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Abstract. We present a quantum mechanical, classical and semiclassical study of the energy
spectrum of a Rydberg hydrogen atom in the instantaneous van der Waals potential for theLz = 0
case. The semiclassical results are in good agreement with the results of the quantum mechanical
calculations within the first-order perturbation theory as well as with the quantum mechanical
calculations of other authors. The classical analysis shows that the phase space of the system is
separated into the regions of vibrational and rotational motions, which are connected, respectively,
with the lower-lying energy levels of doublet symmetry, and with the non-degenerate higher-energy
levels. Finally, we compare the classical (eigen)trajectories with the corresponding eigenstates and
find that both of them show the same symmetry patterns.

1. Introduction

The term van der Waals interaction is generally reserved for attractive forces between neutral
bodies, where the electric dipole momenta are primarily responsible for this interaction.
Originally, this interaction was introduced in order to explain an attractive potential between
molecules of a gas, which is proportional toR−6, whereR is the distance between two
molecules. Moreover, the term is also used for the Lennard-Jones dipole attraction between
an atom and its image in a planar conducting surface, for which the potential varies withd−3,
whered is the atom–surface distance. The applicability of the electrostatic image model to
this case has been discussed in several papers (see e.g. Lennard-Jones 1932, Zaremba and
Kohn 1976, Fabreet al 1983) and has also been verified experimentally (Fabreet al 1983,
Andersonet al1988, Sandoghderet al1992). In particular, for highly excited Rydberg atoms,
the outer electron has a very low characteristic frequency compared with the frequencies of the
electrons in a metal. Hence, the calculation of the atom–metal potential can be performed using
an adiabatic approximation where it is supposed that the metal electrons adjust themselves
to the instantaneous position of the atomic electron. This interaction is usually calledthe
instantaneous van der Waals interaction.

In this study, we consider the problem of a Rydberg hydrogen atom at a large distance
from a metal surface (i.e. ford � r, wherer is the electron–nucleus distance) under the
approximation of the instantaneous van der Waals interaction. The corresponding potential
can be obtained as the quadratic approximation of the exact atom–surface potential (Ganesan
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and Taylor 1996). Using cylindrical coordinates(ρ, z, ϕ) and atomic units, the Hamiltonian
of the system takes the form

H = p2

2
− 1

r
− 1

16d3
(r2 + z2), (1)

wherer = (ρ2 + z2)1/2, p2 = p2
ρ + L2

z/ρ
2 + p2

z andd is the nucleus–surface distance. Due
to the cylindrical symmetry of the problem, thez-component of the angular momentumLz is
conserved and theϕ-motion is separated from that in the(ρ, z) plane. Within the framework of
classical mechanics, Hamiltonian (1) represents a non-integrable two-dimensional dynamical
system. Here we consider theLz = 0 case.

The instantaneous van der Waals interaction corresponds to the special caseβ = √2 of
the generalized van der Waals interactionV ∼ r2 + (β2 − 1)z2 introduced by Alhassidet al
(1987). For Rydberg atoms weakly perturbed by this potential, these authors showed that an
adiabatic invariant3 exists for all particular values ofβ. Moreover,3 is a generalization of
the corresponding invariant found by Solov’ev (1982) for the quadratic Zeeman effect (β = 0).
In the case of the instantaneous van der Waals interaction, this adiabatic invariant has the form

3 = 2A2 + 5A2
z, (2)

whereAz is thez-component of the Runge–Lenz vectorA. Semiclassical quantization of the
hydrogen atom in the generalized van der Waals interaction was performed for a few (integrable)
cases by Ganesan and Lakshmanan (1992), and also for the hydrogen atom in a strong magnetic
field—the quadratic Zeeman effect—(Deloset al 1983, Farrelly and Krantzman 1991) and in
parallel electric and magnetic fields (Waterlandet al 1987). However, the special case of the
instantaneous van der Waals interaction was not considered in any detail. In this paper we
carry out the analysis of this problem using similar techniques to those of the above-mentioned
cases.

The paper is organized as follows. In section 2, we calculate the Rydberg states of the
hydrogen atom in the instantaneous van der Waals interaction within the first-order quantum
perturbation theory. In section 3, we consider the problem classically, and we generate, in
terms of the Keplerian action-angle variables, an integrable approximation (normal form)
to the original nonintegrable Hamiltonian. In section 4, we obtain the energy spectrum by
semiclassical quantization of the normalized classical motion. In section 5, we compare the
classical and quantum dynamics (the so-called eigentrajectories and eigenfunctions). Finally,
in section 6, we summarize and discuss the results.

2. Quantum perturbation theory

By taking the last term in Hamiltonian (1) as a perturbation, the effects of the instantaneous
van der Waals interaction on the energy spectrum of the hydrogen atom may be calculated
by using first-order degenerate perturbation theory. The eigenstates of (1) can be expressed
as a function of the pure hydrogenic basis by using the following expansion over the orbital
quantum numberl:

9n,k(r, ϑ) =
n−1∑
l=0

cnkl Rnl(r)Y
0
l (ϑ, 0), k = 0, . . . , n− 1, (3)

sincem = 0 andn remains a good quantum number within the first-order theory. The values
of the cnkl coefficients follow after solving the secular problem for the perturbation, which
involves the diagonalization of a matrix obtained by representing the operatorr2 + z2 in the
hydrogenic basis{|nlm〉; l = 0, . . . , n − 1;m = 0}. We note that, becauseH commutes
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Figure 1. The energy (frequency) level shifts of the
n = 20 manifold. The lower energy levels have the
doublet symmetry and correspond to the vibrational
trajectories, while the upper non-degenerated levels
correspond to the rotational trajectories.

with the parity operator5, each eigenstate9n,k(r, ϑ) has the same definite parity as the
corresponding unperturbed eigenstate. The required matrix elements are

〈nl0|r2 + z2|nl′0〉 = 5n2

2

√
(n2 − l2)[n2 − (l − 1)2]

l(l − 1)

(2l − 1)
√
(2l − 3)(2l + 1)

δl,l′+2

+
n2

2
[5n2 − 3l(l + 1) + 1]

[
1 +

2l2 + 2l − 1

(2l − 1)(2l + 3)

]
δll′

+
5n2

2

√
[n2 − (l + 2)2][n2 − (l + 1)2]

(l + 2)(l + 1)

(2l + 3)
√
(2l + 1)(2l + 5)

δl,l′−2. (4)

If we denote the eigenvalues of this matrix by(r2 + z2)nk, the energy shifts are

1En,k = − 1

16d3
(r2 + z2)nk. (5)

Thus, the energy levelsEn,k = −1/2n2 +1En,k are shifted downwards with regard to those
of the unperturbed atom.

The values of the energy-level shifts1En,k (in MHz) for then = 20 manifold in the range
of d = 1–3µm are shown in figure 1. The unperturbed degeneracy is partially removed in such
a way that eachn-manifold divides into two parts:the lower-lying energy levels of doublet
symmetrywith the dominant contribution of the lower angular momental in the corresponding
states, andthe non-degenerate higher-energy levelswhere the partial waves with higher angular
momenta predominate in the wavefunctions. The results of these calculations are discussed in
more detail in sections 4 and 5, where they are compared with the corresponding semiclassical
results (the last two columns in tables 2 and 3). We note that these results are in good agreement
with those of Alhassidet al (1987).

3. Classical perturbation theory

For sufficiently larged, this Rydberg system appears nearly integrable (Simonović 1997), and
from the point of view of astronomers, the Hamiltonian (1) represents a perturbed Keplerian
system to which the methods of celestial mechanics apply. This is what Uzeret al (1991) call
‘celestial mechanics on a microscopic scale’. A normalization in the usual sense (Abraham and
Marsden1980) allows us to reduce the problem to an integrable dynamical system where only
one degree of freedom is left. To carry out the reduction, a Lie transformation (Deprit 1969) is
sufficient. From the reduction, the new Hamiltonian admits the principal action (corresponding
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to the principal quantum numbern) as an integral. As performed by Coffeyet al (1986) for the
Zeeman effect, Depritet al (1996) for the Stark–Zeeman effect and Elipe and Ferrer (1994) for
the generalized van der Waals potential, we perform the normalization in the Delaunay variables
(Goldstein 1980)(I1, I2, I3, φ1, φ2, φ3), which are the Keplerian action-angle variables. The
Delaunay normalization (Deprit 1981) is a canonical transformation

(I1, I2, I3, φ1, φ2, φ3) −→ (I ′1, I
′
2, I
′
3, φ
′
1, φ
′
2, φ
′
3)

which convertsH into a function that does not depend on the averaged mean anomalyφ′3. By
performing the reduction to the first order, and after dropping the primes in the new variables,
the normalized Hamiltonian (for the special caseI1 = Lz = 0) comes out as the sum

H′ = H′0 +H′1
H′0(φ2, I2) = − 1

2I 2
3

,

H′1(φ2, I2) = − I 4
3

64d3

[
6 + 9

(
1− I

2
2

I 2
3

)
− 5

(
1− I

2
2

I 2
3

)
cos 2φ2

]
,

(6)

whereI3 is the principal Delaunay action, corresponding to the principal quantum numbern, I2
is the angular momentum corresponding to the quantum numberl, andφ2 is the argument of the
perinucleus (the angle between the Runge–Lenz vector and the nodal line). As a consequence
of I1 = 0, the angular momentumI2 remains in the(x, y) plane andφ2 is the angle between
the Runge–Lenz vector and theρ-axis. The algebraic manipulations were executed with the
symbolic processor MATHEMATICA (Wolfram 1996). SinceI3 is a constant of motion, the
integralH′0 may be neglected, and the normalized Hamiltonian reduces toH′1. The (one-
dimensional) phase portrait ofH′1 is shown in figure 2(a). As we can observe in this figure,
the phase space has the structure of a twofold hindered rotor (Farrelly and Krantzman 1991):
a separatrix passing through the two hyperbolic equilibria located at(π, 0) and(0, 0) forms
two symmetric homoclinic loops surrounding the elliptic equilibria located at(π/2, 0) and
(3π/2, 0). It is worthwhile noting that the maps ofH′ on the cylinders(φ2, I2) do not cover
the entire phase space, because they exclude the circular orbits (I2 = I3). This singularity
disappears (Deprit and Ferrer 1990) when the system is treated with the following variables:

u = e cosφ2, v = e sinφ2, w = ±
√

1− e2 = ±I2
I3
, (7)

wheree =
√

1− I 2
2/I

2
3 is the eccentricity of the electronic orbits. It is worth noting that(u, v)

are the Cartesian components of the Runge–Lenz vector (u2 + v2 = A2, v = Az), whilew is
the norm of the angular momentumI2 divided byI3. In this new map(u, v,w), given that

u2 + v2 +w2 = 1,

the phase space consists of a unit-radius sphere. In these coordinates, the points withw > 0
(I2 > 0) stand for Keplerian ellipses travelled in a direct (prograde) sense, while those points
with w < 0 (I2 < 0) represent Keplerian ellipses travelled in a retrograde sense. Moreover,
any point in the equatorial circlew = 0 (I2 = 0) corresponds to a straight line passing through
the origin. Finally, the north (south) pole corresponds to circular orbits(e = 0) travelled in a
direct (retrograde) sense. In coordinates(u, v,w) the HamiltonianH′1 becomes the function

H′1 = −
I 4

3

32d3
[3 + 2u2 + 7v2]. (8)

Note at this point, that 2u2 + 7v2 is none other than the adiabatic invariant (2) (see below
equations (12)). The corresponding phase space is shown in figure 2(b). The Hamiltonian (8)
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Table 1. The stability, energy and type of orbit of the equilibria.

Equilibrium Stability Energy Type of orbit

E1,2 = (±1, 0, 0) Unstable E1,2 = −5I4
3 /32d3 Linear along theρ-axis

E3 = (0, 1, 0) Stable E3 = −5I4
3 /16d3 Linear along thez 6 0-axis

E4 = (0,−1, 0) Stable E4 = −5I4
3 /16d3 Linear along thez > 0-axis

E5,6 = (0, 0,±1) Stable E5,6 = −3I4
3 /32d3 Circular

indicates that the phase flow is time-reversal symmetric with respect to the planesu = 0,v = 0
andw = 0. Consequently, the equilibria, if any, must lie on(±1, 0, 0), and/or on(0,±1, 0)
and/or on(0, 0,±1). In this way, taking into account the Jacobi–Liouville theorem and the
Poisson brackets between the variables(u, v,w)

[u, v] = w, [v,w] = u, [w, u] = v,
the equations of motion associated withH′1 are

u̇ = [u,H′1] = − 7I 4
3

16d3
vw,

v̇ = [v,H′1] = I 4
3

8d3
uw,

ẇ = [w,H′1] = 5I 4
3

16d3
uv.

(9)

Equating the right-hand members of equations (9) to zero, we arrive at the six equilibria
appearing in table 1. This table also shows the corresponding stability, energy and type of
orbit. We performed the stability analysis by studying the roots of the characteristic equation
resulting from the variational equations of motion (Coffeyet al 1986, Salaset al 1998). The
equilibriaE1 andE2 presented in figure 2(b) are the equilibria located at(0(2π), 0) and(π, 0);
whileE2 andE3 are the equilibria located at(π/2, 0) and(3π/2, 0). Finally, the contour lines
I2 = ±I3 are represented by the equilibriaE5 andE6, respectively.

In figures 2(a) and (b), we observe four families of contour lines. The two families of
levelsV1 (V2) around the equilibriaE3 (E4) correspond to quasiperiodic orbits oscillating
around the linear orbitsE3 (E4) (see figure 2(d)). This kind of motion belongs to the so-called
vibrational motion (Wintgen and Friedrich 1989). The two families of phase trajectoriesR

around the equilibriaE5,6 correspond to quasiperiodic orbits oscillating around the circular
orbitsE5 (E6) (see figure 2(c)). This motion is usually named asrotational motion (Wintgen
and Friedrich 1989). We note that the rotational levels aroundE5,6 are equivalent because they
represent the same orbits travelled in either the direct (aroundE5) or retrograde sense (around
E6). However, vibrational levelsV1 andV2 represent different orbits, although they have the
same energy. For plotting the figures 2(c) and (d), we used the (x ′, y ′) orbital plane, which in
the case ofI1 = 0 maps to the (ρ, z) plane by the transformationsρ = |x ′|, z = y ′.

For the problem of a Rydberg hydrogen atom in strong magnetic and electric fields, an
explanation has been given on how similar families of rotators and librators are connected to
the quantum states of the system (Deloset al 1983, Caccianiet al 1986). In this way, each
classical phase space trajectory with an appropriately quantized value of the action variable
corresponds to a quantum state. Hence, those quantum states corresponding to vibrational
states are degenerate and have lower energies; those corresponding to rotational states are
nondegenarate and have higher energies. We note that this is the information about the level
structure which is difficult to obtain from quantum mechanics.
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Figure 2. (a) The phase portrait(φ2, I2) at various values ofd3H′1, for I3 = n = 10 and
I1 = m = 0. (b) The phase portrait on the sphere for the same parameters. (c) Characteristic
rotational level. (d) Typical vibrational levelsV1 andV2.

4. Semiclassical quantization

From the semiclassical point of view, each regular trajectory having appropriately quantized
values of the action variables (i.e. which satisfy the EBK quatization rules) corresponds to a
quantum state. Such trajectories are usually called theeigentrajectories. More exactly, the
whole class of the trajectories confined on an invariant torus determined by quantized values
of the action variables is that which corresponds to a quantum state (Berry 1983). However,
we can take an arbitrary trajectory on the torus as representative. Since the system determined
by the normal form (6) is integrable, it can be quantized by applying the EBK rules (Gallagher
1994) to the action variables (I1, I2, I3). HereI1 andI3 are exact and approximate constants
of motion, respectively, and they can be quantized as in the unperturbed Kepler problem
(Waterlandet al 1987)

I1 = m, I3 = n, (10)

wherem andn are the magnetic and the principal quantum numbers, respectively. However,
because of the presence of the instantaneous van der Waals interaction, the angular momentum
I2 is not a constant of motion, and the action which has to be quantized for the perturbed
problem is the following (Waterlandet al 1987):

A = 1

2π

∮
C

I2 dφ2 = k + 1
2 . (11)
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For a vibrational trajectory,A is 1/2π times the area enclosed by loopC, while for a rotational
trajectory, it is 1/2π times the area between the rotator line and theI2 = 0 line (see figure 2(a)).
We saw in the previous section that 2u2 + 7v2, which contributes toH′1 in (8), is in fact the
adiabatic invariant3 given by (2). Thus, we can writeH′1 in the form

H′1 = −
I 4

3

32d3
(3 +3(φ2, I2; I3)),

3 = 9

2

(
1− I

2
2

I 2
3

)
− 5

2

(
1− I

2
2

I 2
3

)
cos 2φ2.

(12)

It is clear that3 is an (approximate) constant of motion (becauseH′1 andI3 are), which takes
the values 0< 3 < 7 (3 = 2 for the separatrix). In order to quantize Hamiltonian (12), we
express3 in terms of variablesA andI3 rather than in terms ofI3, I2 andφ2. After solving
equation (12) for actionI2, the action integralsA for the rotational and vibrational motions
give

Arot = 1

2π

∫ 2π

0
I2 dφ2 = I3

2π

∫ 2π

0

√
1− 23

9− 5 cos 2φ2
dφ2, 0< 3 < 2,

Avib = 1

2π

∫ π−φ0
2

φ0
2

I2 dφ2 = I3

2π

∫ π−φ0
2

φ0
2

√
1− 23

9− 5 cos 2φ2
dφ2, 2< 3 < 7,

(13)

whereφ0
2 = 1

2 arccos((9− 23)/5).
Then, in order to obtain3 for any given quantized valuesA = k + 1

2 and I3 = n

(rules (10), (11)), we have to solve the following equation:

J (3) = 2π
k + 1

2

n
, (14)

whereJ (3) are the integrals appearing in (13). This can be done by using an appropriate
numerical procedure for finding zeros, combined with numerical integration ofJ (3). The
domains of the function3 = J −1(2πA/I3) for the vibrational and rotational cases are: (V)
0 < A/I3 < 0.320 491, (R) 0.640 983< A/I3 < 1. If we label the solution of equation (14)
with 3n,k, we get the following semiclassical energy formula:

En,k = − 1

2n2
− n4

32d3
(3 +3n,k). (15)

Since 0< 3rot < 2 < 3vib < 7, eachn-manifold divides into two separate parts, the
lower-lying vibrational levels and the higher rotational levels. The domains of the variable
A/I3 = (k + 1

2)/n for the vibrational and rotational motions determine the allowed values for
the semiclassical quantum numberk:

k = 0, . . . , [0.320 491n− 0.5] for vibrational levels,

k = [0.640 983n + 0.5], . . . , n− 1 for rotational levels,
(16)

where [a] denotes the integer value ofa. For example, ifn = 10, [a] is k = 0, 1, 2 for
vibrational andk = 6, 7, 8, 9 for rotational levels. When we take into account that the
vibrational levels are doubly degenerate, it follows that then = 10 manifold consists exactly
of ten different semiclassical states, as expected (see table 2).

The results of the calculations forn = 10 atd = 100 nm andn = 20 atd = 1 µm
are shown in tables 2 and 3, together with the results of the quantum mechanical calculations
from section 2. It can be seen that the semiclassical results are in good agreement with the
quantum mechanical. (The plot of semiclassical energy levels forn = 20 in the ranged = 1–
3 µm practically coincides with figure 1.) The tiny splitting of the degeneracy appearing for
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Table 2. The energy-level shifts of then = 10 manifold atd = 100 nm (in GHz)—semiclassical
and quantum mechnical results.k is the semiclassical quantum number. The corresponding types
of the classical motions can be (doubly degenerate) vibrational (V1, V2) and rotational (R). The
parity (even/odd) of the quantum mechanical states is also presented.

k Classical type Semiclassical results Quantum results Parity

−2.7173 e
0 V1, V2 −2.7051 −2.7173 o

−2.1437 e
1 V1, V2 −2.1313 −2.1437 o

−1.7262 e
2 V1, V2 −1.7101 −1.7209 o
6 R −1.5168 −1.5051 e
7 R −1.3920 −1.4047 o
8 R −1.2243 −1.2325 e
9 R −1.0248 −1.0335 o

Table 3. The energy-level shifts of then = 20 manifold atd = 100µm (in MHz)—semiclassical
and quantum mechanical results.k is the semiclassical quantum number. The corresponding types
of the classical motions can be (doubly degenerate) vibrational (V1, V2), rotational (R) or ro-
vibrational which lies close to the separatrix (S). The parity (even/odd) of the quantum mechanical
states is also presented.

k Classical type Semiclassical results Quantum results Parity

−45.9950 e
0 V1, V2 −45.9462 −45.9950 o

−40.8129 e
1 V1, V2 −40.7639 −40.8129 o

−36.2220 e
2 V1, V2 −36.1727 −36.2220 o

−32.2309 e
3 V1, V2 −32.1809 −32.2309 o

−28.8578 e
4 V1, V2 −28.8059 −28.8576 o

−26.1628 e
5 V1, V2 −26.0928 −26.1399 o

12 S −24.3788 −24.4655 e
13 R −23.8632 −23.9748 o
14 R −22.8503 −22.8625 e
15 R −21.6543 −21.6875 o
16 R −20.3106 −20.3443 e
17 R −18.8355 −18.8701 o
18 R −17.2384 −17.2733 e
19 R −15.5257 −15.5607 o

the quantum mechanical values of the vibrational energy levels near the classical separatrix
is due to a tunnelling between vibrational states V1 and V2 in the vicinity of the separatrix.
This splitting does not appear in the semiclassical energy levels because the EBK rules do not
incorporate tunnelling effects.

In some cases (e.g. forn = 20, table 3) formula (16) givesn − 1 instead ofn levels
for a given manifold. The comparison with the quantum mechanical calculations indicates
that the ‘missing’ state (i.e. eigentrajectory) lies in the close neighbourhood of the separatrix.
This effect appears because the states near the separatrix are subjected to quantum mechanical
tunnelling (Waterlandet al 1987), and the semiclassical theory applied here does not take



Hydrogen atom in the instantaneous van der Waals potential 299

this into account. Therefore, within this approach we cannot exactly find and categorize the
missing semiclassical state. However, since the missing state is a singlet, the corresponding
energy level is non-degenerate; it can therefore be estimated by using the followingad hoc
rule in the neighbourhood of the separatrix:

Arot = k∗ + 1
2, k∗ = [0.640 983n + 0.5]− 1. (17)

In practice, this involves the calculation of an additional rotational level withk = k∗, although
in this caseA/I3 goes slightly out of the domain. Alternatively, the energy of the missing state
can be roughly estimated by simply taking3 = 2, which in fact gives the energy of the motion
on the separatrix

En,k∗ ≈ Esep
n = −

1

2n2
− 5n4

32d3
. (18)

Apart from the case of a missing state, there are cases in which by using formula (16) there
appearn + 1 states in a givenn-manifold (e.g. forn = 11). The comparison with the quantum
mechanical calculations indicates that in this case, the highest vibrational (doublet) energy
level should in fact be the lowest rotational (non-degenerate) level. Here, we are also dealing
with a state which lies close to the separatix and, as mentioned above, we cannot exactly
evaluate and determine the type of such a state within the semiclassical approach; although its
energy can be estimated by using (17) or (18).

5. Eigenfunctions and eigentrajectories

The next step is to study, for a givenn-manifold, the new pattern imposed by the van der
Waals interaction on the eigenstates and eigentrajectories structure. The eigenfunctions are
calculated by using expansion (3) with the coefficientscnkl , which are the components of the
eigenvectors of the secular matrix (4). The corresponding eigentrajectories are calculated by
taking arbitrary initial conditions in the appropriate quantized phase curve(φ2, I2). Once
again, we use the(x ′, y ′) orbital plane for all these plots. A set of eigentrajectories and
eigenfunctions forn = 10 atd = 100 nm is shown in figure 3. Each eigenfunction (right
column) is associated with its corresponding eigentrajectory (left column) labelled with the
semiclassical quantum numberk and with the type of classical motionV1,2 orR (see table 2).
From this figure, we observe that in all cases the wavefunction seems to follow the ‘tracks’
of the eigentrajectory, because the wavefunction is mainly localized inside the region of the
orbital plane occupied by the eigentrajectory. For vibrators (figure 3(a)), the wavefunctions
are mainly localized along thez (y ′) direction (figure 3(b)). This inspection reveals a principal
difference between the quantum mechanical and the semiclassical pictures for these states: in
the quantum mechanical treatment the even/odd wavefunctions are in fact linear combinations
of two degenerate vibrational states corresponding to V1 and V2 classical configurations, and
the degeneracy is split at the higher order because of tunnelling between them, whereas in
the semiclassical approach, these configurations are quantized separately, giving exact doubly
degenerate levels (without tiny splitting). For rotators (figure 3(c)), the wavefunctions of
both even and odd parties are symmetrically distributed around the origin in the orbital plane
(figure 3(d)).

6. Concluding remarks

In order to obtain an overall view of the results of this work, we pay attention to the following
points. (i) We have presented a combined quantum, classical and semiclassical study of
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Figure 3. (a) and (c) show the vibrational (V1, V2) and rotational (R) eigentrajectories forn = 10
andm = 0 (k = 0 and 9, respectively), whereas (b) and (d) correspond to the first-order perturbed
eigenstates for the same parameters.

the problem. (ii) The EBK semiclassical results are in good agreement with the quantum
mechanical results (see tables 2 and 3), which are also in good agreement with the quantum
mechanical calculations of Ganesan and Taylor (1996) as well as with the spectroscopic
measurements of the energy of interaction between Rydberg atoms (10–13 S states of sodium)
and its images in the walls of a micrometre-sized cavity (Sandoghderet al 1992). (iii) By
means of the contour plots of the normalized HamiltonianH′1 (both in variables(I2, φ2)

and(u, v,w)), we have found that the classical and the quantum states are sorted into two
different families: the vibrational and the rotational states. (iv) In the quantum mechanical
calculations, a tiny splitting of the degeneracy appearing in the vibrational levels near the
classical separatrix results from tunnelling between vibrational states in the vicinity, but from
different sides of the separatrix. This splitting does not appear in the semiclassical results
because EBK quantization rules do not incorporate tunnelling effects. (v) On comparing
vibrational (rotational) eigentrajectories to vibrational (rotational) eigenstates, we have found
that both cases show the same symmetry patterns. (vi) We point out that classical mechanics
proves to be a powerful tool which provides a compact geometric picture of the energy-level
structure of the perturbed Rydberg systems.

As expected, the presented results look remarkably similar to those of the diamagnetic
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Kepler problem (the quadratic Zeeman effect, see, e.g., Deloset al (1983)). The latter can be
understood if we note that the Hamiltonian (1) can be rewritten in the form

H = p2

2
− Q(r)

r
+ cρ2, (19)

whereQ(r) = 1 + 2cr3 (effective charge) andc = 1/16d3. The spherically symmetric part
Q(r)/r breaks the Coulomb degeneracy, slightly raising the energies of highl-states. The
other term is equivalent to a diamagnetic term. Since we expectρ2 to have more effect than
r3, we are not surprised to find that the energies and wavefunctions look very much like those
of the diamagnetic Kepler system.

Finally, it should be mentioned that at very large separations, the retardation effects in
the interaction (i.e. the effects because of its finite velocity) might, in principle, be significant
(see e.g. Margenau and Kestner 1971). However, as it has been noted in the introduction, in
this paper we have considered the problem in the approximation of theinstantaneousvan der
Waals interaction. This requires that the electron moves so slowly that the interaction can
be treated as static, and all retardation effects can be neglected. In this sense, although an
exact (QED) analysis would be desirable, simple considerations indicate that this holds for the
Rydberg states at the distances presented here.
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