’) = [-3(A- 1) +SAv]u. (9) 

The topology of the phase flow is determined for the 
most part by the equilibria and their stability. The equi- 
libria of the system are the local extrema of ‘H’ on S. 
They are the roots of the system made of the right hand 
members of Eq. (9) equated to 0 together with the 
relation S. The above equations have the symmetry 

(U, t) -+ (-u, -t), (w,t) --t (-w, -t), 

which indicates that the phase flow is time reversal 
symmetric with respect to the planes u = 0 and w = 0. 
Consequently, equilibria, if any, must lie in the plane 
u = 0 and (or) in the plane w = 0. 
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Conditions of existence, energy and kind of orbit of the equilibria. The labels parallel and perpendicular indicate the position of the 
periodic orbit with respect to the direction of the external fields 

Equilibrium Existence 

El always 

E2 always 
E.1.4 A > 314 

Es. .% A > 318 

Energy 

Pi; =3(A- 1) 
‘H;=-3(A- 1) 
7i;,4 = ( 1OA2 - 18A + 9)/2A 
7& = (34A* - 18A+ 9)/1OA 

Kind of orbit 

linear parallel 
linear parallel 
elliptic 
linear 

In the searching of the equilibria points, it is 
straightforward to arrive at the six following equilib- 
ria: 

(i) In the interval 0 < A < 1, El,2 = (O,fl,O). 

The position of these equilibria is independent of A. 

(ii) In the interval 3/4 6 A 6 1, 

E3,4= (0,3(A- 1)/A,& -9(A- 1)2/A2). 

(iii) In the interval 3/8 < A < 1, 

Es,6 = (3(A - 1)/5A, 

f Jl -9(A- l)2/25A2,0). 

In Table 1 are summarized the equilibria, their condi- 

tions of existence, the corresponding energy and the 

kind of orbit that they represent. 

3.3. Stability of the equilibria 

In order to determine the stability of the equilibria, 
we analyze the roots of the characteristic equation A, 

resulting from the variational equations of motion 

-$SU = -AwSv + (3A - 3 - Au)Sw, 

-$Sv = -4AwSu - 4AuSw, 

-$w = (3 - 3A + 5Au)Su + SAuSv, (10) 

which give rise to the characteristic equation A, 

,4=~3+/c[9(l-A)2+20A2~2-18(A-l)Av 

+5A2v2-4A2w2]+8[9(A-l)-5Av]A2~w=0. 

(11) 

For the equilibria Ei.2, Es.4, Es.6, the factor uw = 0, 
and the non-trivial part of Eq. ( 11) reduces to 

+ 5A2u2 - 4A2w2] = 0. ( 12) 

The root K = 0 arises from the variational equation 
usu+LJsv+wsw=0 [17]. 

By substituting in Eq. (12) the coordinates of the 

equilibria, we obtain the following characteristic equa- 
tions as well as the following stability properties, 

(i) El is always stable because the roots of its char- 

acteristic polynomial 

/c2 + (9 - 4A2) = 0 

are imaginary since 9 - 4A2 > 0. 
(ii) E2 is stable when the two roots of its charac- 

teristic equation 

/c2 + (9 - 36A + 32A2) = 0 

are imaginary. That condition holds when 

(9 - 36A + 32A2) > 0 + A# [ 3/8,3/4]. 

In this way, E2 is stable if A E [ 0,3/8) U (3/4,1 I. 
(iii) E4.3 are stable when the two roots of the char- 

acteristic equation 

~~ + (36 - 72A + 32A*) = 0 

are imaginary. That condition holds when 

(36 - 72A + 32A*) > 0 + A&3/4,3/2). 

Because Es.4 only exist if 3/4 < A < 1, both equilibria 

are unstable. 
(iv) Es,6 are stable when the two roots of the char- 

acteristic equation 
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are imaginary. That condition holds when 

(-36 + 72A + 64A2) > 0 + A{( -3/2,3/8). 

Because these equilibria only exist if A 2 3/8, they 

are always stable. 

3.4. Parametric bifurcations andphasejow evolution 

The previous stability analysis indicates the pres- 
ence of the parametric bifurcations at the values 
A = 318 and A = 314. We can confirm the presence of 

bifurcations by studying the evolution, as a function 
of A, of the energies at the equilibria (see Fig. 1). 

We observe in this figure that ?I!’ reaches its absolute 
minimum at the equilibrium El, and it does so on the 
whole interval 0 < A < 1. As a consequence of the 
Lyapunov theorem [ 181, this equilibrium is always 
stable. Over the interval 0 6 A < 3/8 the absolute 

maximum is reached at the equilibrium E2. Thus, 

by the Lyapunov theorem the equilibrium E2 is also 
stable. When A = 318 the equiiibria Es,6 appear. For 

A > 3/8 the value of the energy at those points Wk.6 
is a maximum and, for the same reason as before, 
they are stable. On the other hand, starting with this 

value of A, the equilibrium E2 changes its stability, 
becoming unstable. While A stays below 3/4, this 
situation occurs. When A = 3/4 the equilibria E3,4 
appear. While the equilibria E5,6 and El remain stable 
because their energies are maximum and minimum, 
respectively, the equilibrium E2 changes again its 

stability, and the new E3,4 are unstable. The diagram 

of Fig. 2 illustrates the described evolution of the 
equilibria stability, as well as indicating the kind of 

bifurcations that occur at A = 3/8 and A = 314. 
A more detailed study of the behavior of the sys- 

tems as a function of A shows that it becomes de- 

tached from the phase flow evolution, which is shown 
in Fig. 3. When A < 3/8 the phase flow consists of 
clockwise rotations around the stable equilibria El.2 
(see Fig. 3a). Both equilibria correspond to linear par- 

allel orbits to the external fields. The phase trajecto- 
ries around the equilibria El,2 are vibrational levels, 

belonging to the Cacciani’s class I. 
When A reaches the value 3/8 a pitchfork bifurca- 

tion [ 191 occurs: from E2 (which becomes unstable) 
to the two stable equilibria E5,6. The phase space struc- 
ture changes. A homoclinic orbit (separatrix) that 

Fig. 1. Evolution of the values of the energy at the equilibria as 

a function of the parameter A. Dashed lines indicate instability. 

c-- I 

I El 
t- -I 
I 

3i8 
11 

314 

Fig. 2. Bifurcation diagram when the parameter A varies from 0 

to 1. Dashed lines indicate instability. 

starts on E2 and surrounds E5.6 divides the phase space 
in two different zones of motion: one zone of rota- 
tions around El and two zones of rotations around E5.6 

(see Figs. 3b,c). The new phase trajectories around 
Es.6 correspond to the Cacciani’s class III. The lev- 

els around El,2 still belong to vibrational motion. The 

new equilibria Es.6 correspond to linear orbits which 
start parallel to the fields at A = 3/8. As this parame- 

ter increases, these orbits gradually tend to be perpen- 
dicular to the fields. At the same time, the separatrix 

grows in such a way that the lobes surrounding E5,6 
are tangent in E2 at A = 3/4. Then, a second pitchfork 
bifurcation occurs. The equilibrium E2 becomes stable 

again, and at the same time, emanating from it, two 
unstable equilibria E3.4 appear. Now, two homoclinic 
orbits divide the phase space in three regions: one of 
rotations around El, one of rotations around E2 and a 
third one around E5.6 (see Figs. 3d,e). The new levels 
around E2 form the Cacciani’s class II. We note that 

the equilibria E3.4 represent elliptic orbits, which are 
circular in the limit A = 1. In this limit the values of 
the energies at the equilibria El and E2 coincide, and 
there arises the remarkable state of symmetry charac- 
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. 
“: 

t” (a) 

k=l 

Fig. 3. Phase flow evolution as a function of the parameter A. 

teristic of the pure quadratic Zeeman effect, already 
described by Coffey et al. [ 1 l] (see Fig. 3f). More- 
over, class levels I and II are both vibrational levels, 
while class levels III are rotational motion. 

4. PoincarC surfaces of section 

4. I. Scaling and regularization 

As we saw in Section 2, the classical dynamics of 
the polar SQZE is described by the Hamiltonian (3). 
We can define a new reference frame in the orbital 
plane with coordinates (x, y), in such a way that the 
Hamiltonian (3) converts to 

7-f=E=+(P,2fP;) - && + {y2x2 + fy. 

(13) 

In this orbital frame the y coordinate corresponds to 
the coordinate z, while the x coordinate corresponds 
to fp. Now, it is convenient to scale coordinates and 

momenta as [ 201 i = y213r, ,? = Y-‘/~P. After drop- 
ping hats, the Hamiltonian (13) becomes 

3.1y-Ge= +(P,‘+P;)- 
1 

J7q 
+ $x2 +3y, 

(14) 

and the classical dynamics depends only on the 
scaled energy E = y -2/3 E and the scaled electric field 
3 = yV4f3 f, which represents the relative influence 
of the magnetic and the electric field strengths. 

In order to avoid the numerical problems arising 
from the Coulomb singularity in the Hamiltonian ( 14) 
at r --+ 0, we perform the so-called Levi-Civita regu- 
larization [ 2 11. The first step of this procedure con- 
sists of a transformation to semiparabolic coordinates 
according to 

u2 - v2 
x=-, 

2 

Px = u$ - v$ = up, - up,,, 

y = uv, p =“du+udu 
Y - = up, + up,,. 

dt dt 
(15) 

Eq. (15) defines a transformation of coordinates 
which associates the axis v = 0 with x > 0 and the 
axis u = 0 with x < 0. In the new variables the 
Hamiltonian (14) is given by 

7.t=;(u2+u2)(P;+P:) - & 

+ &(u2 - v*p + 3uv. (16) 

The next step is the definition of a new time 
r = ( 1/2r) t. Finally, the regularization is completed 
by multiplying the expression ( 16) by u* + v2 and 
reorganizing in such a way that we obtain the pseudo- 
Hamiltonian 

K: = 2 = gpu’+ Pf) - E(U2 + 2) 

+~(U2+v2)(U2-v2)2+3Uv(U2+v2), (17) 

where P, = du/dr and P, = dv/dr. We observe 
that, for negative scaled energies E (bounded orbits), 
the Hamiltonian (17) describes a two-dimensional 
isotropic harmonic oscillator of frequency G, cou- 
pled by means of two polynomials of sixth and fourth 
order, which represent, respectively, the magnetic and 
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the electrical field strengths. Now, the Hamiltonian 
( 17) presents the most convenient form for numerical 
investigations. 

4.2. Poincare’ surjbces of section 

We use the technique of Poincare surfaces of sec- 
tion to describe the classical electronic structure of 
the SQZE polar: By keeping E constant and by tun- 
ing the parameter 3, we explore the structure of the 
surfaces of section (SOS) as the system evolves from 
pure Ze.eman effect to Stark effect. The structure of 
an SOS is determined by the number and stability 
of the fixed points (periodic orbits) appearing in the 
SOS. In accordance with the previous classical per- 
turbation study, we show that the behavior observed 
in the Poincare surfaces, coincides, qualitatively, with 
the predicted behavior by perturbation methods. 

Following Friedrich and Wintgen [ 201, we define 
the surface of section as u = 0 and P, > 0. Under 
these conditions, the SOS is bounded by the condition 
P” = f(4 + 2EU 2 - zu ) ’ 6 ‘i2. It is worth noting that, 
when 3 = 0, the limit of the surface of section corre- 
sponds to the equatorial linear periodic orbits (y and 
P,, permanently equal zero). 

To begin with the study, we fix a constant energy 
E = - 1 because for a wide range of values of 3, clas- 
sical orbits are bounded, i.e., the energy value remains 
below the Stark saddle point energy [22]. Further- 
more, for this energy value the behavior of the polar 
quadratic Zeeman system is very close to its integrable 
limit [ 203, and therefore presents regular behavior. 

4.3. Evolution of the Poincare’ surfaces of section 

The evolution of the surfaces of section as well as 
the corresponding periodic orbits for 3 varying from 
0 to 0.2 is shown in Fig. 4. The sequence begins with 
the pure Zeeman effect (3 = 0, Fig. 4a). This figure 
shows three important structures. 

(i) The stable (elliptic) fixed point located at (0,O) 
which corresponds to an equatorial linear orbit perpen- 
dicular to the fields with x 2 0. The symmetric linear 
periodic orbit perpendicular to the fields with x < 0 
corresponds, as we noted, to the limit of the surface 
of section. Following Wintgen [ 231 and Friedrich and 
Wintgen [ 201, we label these orbits as II and Zi. The 

levels around Ii belong to the quasi-periodic rotational 
motion. 

(ii) The elliptic fixed points in (0, x@) are, re- 
spectively, linear periodic orbits parallel to y > 0 (la- 
beled as I,) and parallel to y < 0 (labeled as Zk) 
to the fields. The levels around I, and Z&, correspond 
to the quasi-periodic vibrational motion. 

(iii) The two hyperbolic (unstable) fixed points of 
the separatrix divide the previous two regions of mo- 
tion. These points correspond to elliptic periodic or- 
bits which, when E --+ co, are circular orbits located 
at ( rt 1,O). These circular periodic orbits and the hy- 
perbolic equilibria are both labeled as C. 

When the electric field is turned on (see Fig. 4b), 
the symmetry of the vibrational states is broken: The 
hyperbolic points migrate towards the elliptic I,, 
while the elliptic equilibrium It moves along the 
axis P, > 0. The elliptic points ZfC<) stay static. As 
a consequence, the periodic orbit Ii is not already 
perpendicular to the fields, and the periodic orbits C 
and C’ become elliptic. Now, the limit of the surface 
of section when 3 + 0 does not correspond to any 
periodic orbit, and then the periodic orbit Zi is com- 
pelled to evolve to a new periodic orbit located, as a 
fixed point, inside the surface of section. However, 
this periodic orbit is not at a glance observable. To 
detect this point, we have enlarged the mentioned 
zone of the surface of section in Fig. 4b, where we 
observe the presence of a new fixed point, which cor- 
responds to the symmetric linear orbit to Ii. We label 
again this periodic orbit as Ii. The appearance of this 
new periodic orbit is not associated with any kind of 
bifurcation because, when the surface of section is 
defined on a finite and closed space, orbits can appear 
and disappear at the boundary [ 241. 

As the parameter 3 increases, the described trend 
continues (see Fig. 4~). Finally, when the Stark pa- 
rameter reached the value 3 = 0.05, the collapse be- 
tween these equilibria occurred: The equilibria C have 
disappeared (see Fig. 4d), while the surviving equi- 
librium Z, becomes unstable. A pitchfork bifurcation 
occurs. 

When the Stark parameter increases (3 = 0.09, 
0.13, 0.16)) the equilibria Ii and Z{ are still simulta- 
neously moving along the axis P,, > 0 towards the 
equilibrium Z, (see Figs. 4e,f,g). As we can observe 
in these figures, the fixed point Z{ is already visible in 
the surfaces of section. When 3 = 0.2 (see Fig. 4h), 
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Fig. 4. Evolution of the Poincad surfaces of section as a function of the parameter T=. 
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Fig. 5. Evolution of the quasi-periodic levels as a function of the parameter 3. 

these three equilibria come into coincidence in such indicates that the Stark regime is reached. These two 
a way that only I, survives, also becoming stable. In classes of vibrational motion are kept apart by means 
this way, a second pitchfork bifurcation occurs. After of a special separatrix that contains no fixed point: 
the bifurcation, the levels around the stable equilibria Both classes of vibrational motion evolve in a smooth 
Z, and Z& both belong to vibrational motion, which way from one class to another [ 11. 
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4.4. Evolution of the level structure 

Once the evolution of the periodic orbits (fixed 
points) has been stated, it is convenient to study 
the evolution of the levels around these fixed points 
(quasi-periodic orbits), because this provides insights 
into both quantum calculations and experimental re- 
sults. TO begin with, we take four quasi-periodic orbits 
named as 01, 02, and 03 and 04, of which the initial 
conditions, when F = 0, are located, respectively, in 
each of the four different zones of motion of the sur- 
face of section in Fig. 4a. The evolution of these four 
quasi-periodic orbits is shown in Fig. 5. When F = 0, 
01 and 04 are rotational levels, while 02 and 03 are 
vibrational levels (Fig. 5a). From the point of view 
of quantum mechanics, we may associate the vibra- 
tional levels 02 and 03 with the twofold degenerate 
states of opposite parity, of which the wave functions 
are stretched along the direction of the magnetic field: 
the so-called Cacciani’s levels of class I (02) and II 
(03). On the other hand, the rotational levels 01 and 
04 may be associated with quantum states of which 
the wave functions are located in the plane z = 0: 
Cacciani’s levels of class III. 

When 3 is turned on, we observe that 03 stays 
as vibrational level for all values of F because the 
periodic orbit Zoo is not involved in any bifurcation. 
However, the remaining quasi-periodic orbits Ot,O2 
and 04 are affected for the bifurcations and they evolve 
in the same way as the different zones of motion in 
the surface of section evolve. 

As 3 increases, the primitive rotational levels 01 
and 04 are becoming vibrational. In this way, when the 
first bifurcation has not occurred, both levels evolve 
as the periodic orbits It and ii do (see Figs. 5b,c). 
On the other hand, 02 remains vibrational until the 
first bifurcation occurs. After this bifurcation occurs, 
02 suddenly loses its vibrational character, acquiring 
the same nature as 04 (Fig. 5~). From the point of 
view of Cacciani’s classes, this behavior corresponds 
to a mixing regime of states belonging to the classes 
I and III. 

After the first bifurcation, as the electric field grows, 
the evolution of the 01, 02 and 04 is determined for 
the evolution of periodic orbits II and li in such a 
way that, circumstantially, they come into coincidence 
(see Figs. 5d,e). Finally, when the second bifurcations 
occurs, we observe in Fig. 5f that the quasi-periodic 

orbits Ot,O2 and 04 belong to the vibrational motion. 
That is to say, the Stark regime is reached, and only 
vibrational states are present (Cacciani’s classes I and 
II). 

5. Conclusions 

We have shown that the transition from Zeeman ef- 
fect to Stark effect is produced via two pitchfork bi- 
furcations. Moreover, it is possible to state a remark- 
able analogy between the phase space structure found 
by means of surfaces of section and the phase portrait 
of the normalized Hamiltonian. Finally, we find that 
these classical treatments are able to explain the Stark 
structure of the hydrogenic diamagnetic structure de- 
tected in experimental and semiclassical studies of the 
lithium atom. 
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