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Summary. We consider the problem of stability of equilibrium points in Hamiltonian
systems of two degrees of freedom under resonances. Determining the stability or in-
stability is based on a geometrical criterion based on how two surfaces, related with the
normal form, intersect one another. The equivalence of this criterion with a result of
Cabral and Meyer is proved. With this geometrical procedure, the hypothesis may be
extended to more general cases.
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1. Introduction

In the analysis of dynamical systems, the search for equilibria and their stability is one
of the first tasks to be carried out, since phase flow depends on them to a large extent.
A precise knowledge of the phase portrait is very helpful when pursuing other tasks,
like the existence of periodic orbits, limit cycles, or the numerical integration of some
specific orbits.

Determining the stability of the equilibria of fixed points, in general, is not an easy
task, since it usually requires finding a Lyapunov function. However, the theory for linear
stability is well established and easy to apply. This is why the first step in analyzing the
stability of a nonlinear system lies in linearizing it and finding the linear stability. If at
least one eigenvalue has nonzero real part, the equilibrium is unstable for the linearized
system and is also unstable for nonlinear system. Unfortunately, the converse is not true;
since the rest of the terms may destroy the stability of the linear part, and a different
method must be used.
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In this paper, we deal with two-degrees-of-freedom autonomous Hamiltonians, de-
fined by an analytical function H = H(x1, x2, X1, X2). Without loss of generality we
will assume that the origin is an isolated equilibrium of the system. A power series
expansion of the analytical functionH in a neighborhood of the origin gives

H(x) = H2(x)+H3(x)+ · · · ,
whereHk(x) is a homogeneous polynomial of degree k in x.

The linear stability analysis of the equilibrium gives much information, since on the
one hand, if the equilibrium is hyperbolic, it is nonlinear unstable, and on the other hand,
inasmuch as the eigenvalues of the linearized Hamiltonian H2 appear in pairs ±λ, to
have linear stability it is necessary that all the eigenvalues of the linearized system be
purely imaginary numbers.

Thus, let us assume that there exist ω1, ω2 ∈ R+, such that the eigenvalues of the
corresponding linear system around the origin are ±ω1i , ±ω2i . In this way, after a
suitable symplectic linear transformation, the HamiltonianH is expressed as

H = H2 + F(q1, q2, p1, p2), (1)

where

H2 = 1
2ω1(q

2
1 + p2

1)± 1
2ω2(q

2
2 + p2

2), (2)

and F is an analytic function verifying

lim
‖(q,p)‖−→0

‖F‖
‖(q, p)‖2

= 0. (3)

Two situations must be considered. On the one hand, for the plus sign in (2), according to
the classical Lyapunov theory, a result of Dirichlet ensures the stability of the origin for
the whole system defined by (1), because H2 is positive-defined (see e.g. [25], [5]). On
the other hand, for the minus sign in (2), H2 is not sign-defined and Dirichlet’s theorem
of stability cannot be applied. However, for this interesting case, an Arnold’s theorem
[3] gives sufficient conditions to determine the stability character of the origin if the
fundamental frequencies ω1 and ω2 satisfy a general condition of irrationality and the
Hamiltonian is in Birkhoff normal form (Theorem 1).

Arnold’s theorem has a wide field of application in Celestial Mechanics; thus, Leon-
tovich [17] determined that the Lagrangian points in the planar restricted three-body
problem (RTBP) are stable for almost every value of the mass ratio of the primaries
below the critical Routh value. Later on, Deprit and Deprit-Bartholomé [8] provided a
procedure to apply the theorem. By so doing, they established the stability of the trian-
gular points except for three values, the resonant cases, excluded from the hypothesis of
Arnold’s theorem. This result is applied to a wide range of problems, as we can see, for
example, in [11], [15], [21], [24] and the references therein.

The resonances among the eigenvalues were tackled for particular cases [18], [19],
[20], [26], [27], [28], [1], [2], and each resonance needed an ad hoc criterion. Recently,
Cabral and Meyer [4] gave an analytic method (hereafter, the CM method) that general-
izes Arnold theorem and is valid for the resonant cases. Independently, Elipe et al. [14]
showed that the stability for the resonances may be geometrically determined depending
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on how two surfaces cut each other. In this paper, we analyze the relation between these
two criteria and prove that, although both are almost equivalent, the geometrical one
is a bit more general, since it is valid for cases (related to the normal forms) that the
CM method does not consider. Indeed, in the CM method, the Hamiltonian function is
brought to its Birkhoff normal form up to terms of the order of the resonance, and the
stability character of the origin is determined, precisely, by these terms. However, the
geometric criterion allows us to consider other cases where stability is decided by terms
of higher order than that of the resonance. This is the case if all the previous terms vanish
when restricted to a certain manifold.

The main idea of the geometric criterion implies studying the orbits in the reduced
space after normalization. In fact, the reduced flow lies on a fibered three-dimensional
space [23]. Each fiber is a two-dimensional space labeled by (2), which turns out to be
a formal integral constructed by the normalization transformation. The origin belongs
to the fiber labeled by H2 = 0 and the orbits on this fiber determine the stability of the
origin: If they are closed around it, the origin is Lyapunov stable; otherwise, if there
are asymptotic orbits, it is unstable. This simple idea is proved to be equivalent to the
classical isoenergetic reduction in the more general hypothesis mentioned above.

2. The Theorems of Arnold and Cabral and Meyer

Let us introduce the set of Poincaré action and angle variables:

qk =
√

2�k cosφk, pk =
√

2�k sinφk, k = 1, 2.

With this symplectic transformation, the Hamiltonian (2) is converted into

H2 = ω1�1 − ω2�2.

Arnold’s stability theorem [3] as given in a more readable form in [22] is as follows:

Theorem 1 (Arnold). Let us consider a two-degrees-of-freedom Hamiltonian system
H expressed, in the real canonical coordinates (�1,�2, φ1, φ2), as

H = H2 + H4 + · · · + H2n + H̃ ,

where

1. H is real analytic in a neighborhood of the origin in R4.
2. H2k , 1 ≤ k ≤ n, is a homogeneous polynomial of degree k in�i , with real coefficients.

In particular,

H2 = ω1�1 − ω2�2, 0 < ω1, 0 < ω2;
H4 = 1

2

(
A�2

1 − 2B�1�2 + C�2
2

)
.

H̃ has a power expansion in �i which starts with terms at least of order 2n + 1.

Under these assumptions, the origin is stable provided that for some k, 2 ≤ k < n, H2

does not divide H2k or, likewise, provided that D2k = H2k(ω2, ω1) �= 0.
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There are several implicit assumptions in stating that H has this form. On the one
hand, since H2, . . . , H2n depend only on the actions �1 and �2, H is in its Birkhoff’s
normal form up to degree 2n. On the other hand, the frequencies ωi must satisfy a
nonresonance condition. This assumption is what Deprit [8] called the general condition
of irrationality, which implies assuming that for any pair (k1, k2) of rational integers,
k1ω1 + k2ω2 �= 0. However, it is enough that the frequencies satisfy a weak resonant
condition [8], [22], [25], namely, k1ω1 + k2ω2 �= 0 for any pair of rational numbers
(k1, k2) such that |k1| + |k2| ≤ 2n.

For the resonant cases, Cabral and Meyer [4] extended Arnold’s theorem based on
two fundamental lemmas, the first one already established by Sokolsky [27] in the study
of stability of equilibrium positions under first-order resonances.

Lemma 1. Let K (s, φ, t) = 
(φ)sn + O(sn+ 1
2 ), where n = m/2 with m ≥ 3, an

integer. Let us assume that K is an analytic function of
√

s, φ, t , τ -periodic in φ and
T -periodic in t . If 
(φ) �= 0, for all φ, then the origin s = 0 is a stable equilibrium for
the Hamiltonian system

ṡ = ∂K

∂φ
, φ̇ = −∂K

∂s
,

in the sense that given ε > 0, there exists δ > 0 such that if s(0) < δ, then the solution
is defined for all t and s(t) < ε. If 
(φ) has a simple zero, i.e., if there exists φ∗ such
that 
(φ∗) = 0 and 
 ′(φ∗) �= 0, then the equilibrium s = 0 is unstable.

The proof of the lemma is based on Chetaev’s theorem [6] for instability and on
Moser’s invariant curve theorem [25] for stability.

Lemma 2. Let K (s, φ, t) = εm
(φ)sn + O(εm+1), where m and 2n are positive inte-
gers. Let us assume that K is an analytic function of s, φ, t , τ -periodic in φ, T -periodic
in t for all 1

2 ≤ s ≤ 3 and all 0 ≤ ε ≤ ε0. If 
(φ) �= 0, for all φ, then if ε0 is sufficiently
small, any solution of

ṡ = ∂K

∂φ
, φ̇ = −∂K

∂s
,

which starts with |s(0)| ≤ 1 for 0 ≤ ε ≤ ε0, satisfies |s(t)| ≤ 2 for all t .

This proof is based on the fact that there are invariant curves for the section map
which separate s = 1 from s = 2.

Let us assume that the frequencies ω1, ω2 of the quadratic Hamiltonian (2) are in
resonance, i.e., there are two relatively prime integers n and m verifying

nω1 − mω2 = 0,

or n = m = 1. If n = m = 1, we also assume that the matrix of the linearized system is
diagonalizable.

Let us write the Hamiltonian in the action-angle variables (�1,�2, φ1, φ2), and let
us assume that after some symplectic transformations the Hamiltonian H is the normal
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form through terms of order r where r = 2l − 1 or r = 2l, that is,

H = H2(�1,�2)+ H4(�1,�2)+ · · · (4)

+ H2l−2(�1,�2)+ Hr (�1,�2, nφ1 + mφ2)+ · · · .

Moreover,

1. H2 = ω1�1 − ω2�2.
2. H2k is a homogeneous polynomial of degree k in �1, �2.
3. Hr (�1,�2, nφ1 + mφ2) is a homogeneous polynomial of degree r in

√
�1,
√
�2,

with coefficients that are finite Fourier series in the angle nφ1 + mφ2.
4. H is an analytic function of the variables

√
�1,
√
�2, φ1, φ2, and 2π periodic in

nφ1 + mφ2.

Let


(φ) = Hr (ω2, ω1, nφ),

where

φ = φ1 + m

n
φ2.

Let D2k = H2k(ω2, ω1). If D2k �= 0 for some k = 2, . . . , l − 1, then Arnold’s theorem
ensures the stability of the origin. Therefore, we assume that D2k = 0 for all 2 ≤ k ≤ l−1.
Under these hypotheses, we have the following theorem.

Theorem 2 (Cabral and Meyer). If 
(φ) �= 0 for all φ, then the origin is stable. If 

has a simple zero, that is, if there exists φ∗ such that 
(φ∗) = 0 and 
 ′(φ∗) �= 0, then
the origin is unstable.

This proof comes down to establishing the stability properties in the surface defined
byH = 0, where the Hamiltonian function can be reduced to that of Lemma 1.

3. A Geometric Counterpart

An interesting geometric approach to the stability problem can be given if we consider
the structure of the phase space after normalization and study the shape of the orbits on
the reduced phase space. Indeed, after normalization, a new formal integral is introduced
(namely, H2 = ω1�1 − ω2�2), and the phase space can be considered as a foliation of
two-dimensional surfaces in terms of the value of H2. Taking this into account, we do
not follow the standard procedure of the isoenergetic reduction that considers the motion
at the energy levelH = 0 (this is the basis of the proof given by Cabral and Meyer). On
the contrary, we consider the motion at the surface H2 = 0 where the origin lies. This
idea was introduced in [14] and we will see that it is a generalization of Theorem 2.

To begin with, it is advisable to introduce suitable sets of variables with a twofold
objective: reveal the structure of the reduced phase space and give a compact expression
for each order in the normal form.
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As in the hypothesis of Theorem 2, we suppose that the frequencies ω1 and ω2 satisfy
the resonant condition

nω1 − mω2 = 0, or
ω1

m
= ω2

n
= ω,

with n and m relatively prime integers, such that n +m = r , the order of the resonance,
as was implicitly supposed in Theorem 2.

To find the structure of the reduced phase space, we follow the steps in [10], [13] to
obtain a set of variables that remains invariant under the normalization procedure. This
task is easy when performed with complex variables like those introduced by Gustavson
[16]. This set of coordinates is related to qk , pk variables of (2) through

qk = 1√
2
(uk + ivk), pk = i√

2
(uk − ivk), k = 1, 2.

In complex variables, the quadratic part of the Hamiltonian, H2, becomes

H2 = iω1u1v1 − iω2u2v2,

and the operator L2, associated with H2 is diagonal and of the form

L2 = iω1

(
u1

∂

∂u1
− v1

∂

∂v1

)
− iω2

(
u2

∂

∂u2
− v2

∂

∂v2

)
,

whereas every term Hj in the Hamiltonian is a homogeneous polynomial of degree j in
uk , vk .

Let us now define the following four monomials,

I1 = u1v1, I2 = u2v2, I3 = un
1um

2 , I4 = vn
1v

m
2 ,

that do not belong to the image of the Lie operator L2. As it is in diagonal form, they
belong to kerL2 and are invariants with respect to H2. Then,

Theorem 3. The invariants I1, I2, I3, I4 generate the normal form that, up to order N,
can be expressed as

H = iω1 I1 − iω2 I2 +
∑

2(α1+α2)+rα3=k

3≤k≤N

(aα1α2α3 I α3
3 + bα1α2α3 I α3

4 )I
α1
1 I α2

2 .

Proof. Let M = uβ1
1 uβ2

2 v
γ1
1 v

γ2
2 be a monomial of order j , with β1 + β2 + γ1 + γ2 = j .

It is in normal form if M ∈ kerL2.
The action of the Lie derivative over M is

L2 M = i M [ω1(β1 − γ1)− ω2(β2 − γ2)] ,

thus,

M ∈ kerL2 ⇐⇒ ω1(β1 − γ1)− ω2(β2 − γ2) = 0.
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Taking into account the resonant condition, M ∈ kerL2 if and only if the following
Diophantine equation is satisfied:

m(β1 − γ1)− n(β2 − γ2) = 0. (5)

The solutions of (5) are

β1 − γ1 = kn, β2 − γ2 = km, k ∈ Z.
If k = 0, we obtain the trivial solution β1 = γ1, β2 = γ2, which is satisfied for every

ω1, ω2 even if they are not resonant. In this case, the monomial M is of the form

M = (u1v1)
β1(u2v2)

β2 = I β1
1 I β2

2 , 2(β1 + β2) = j,

and j must be an even number.
If k �= 0, we obtain the resonant terms of the normal form, and they can be of two

different classes depending on the sign of k. If k > 0, then

M = (u1v1)
γ1(u2v2)

γ2(un
1um

2 )
k = I γ1

1 I γ2
2 I k

3 , 2(γ1 + γ2)+ rk = j,

and j must be at least r .
Finally, if k < 0, then

M = (u1v1)
β1(u2v2)

β2(vn
1v

m
2 )
−k = I β1

1 I β2
2 I−k

4 , 2(β1 + β2)− rk = j,

and j , as in the previous case, must be at least r .

It is worth noting that the four invariants Ik are not independent, but related through

I n
1 I m

2 = I3 I4. (6)

Besides, every linear combination of them is also invariant by the Lie operator. We
take advantage of this fact in order to introduce a similar set of variables. Indeed, by
defining M1, M2, S, and C , as

M1 = i

2
(m I1 + nI2), S = i

2
nm/2mn/2(I4 − i n+m I3),

M2 = i

2
(m I1 − nI2), C = 1

2
nm/2mn/2(I4 + i n+m I3), (7)

the normal form, up to order N , is written as

H = 2ωM2 +
∑

2(α1+α2)+r(α3+α4)=k

3≤k≤N

aα1α2α3α4 Mα1
1 Mα2

2 Cα3 Sα4 . (8)

Moreover, the relation (6) becomes

C2 + S2 = (M1 + M2)
n(M1 − M2)

m, (9)

where M1 ≥ |M2|.
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Fig. 1. Reduced phase space for values of M2 less than, equal to, and greater than zero.

N.B. In spite of their appearance, the variables M1, M2, S, and C defined in (7) are
real ones.

Equation (9) defines the reduced phase space as a revolution surface (as a matter of
fact, a semialgebraic variety) for each constant value of M2; see Figure 1. In particular,
the origin is the vertex of the surface corresponding to M2 = 0. Taking into account (7),
we find the Lie algebra underlying the new variables M1, S, and C by means of Poisson
brackets,

{M1,C} = mnS,

{S,M1} = mnC,

{S,C} = 1
2 mn(M1+M2)

n−1(M1−M2)
m−1 [(m+n)M1+(m−n)M2] . (10)

In this way, the orbits, for a fixed value of M2, are the solutions of the system of differential
equations

Ṁ1 = {M1,H}, Ṡ = {S,H}, Ċ = {C,H}, (11)

together with the constraint (9). In fact, the orbits can be obtained as the intersection of the
surface defined by (9) and that defined by the truncated normal form of the Hamiltonian
function up to order N , given by Equation (8) as can be seen in Figure 2. Two interesting
consequences are worth noting:

Proposition 1. The system (11) is invariant under the action of the group SO(2) of
rotations around the axis M1.
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Fig. 2. Phase flow on the reduced phase space.

Proof. This is a consequence of the axial symmetry of the Casimir function (9). Indeed,
let us consider the rotation around the M1 axis:

S̄ = S cos σ − C sin σ, C̄ = S sin σ + C cos σ.

A straightforward calculation yields

{M1, C̄} = mnS̄,

{S̄,M1} = mnC̄,

{S̄, C̄} = 1
2 mn(M1 + M2)

n−1(M1 − M2)
m−1 [(m + n)M1 + (m − n)M2] ,

which proves the proposition.

Proposition 2. If the vertex of the surface (9) is nonregular, then it is an equilibrium
point of the system (11). If M2 = 0, then the origin (the vertex) is always an equilibrium
point.

Proof. The (C, S,M1) coordinates of the vertex of the surface (9) are (0, 0, |M2|). It is
not a regular point if the three partial derivatives of the function

f (M1, S,C) = S2 + C2 − (M1 + M2)
n(M1 − M2)

m

vanish at the same time.
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This is the situation if either M2 > 0 and m > 1, or M2 < 0 and n > 1, or M2 = 0.
In these three cases, Poisson brackets (10), when evaluated at the vertex coordinates, are
zero. Therefore, the system of differential equations (11) vanishes at the vertex, and then
it is an equilibrium.

Note that we have implicitly used a singular reduction, as we have obtained reduced
spaces which are not smooth manifolds [7]. In this case, the aim is to reduce the S1

symmetry induced by considering H2 as an integral. The algebra of S1-invariant poly-
nomials is generated by (7), subject to the relation (9). This relation defines the reduced
orbit space as R4/S1, and it is a fibered three-dimensional space. Each fiber is a two-
dimensional semialgebraic variety, labeled by H2, with at most one singular point. The
appearance of singular points depends on the isotropy group associated with each point
of the phase space by the natural action of the S1 symmetry. If every isotropy group is
trivial, then the reduced space is regular, and has singularities otherwise. This situation
depends on the resonance and the value of H2. A detailed discussion on this topic from
the point of view of singular reduction is given in [23].

Now, we are in position to propose a geometric criterion based on how the phase
portrait looks in a neighborhood of the origin (let us recall again that we are only
interested in the manifold M2 = 0). In this sense, if the orbits are closed trajectories,
then the origin will be stable, whereas if there are asymptotic orbits crossing the origin,
it will be unstable [14]. In fact, this comes down to determining the zero-level energy
curves on the surface (9) for M2 = 0, that is, the intersection of the surfaces (9) and
H = 0 (for M2 = 0).

Let us assume that the Hamiltonian is normalized up to a certain order N ≥ r , the
first term that does not vanish for M2 = 0. Under these conditions, we get the following
result.

Theorem 4 (Geometric criterion). Let us consider the two surfacesG1 ≡ C2+S2 = Mr
1

and G2 ≡ H(C, S,M1;M2 = 0) = 0. If their only common point is the origin, then it is
stable. If they intersect each other transversally, then the origin is unstable.

Proof. First, note that taking M2 = 0 is equivalent to making �1 = ω2 and �2 = ω1,
as Arnold does in his theorem. Indeed,

�1 = ω2 = M1 + M2

m
, �2 = ω1 = M1 − M2

n
,

and hence, 2M2 = mω2 − nω1 = 0, due to the resonance condition.
On the manifold M2 = 0, the Hamiltonian (8) becomes

H = HN (M2 = 0) =
∑

2α1+r(α3+α4)=N

aα1α2α3α4 Mα1
1 Cα3 Sα4 ,

and the surface (9) is now

G1 ≡ C2 + S2 = Mr
1 .

Now, let us parameterize the surface G1. Although it is not the simplest one, for conve-
nience reasons we will use Lissajous variables, specially designed to handle oscillators
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in resonances [12], [13]. They are related to Poincaré variables through the formulae

2m�1 = 
1 +
2, nφ1 + mφ2 = 2mnψ1,

2n�2 = 
1 −
2, nφ1 − mφ2 = 2mnψ2.

In this set of variables, H2 = ω
2, and the invariants in this set of variables are

M1 = 1
2
1,

M2 = 1
2
2,

S = 2−(m+n)/2(
1 −
2)
m/2(
1 +
2)

n/2 sin 2mnψ1,

C = 2−(m+n)/2(
1 −
2)
m/2(
1 +
2)

n/2 cos 2mnψ1. (12)

By using Lissajous variables, we have that

G2 ≡ HN = 0 ≡ 
N /2
1 G(ψ1) = 0,

where G(ψ1) is, except for a constant factor, the function appearing in Theorem 2 if
N is the order of the resonance. The surface G1 (let us recall that G1 is evaluated for
M2 = 
2 = 0) may be parameterized by

S = 2−r /2
r /2
1 sin 2nmψ1, C = 2−r /2
r /2

1 cos 2nmψ1, M1 = 1
2
1.

It is clear that if the function G(ψ1) does not vanish for everyψ1, the surfaceG2 is defined
by 
1 = 0 and, therefore, the intersection with G1 is the point (0, 0, 0), that is to say,
the origin. On the other hand, if G(ψ1) has a simple zero at ψ∗1 , then the two surfaces
intersect along the curve defined by

S = 2−r /2
r /2
1 sin 2nmψ∗1 , C = 2−r /2
r /2

1 cos 2nmψ∗1 , M1 = 1
2
1.

Note that if ψ∗1 is a multiple root of G(ψ1), then the surfaces are tangent and the origin
is not an isolated equilibrium point.

As can be seen, the intersection of the two surfaces comes down to determining
the zeroes of the function G(ψ1), the same function that appears in Cabral and Meyer’s
theorem. Thus, in this sense, the two theorems are equivalent. However, in the hypothesis
of the geometric criterion, N is not supposed to be the order of the resonance, but the
first order in the normal form that does not have M2 as a common factor. This fact allows
us to extend the results given in [4].

To complete the proof it is necessary to verify that the properties of stability on the
surface M2 = 0 ensure the nonlinear stability of the equilibrium position. In this way,
we follow the line given in [4], although we work with Lissajous variables.

Let us introduce ψ2 as a new independent variable and consider the tail of the normal
form. In fact, ψ2 is a timelike variable because

ψ̇2 = ∂H
∂
2
= ω + O(
1/2

1 ),
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and it is an increasing function of time. Moreover, if we introduce the scaled time τ by
means of

ωdt = dτ,

then
dψ2

dτ
= 1+ O(
1/2

1 ).

Taking all of this into account, we have, on the surface M2 = 0,

dψ1

dψ2
= ∂
N /2

1 G(ψ1)

∂
1
+ O(
(N−1)/2

1 ),
d
1

dψ2
= −∂


N /2
1 G(ψ1)

∂ψ1
+ O(
(N+1)/2

1 ),

and the stability of the origin on this surface follows from the fundamental Lemma 1.
To prove full stability, we scale the action variables 
k = ε2 Jk , where ε is a small-

scale parameter. Now, the Hamiltonian is

H = H2(J2)+ ε2 H4(J1, J2)+ · · · + εN−2 HN (J1, J2, ψ1)+ O(εN−1).

If we consider the flow on the surface J2 = hεN−1, for h ∈ [−1, 1], it is the same as the
flow of

H = εN−2 J N /2
1 G(ψ1)+ O(εN−1)

provided that 
2 is a common factor for all the terms in the Hamiltonian function
with degree less than N . Then, the full stability of the origin follows by applying
Lemma 2.

Let us turn to Theorem 2 and consider the normal form up to the order r , with
r = n + m the order of the resonance as is implicitly assumed in the hypothesis. Then,
the truncated normal form is written as

H = 2ωM2 +
� r

2�∑
j=2

H2 j (M1,M2)+ αS + βC, (13)

where H2 j (M1,M2) is a homogeneous polynomial of degree j in M1 and M2. It is worth
noting that, if r is an odd number, the highest-order terms in (13) are

αS + βC.

On the other hand, if r is an even number, the highest-order terms are given by

Hr (M1,M2)+ αS + βC.

Under the hypothesis that the stability of the origin is determined by the terms of order
r , we have H2 j (M1, 0) = 0 for j = 1, . . . ,

⌊
r−1

2

⌋
, and then on the manifold M2 = 0,

the normal form reduces to

H = αS + βC r odd, H = ar Mr /2
1 + αS + βC r even.
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A simpler expression can be obtained if we apply Proposition 1. Indeed, a rotation of
angle σ defined by

tan σ = −β
α
, if α2 + β2 �= 0,

and σ = 0 otherwise, transforms the normal form into

H = S
√
α2 + β2 if r odd, and H = ar Mr /2

1 + S
√
α2 + β2 if r even.

Then, the next result follows:

Theorem 5. If r is an odd number and α2 + β2 �= 0, then the origin is unstable. If r
is an even number and a2

r > α2 + β2, then the origin is stable, whereas it is unstable if
a2

r < α2 + β2.

This theorem includes the well-known results of Alfriend and Markeev for third- and
fourth-order resonances. Furthermore, a simple geometric interpretation can be given,
provided that G2 is a cylindrical surface. A projection onto the plane C = 0 shows that
stability depends on the relative position of the curve S2 = Mr

1 , and

S = 0 if r is odd, or ar Mr /2
1 + S

√
α2 + β2 = 0 if r is even.

If the last curve is inside S2 = Mr
1 , there are asymptotic orbits and the origin is unstable.

On the other hand, if the curve is outside S2 = Mr
1 , the origin is stable (see Figure 3).

Note that in the case of stability, the function Hr (M2 = 0) is sign-defined and the
energy can be either positive or negative. On the other hand, if the origin is unstable,
the function Hr (M2 = 0) is no longer sign-defined and the energy takes positive and
negative values. In this way, the nontrivial level set H = 0 acts as a separatrix and,
since the origin is an equilibrium point, asymptotic orbits must appear. Note, also, the
following result:

Corollary 1. If the origin is stable, all the orbits are bounded for all M2 ∈ R. If the
origin is unstable, there are always unbounded orbits for all M2 ∈ R.

In this way, the stability properties of the origin can be deduced from the phase flow
on any manifold defined by M2. It is enough that there exists an unbounded orbit to
ensure that the origin is unstable. On the other hand, if every orbit is bounded, then the
origin is stable.

4. Conclusions

We have studied the stability properties of an equilibrium position of a two-degrees-of-
freedom Hamiltonian system from a geometric point of view. To this end, different sets
of variables have been introduced. In particular, the set of Lissajous variables has been
revealed to be very convenient as they act as parametric coordinates of the reduced phase
space. On the other hand, they suggest a different proof of Cabral and Meyer’s theorem
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Fig. 3. Geometric view of Theorem 5 by pro-
jection onto the plane C = 0. The black solid
line is the revolution surface G1(M2 = 0).
The other two lines correspond to the surface
Hr (M2 = 0) for two cases: the blue solid line
represents stability, since the only common
point is the origin; on the contrary, the dashed
red line corresponds to instability, since both
surfaces cut each other transversally.

of stability. Instead of considering the stability properties of the equilibrium position on
the zero isoenergetic manifold, we have considered the motion on the surface defined
by the new formal integral where the equilibrium lies. Besides, by using appropriate
invariants, the normal form of the Hamiltonian function can be given in a compact form.
In this way, it is possible to generalize the hypothesis of Cabral and Meyer’s theorem
and give a general stability criterion for odd and even resonances.
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