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Abstract. We present a quantum mechanical, classical and semiclassical study of the energy
spectrum of a Rydberg hydrogen atom in the instantaneous van der Waals potentialfoette

case. The semiclassical results are in good agreement with the results of the quantum mechanical
calculations within the first-order perturbation theory as well as with the quantum mechanical
calculations of other authors. The classical analysis shows that the phase space of the system is
separated into the regions of vibrational and rotational motions, which are connected, respectively,
with the lower-lying energy levels of doublet symmetry, and with the non-degenerate higher-energy
levels. Finally, we compare the classical (eigen)trajectories with the corresponding eigenstates and
find that both of them show the same symmetry patterns.

1. Introduction

The term van der Waals interaction is generally reserved for attractive forces between neutral
bodies, where the electric dipole momenta are primarily responsible for this interaction.
Originally, this interaction was introduced in order to explain an attractive potential between
molecules of a gas, which is proportional ®°°, whereR is the distance between two
molecules. Moreover, the term is also used for the Lennard-Jones dipole attraction between
an atom and its image in a planar conducting surface, for which the potential variet Wjth
whered is the atom—surface distance. The applicability of the electrostatic image model to
this case has been discussed in several papers (see e.g. Lennard-Jones 1932, Zaremba and
Kohn 1976, Fabret al 1983) and has also been verified experimentally (Fabra 1983,
Andersoret al 1988, Sandoghdet al 1992). In particular, for highly excited Rydberg atoms,
the outer electron has a very low characteristic frequency compared with the frequencies of the
electrons in ametal. Hence, the calculation of the atom—metal potential can be performed using
an adiabatic approximation where it is supposed that the metal electrons adjust themselves
to the instantaneous position of the atomic electron. This interaction is usually tadled
instantaneous van der Waals interaction

In this study, we consider the problem of a Rydberg hydrogen atom at a large distance
from a metal surface (i.e. faf > r, wherer is the electron—-nucleus distance) under the
approximation of the instantaneous van der Waals interaction. The corresponding potential
can be obtained as the quadratic approximation of the exact atom—surface potential (Ganesan
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and Taylor 1996). Using cylindrical coordinat@s, z, ¢) and atomic units, the Hamiltonian
of the system takes the form
2
yoP_t_ 1
2 r 1led3
wherer = (p? +z%)Y2, p? = p3 + L?/p* + p? andd is the nucleus—surface distance. Due
to the cylindrical symmetry of the problem, theeomponent of the angular momentuimis
conserved and the-motion is separated from that in the, z) plane. Within the framework of
classical mechanics, Hamiltonian (1) represents a non-integrable two-dimensional dynamical
system. Here we consider tlie = O case.
The instantaneous van der Waals interaction corresponds to the specigl €as@ of
the generalized van der Waals interaction~ r2 + (82 — 1)z? introduced by Alhassiet al
(1987). For Rydberg atoms weakly perturbed by this potential, these authors showed that an
adiabatic invariant\ exists for all particular values gf. Moreover,A is a generalization of
the corresponding invariant found by Solov’ev (1982) for the quadratic Zeeman gfec0].
In the case of the instantaneous van der Waals interaction, this adiabatic invariant has the form

A =2A%+5A2, )

whereA, is thez-component of the Runge—Lenz vectér Semiclassical quantization of the
hydrogen atominthe generalized van der Waals interaction was performed for a few (integrable)
cases by Ganesan and Lakshmanan (1992), and also for the hydrogen atom in a strong magnetic
field—the quadratic Zeeman effect—(Delketsal 1983, Farrelly and Krantzman 1991) and in
parallel electric and magnetic fields (Waterlagtchl 1987). However, the special case of the
instantaneous van der Waals interaction was not considered in any detail. In this paper we
carry out the analysis of this problem using similar techniques to those of the above-mentioned
cases.

The paper is organized as follows. In section 2, we calculate the Rydberg states of the
hydrogen atom in the instantaneous van der Waals interaction within the first-order quantum
perturbation theory. In section 3, we consider the problem classically, and we generate, in
terms of the Keplerian action-angle variables, an integrable approximatamal form)
to the original nonintegrable Hamiltonian. In section 4, we obtain the energy spectrum by
semiclassical quantization of the normalized classical motion. In section 5, we compare the
classical and quantum dynamics (the so-called eigentrajectories and eigenfunctions). Finally,
in section 6, we summarize and discuss the results.

(r? +7%), 1)

2. Quantum perturbation theory

By taking the last term in Hamiltonian (1) as a perturbation, the effects of the instantaneous
van der Waals interaction on the energy spectrum of the hydrogen atom may be calculated
by using first-order degenerate perturbation theory. The eigenstates of (1) can be expressed
as a function of the pure hydrogenic basis by using the following expansion over the orbital
quantum numbel

n—1
Wi () =Y *Ru(r) YL (. 0), k=0,....n—1, 3
=0

sincem = 0 andn remains a good quantum number within the first-order theory. The values
of the ¢* coefficients follow after solving the secular problem for the perturbation, which
involves the diagonalization of a matrix obtained by representing the opefatar? in the
hydrogenic basig|nlim);l = 0,...,n — 1;m = 0}. We note that, because commutes
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Frequency shift [MHz]

/ Figure 1. The energy (frequency) level shifts of the
n = 20 manifold. The lower energy levels have the
T ¥ . .
10 1's 20 o5 3.0 dogblet ;ymme_try and correspond to the vibrational
trajectories, while the upper non-degenerated levels
d [um] correspond to the rotational trajectories.

with the parity operatolll, each eigenstat&, ,(r, ¥) has the same definite parity as the
corresponding unperturbed eigenstate. The required matrix elements are

20 2 T 11 —1)
(nl0lr? + 22|nl'0) = — -/ (n2 — 1?)[n? — (| — 1)?] T, vl Tl
2 2
neooo 2°+2 -1
t [5n? — 31 +1) +1] [1 + @-D@+3 3)} Siw

5n? (I+2(+1
+—In2 — (1 +22|[n2 — (I + 1)? 81 r_2. 4
5 VI — U+ 27 — (+ W oot (@)
If we denote the eigenvalues of this matrix @y + z2),x, the energy shifts are
— 2 2
AEn,k = - 164° (rc+z2%n. (5)
Thus, the energy levels, ; = —1/2n? + AE, are shifted downwards with regard to those

of the unperturbed atom.

The values of the energy-level shifts, ;. (in MHz) for ther = 20 manifold in the range
ofd = 1-3um are shown in figure 1. The unperturbed degeneracy is partially removed in such
a way that each-manifold divides into two partsthe lower-lying energy levels of doublet
symmetryith the dominant contribution of the lower angular momeiitethe corresponding
states, anthe non-degenerate higher-energy leweteere the partial waves with higher angular
momenta predominate in the wavefunctions. The results of these calculations are discussed in
more detail in sections 4 and 5, where they are compared with the corresponding semiclassical
results (the lasttwo columns in tables 2 and 3). We note that these results are in good agreement
with those of Alhassiat al (1987).

3. Classical perturbation theory

For sufficiently large?, this Rydberg system appears nearly integrable (Sim@ri®87), and

from the point of view of astronomers, the Hamiltonian (1) represents a perturbed Keplerian
system to which the methods of celestial mechanics apply. This is whaetagi1991) call
‘celestial mechanics on a microscopic scale’. A normalization inthe usual sense (Abraham and
Marsden1980) allows us to reduce the problem to an integrable dynamical system where only
one degree of freedom is left. To carry out the reduction, a Lie transformation (Deprit 1969) is
sufficient. From the reduction, the new Hamiltonian admits the principal action (corresponding
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to the principal quantum numbey) as an integral. As performed by Coffeyal (1986) for the
Zeeman effect, Deprét al (1996) for the Stark—Zeeman effect and Elipe and Ferrer (1994) for
the generalized van der Waals potential, we perform the normalization in the Delaunay variables
(Goldstein 1980) 11, I», I3, ¢1, ¢2, ¢3), Which are the Keplerian action-angle variables. The
Delaunay normalization (Deprit 1981) is a canonical transformation

(I, Iz, I3, 1, 2, $3) —> (11, I, I3, 91, @5, @3)

which convertg+ into a function that does not depend on the averaged mean anggnay
performing the reduction to the first order, and after dropping the primes in the new variables,
the normalized Hamiltonian (for the special cdge= L, = 0) comes out as the sum

H = Hy+H,
1

Ho(p2, I2) = — =,

° 213 (6)
13 I3 13

o, ) =——2-[6+9(1—- 5] -5({1- =% |cos ,

w1 =gy 0791 g =5 (1= g sz

wherels is the principal Delaunay action, corresponding to the principal quantum number

is the angular momentum corresponding to the quantum nuiydneds, is the argument of the
perinucleus (the angle between the Runge—-Lenz vector and the nodal line). As a consequence
of I = 0, the angular momentui remains in thex, y) plane andp, is the angle between

the Runge—-Lenz vector and theaxis. The algebraic manipulations were executed with the
symbolic processor MATHEMATICA (Wolfram 1996). Sindg is a constant of motion, the
integral H; may be neglected, and the normalized Hamiltonian reducég; toThe (one-
dimensional) phase portrait @] is shown in figure 2). As we can observe in this figure,

the phase space has the structure of a twofold hindered rotor (Farrelly and Krantzman 1991):
a separatrix passing through the two hyperbolic equilibria locatéd,&) and (0, 0) forms

two symmetric homoclinic loops surrounding the elliptic equilibria locatedra®, 0) and

(37 /2, 0). It is worthwhile noting that the maps @’ on the cylinders¢,, I,) do not cover

the entire phase space, because they exclude the circular dgbits {3). This singularity
disappears (Deprit and Ferrer 1990) when the system is treated with the following variables:

. I
u = e COS¢, v = eSing,, w==+ 1—€2=:|:I—, @
3

wheree = /1 — [2/1Z% is the eccentricity of the electronic orbits. Itis worth noting thatv)
are the Cartesian components of the Runge-Lenz vacter (> = A%, v = A.), while w is
the norm of the angular momentumdivided bys. In this new magu, v, w), given that
w?+v’+w? =1,
the phase space consists of a unit-radius sphere. In these coordinates, the points-with
(12 > 0) stand for Keplerian ellipses travelled in a direct (prograde) sense, while those points
with w < 0 (I2 < 0) represent Keplerian ellipses travelled in a retrograde sense. Moreover,
any pointin the equatorial circke = 0 (1> = 0) corresponds to a straight line passing through
the origin. Finally, the north (south) pole corresponds to circular ofbits 0) travelled in a
direct (retrograde) sense. In coordinatesv, w) the Hamiltoniar#¢} becomes the function
4

__3

3243
Note at this point, thatZ + 7v? is none other than the adiabatic invariant (2) (see below
equations (12)). The corresponding phase space is shown in figmrerde Hamiltonian (8)

Hy = [3+ 2u? + Tv?]. (8)
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Table 1. The stability, energy and type of orbit of the equilibria.

Equilibrium Stability ~ Energy Type of orbit

Ei1p=(£1,0,00 Unstable & ,=-5I5/324% Linear along the-axis

E3 = (0,1,0) Stable &3 = —515/164° Linear along the, < 0-axis
Es=(0,-1,0) Stable &4 = —515/164° Linear along the, > 0-axis
Esg=(0,0,£1) Stable &= —3I3/324° Circular

indicates that the phase flow is time-reversal symmetric with respect to the planésv = 0
andw = 0. Consequently, the equilibria, if any, must lie @hl, 0, 0), and/or on(0, +1, 0)
and/or on(0, 0, £1). In this way, taking into account the Jacobi-Liouville theorem and the
Poisson brackets between the varialjles, w)

[u, v] = w, [v, w] = u, [w, u] = v,

the equations of motion associated with are

. , 713

u=1[u,Hi] = _Tc;f’w’
a

v=[v,H]] = ﬁuw, %)
515

w=[w, Hy] = rassuv.

Equating the right-hand members of equations (9) to zero, we arrive at the six equilibria
appearing in table 1. This table also shows the corresponding stability, energy and type of
orbit. We performed the stability analysis by studying the roots of the characteristic equation
resulting from the variational equations of motion (Coféyal 1986, Salagt al 1998). The
equilibriaE, andE, presented in figure Bf are the equilibria located & (2), 0) and(r, 0);

while E; andE3 are the equilibria located &t /2, 0) and(37 /2, 0). Finally, the contour lines

I, = +13 are represented by the equilibiig and Eg, respectively.

In figures 28) and @), we observe four families of contour lines. The two families of
levels V1 (V,) around the equilibrigEs (E4) correspond to quasiperiodic orbits oscillating
around the linear orbit&3 (E,4) (see figure 21)). This kind of motion belongs to the so-called
vibrational motion (Wintgen and Friedrich 1989). The two families of phase traject@&ies
around the equilibrigEs ¢ correspond to quasiperiodic orbits oscillating around the circular
orbits Es5 (Eg) (see figure 2f)). This motion is usually named astational motion (Wintgen
and Friedrich 1989). We note that the rotational levels ardiyylare equivalent because they
represent the same orbits travelled in either the direct (ar@ghdr retrograde sense (around
Es). However, vibrational level¥; andV, represent different orbits, although they have the
same energy. For plotting the figuregPand @), we used thex(, y’) orbital plane, which in
the case of; = 0 maps to thed, z) plane by the transformations= |x'|,z = y'.

For the problem of a Rydberg hydrogen atom in strong magnetic and electric fields, an
explanation has been given on how similar families of rotators and librators are connected to
the quantum states of the system (Detvsl 1983, Caccianet al 1986). In this way, each
classical phase space trajectory with an appropriately quantized value of the action variable
corresponds to a quantum state. Hence, those quantum states corresponding to vibrational
states are degenerate and have lower energies; those corresponding to rotational states are
nondegenarate and have higher energies. We note that this is the information about the level
structure which is difficult to obtain from quantum mechanics.
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Figure 2. (&) The phase portraif¢,, I2) at various values 0ﬂ3H’1, for I3 = n = 10 and
I, = m = 0. (b) The phase portrait on the sphere for the same parame@r&héracteristic
rotational level. §) Typical vibrational leveld/; and V.

4. Semiclassical quantization

From the semiclassical point of view, each regular trajectory having appropriately quantized
values of the action variables (i.e. which satisfy the EBK quatization rules) corresponds to a
quantum state. Such trajectories are usually callecktitpentrajectories More exactly, the
whole class of the trajectories confined on an invariant torus determined by quantized values
of the action variables is that which corresponds to a quantum state (Berry 1983). However,
we can take an arbitrary trajectory on the torus as representative. Since the system determined
by the normal form (6) is integrable, it can be quantized by applying the EBK rules (Gallagher
1994) to the action variableg;( >, I3). Herel; and I3 are exact and approximate constants
of motion, respectively, and they can be quantized as in the unperturbed Kepler problem
(Waterlandet al 1987)
I]_:m, 1321’1, (10)

wherem andn are the magnetic and the principal quantum numbers, respectively. However,
because of the presence of the instantaneous van der Waals interaction, the angular momentum
I is not a constant of motion, and the action which has to be quantized for the perturbed
problem is the following (Waterlanet al 1987):

1

A= Ldp =k+1. 11
o b lada =i+ (11)
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For a vibrational trajectory is 1/2z times the area enclosed by lo6pwhile for a rotational
trajectory, itis 2 times the area between the rotator line andthe 0 line (see figure 2)).
We saw in the previous section that?+ 7v?, which contributes td<; in (8), is in fact the
adiabatic invariant\ given by (2). Thus, we can writd] in the form

! 14
Hy = —3—3<3+A<¢2, I»; I3)),

9 I 5 12
A=—-(1-22 1— -2 )cos
2( 12> 2( 12) 2

Itis clear thatA is an (approximate) constant of motion (becatgeand/; are), which takes
the values O< A < 7 (A = 2 for the separatrix). In order to quantize Hamiltonian (12), we
expressA in terms of variablest and I3 rather than in terms of, I, andg,. After solving
equation (12) for actiori,, the action integralgi for the rotational and vibrational motions
give

12)

1 27
A= — | Ldgy= > 0<A<2
L /o 202 = / T 9_5cos 2, SCOSZb =as
(13)
A I o 2<A<7
vib = Z p 20¢p2 = 9 5 cos sz < </

whereg3 = J arccog(9 — 2A) /5).

Then, in order to obtaim for any given quantized valued = k + % andlz = n
(rules (10), (11)), we have to solve the following equation:
1

J(A) = ot (14)

where 7 (A) are the integrals appearing in (13). This can be done by using an appropriate
numerical procedure for finding zeros, combined with numerical integratign(af). The
domains of the functiom = J (27 A/I5) for the vibrational and rotational cases are: (V)

0 < A/I3 < 0.320491, (R) B640983< A/I3 < 1. If we label the solution of equation (14)
with A, x, we get the following semiclassical energy formula:

1 4
2n2 3243
Since 0< At < 2 < Avip < 7, eachrn-manifold divides into two separate parts, the
lower-lying vibrational levels and the higher rotational levels. The domains of the variable
Allz = (k+ %)/n for the vibrational and rotational motions determine the allowed values for
the semiclassical quantum numlier

k= .,[0.32049% — 0.5] for vibrational levels
k= [0.640 983 +0.5],...,n—1 for rotational levels

where [] denotes the integer value af For example, ifn = 10, [a] is k = 0, 1, 2 for
vibrational andk = 6, 7, 8,9 for rotational levels. When we take into account that the
vibrational levels are doubly degenerate, it follows thatithe 10 manifold consists exactly
of ten different semiclassical states, as expected (see table 2).

The results of the calculations far = 10 atd = 100 nm anch = 20 atd = 1 um
are shown in tables 2 and 3, together with the results of the quantum mechanical calculations
from section 2. It can be seen that the semiclassical results are in good agreement with the
guantum mechanical. (The plot of semiclassical energy levels 0120 in the range = 1-
3 um practically coincides with figure 1.) The tiny splitting of the degeneracy appearing for

En,k = - (3 An K- (15)

(16)
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Table 2. The energy-level shifts of the = 10 manifold atZ = 100 nm (in GHz)—semiclassical
and quantum mechnical resulisis the semiclassical quantum number. The corresponding types
of the classical motions can be (doubly degenerate) vibrational\(¥) and rotational (R). The
parity (even/odd) of the quantum mechanical states is also presented.

k Classicaltype Semiclassical results  Quantum results  Parity

—2.7173 e
0 Vi, V2 —2.7051 —2.7173 o]

—2.1437 e
1 Vi, V2 —2.1313 —2.1437 o]

—1.7262 e
2 Vi, V2 —-1.7101 —1.7209 (o]
6 R —1.5168 —1.5051 e
7 R —1.3920 —1.4047 (o]
8 R —1.2243 —1.2325 e
9 R —1.0248 —1.0335 (o]

Table 3. The energy-level shifts of the = 20 manifold atd = 100 um (in MHz)—semiclassical

and quantum mechanical resultsis the semiclassical quantum number. The corresponding types
of the classical motions can be (doubly degenerate) vibrationgl {¥), rotational (R) or ro-
vibrational which lies close to the separatrix (S). The parity (even/odd) of the quantum mechanical
states is also presented.

k Classical type  Semiclassical results ~ Quantum results  Parity

—45.9950 e

0 Vi,V2 —45.9462 _45.9950 o
—40.8129 e

1 Vi, V2 —40.7639 408129 o
—36.2220 e

2 V4, V2 —36.1727 362220 o
—32.2309 e

3 V4, V2 —32.1809 _392309 o
—28.8578 e

4 Vi,V —28.8059 _28.8576 o
—26.1628 e

5 Vi,V2 —26.0928 261399 o
12 S —24.3788 —24.4655 e
13 R —23.8632 —23.9748 o]
14 R —22.8503 —22.8625 e
15 R —21.6543 —21.6875 o]
16 R —20.3106 —20.3443 e
17 R —18.8355 —18.8701 o]
18 R —17.2384 —17.2733 e
19 R —15.5257 —15.5607 o]

the quantum mechanical values of the vibrational energy levels near the classical separatrix
is due to a tunnelling between vibrational statgsavid \; in the vicinity of the separatrix.
This splitting does not appear in the semiclassical energy levels because the EBK rules do not
incorporate tunnelling effects.

In some cases (e.g. far = 20, table 3) formula (16) gives — 1 instead ofz levels
for a given manifold. The comparison with the quantum mechanical calculations indicates
that the ‘missing’ state (i.e. eigentrajectory) lies in the close neighbourhood of the separatrix.
This effect appears because the states near the separatrix are subjected to quantum mechanical
tunnelling (Waterlancet al 1987), and the semiclassical theory applied here does not take
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this into account. Therefore, within this approach we cannot exactly find and categorize the
missing semiclassical state. However, since the missing state is a singlet, the corresponding
energy level is non-degenerate; it can therefore be estimated by using the folkvinar

rule in the neighbourhood of the separatrix:

Aot = k* +1, k* = [0.640 983 + 0.5] — 1. (17)

In practice, this involves the calculation of an additional rotational level withk*, although

in this cased / I3 goes slightly out of the domain. Alternatively, the energy of the missing state
can be roughly estimated by simply taking= 2, which in fact gives the energy of the motion
on the separatrix

1 5n4
2n2 3243
Apart from the case of a missing state, there are cases in which by using formula (16) there
appean + 1 states in a given-manifold (e.g. fom = 11). The comparison with the quantum
mechanical calculations indicates that in this case, the highest vibrational (doublet) energy
level should in fact be the lowest rotational (hon-degenerate) level. Here, we are also dealing
with a state which lies close to the separatix and, as mentioned above, we cannot exactly
evaluate and determine the type of such a state within the semiclassical approach; although its
energy can be estimated by using (17) or (18).

E o ~ E}P=— (18)

5. Eigenfunctions and eigentrajectories

The next step is to study, for a givenmanifold, the new pattern imposed by the van der
Waals interaction on the eigenstates and eigentrajectories structure. The eigenfunctions are
calculated by using expansion (3) with the coefficierits which are the components of the
eigenvectors of the secular matrix (4). The corresponding eigentrajectories are calculated by
taking arbitrary initial conditions in the appropriate quantized phase cydme,). Once

again, we use théx’, y’) orbital plane for all these plots. A set of eigentrajectories and
eigenfunctions fom = 10 atd = 100 nm is shown in figure 3. Each eigenfunction (right
column) is associated with its corresponding eigentrajectory (left column) labelled with the
semiclassical quantum numbeand with the type of classical motidn , or R (see table 2).

From this figure, we observe that in all cases the wavefunction seems to follow the ‘tracks’
of the eigentrajectory, because the wavefunction is mainly localized inside the region of the
orbital plane occupied by the eigentrajectory. For vibrators (figuag 3the wavefunctions

are mainly localized along the(y’) direction (figure 36)). This inspection reveals a principal
difference between the quantum mechanical and the semiclassical pictures for these states: in
the quantum mechanical treatment the even/odd wavefunctions are in fact linear combinations
of two degenerate vibrational states corresponding;tand \; classical configurations, and

the degeneracy is split at the higher order because of tunnelling between them, whereas in
the semiclassical approach, these configurations are quantized separately, giving exact doubly
degenerate levels (without tiny splitting). For rotators (figure))3(the wavefunctions of

both even and odd parties are symmetrically distributed around the origin in the orbital plane

(figure 3@)).

6. Concluding remarks

In order to obtain an overall view of the results of this work, we pay attention to the following
points. (i) We have presented a combined quantum, classical and semiclassical study of
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Figure 3. (a) and €) show the vibrational (Y, V2) and rotational (R) eigentrajectories foe= 10
andm = 0 (k = 0 and 9, respectively), whereds) &and @) correspond to the first-order perturbed
eigenstates for the same parameters.

the problem. (ii) The EBK semiclassical results are in good agreement with the quantum
mechanical results (see tables 2 and 3), which are also in good agreement with the quantum
mechanical calculations of Ganesan and Taylor (1996) as well as with the spectroscopic
measurements of the energy of interaction between Rydberg atoms (10-13 S states of sodium)
and its images in the walls of a micrometre-sized cavity (Sandogktdair1992). (iii) By
means of the contour plots of the normalized Hamiltori&p (both in variables(1y, ¢2)
and (u, v, w)), we have found that the classical and the quantum states are sorted into two
different families: the vibrational and the rotational states. (iv) In the quantum mechanical
calculations, a tiny splitting of the degeneracy appearing in the vibrational levels near the
classical separatrix results from tunnelling between vibrational states in the vicinity, but from
different sides of the separatrix. This splitting does not appear in the semiclassical results
because EBK quantization rules do not incorporate tunnelling effects. (v) On comparing
vibrational (rotational) eigentrajectories to vibrational (rotational) eigenstates, we have found
that both cases show the same symmetry patterns. (vi) We point out that classical mechanics
proves to be a powerful tool which provides a compact geometric picture of the energy-level
structure of the perturbed Rydberg systems.

As expected, the presented results look remarkably similar to those of the diamagnetic
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Kepler problem (the quadratic Zeeman effect, see, e.g., R¢lal1983)). The latter can be
understood if we note that the Hamiltonian (1) can be rewritten in the form

oo P00

2 r

whereQ(r) = 1+ 2cr® (effective charge) and = 1/164°%. The spherically symmetric part
Q(r)/r breaks the Coulomb degeneracy, slightly raising the energies of/tdttes. The
other term is equivalent to a diamagnetic term. Since we expetd have more effect than
r3, we are not surprised to find that the energies and wavefunctions look very much like those
of the diamagnetic Kepler system.

Finally, it should be mentioned that at very large separations, the retardation effects in
the interaction (i.e. the effects because of its finite velocity) might, in principle, be significant
(see e.g. Margenau and Kestner 1971). However, as it has been noted in the introduction, in
this paper we have considered the problem in the approximation aigtentaneousan der
Waals interaction. This requires that the electron moves so slowly that the interaction can
be treated as static, and all retardation effects can be neglected. In this sense, although an
exact (QED) analysis would be desirable, simple considerations indicate that this holds for the
Rydberg states at the distances presented here.

+ c,oz, (19)
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