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Abstract

We study the pitch motion dynamics of an asymmetric spacecraft in circular orbit under the influence of a gravity gradient
torque. The spacecraft is perturbed by a small aerodynamic drag torque proportional to the angular velocity of the body
about its mass center. We also suppose that one of the moments of inertia of the spacecraft is a periodic function of time.
Under both perturbations, we show that the system exhibits a transient chaotic behavior by means of the Melnikov method.
This method gives us an analytical criterion for heteroclinic chaos in terms of the system parameters which is numerically
contrasted. We also show that some periodic orbits survive for perturbation small enough.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of a rotating body has been a classic
topic of study in mechanics. So, in the XVIII and XIX
centuries, several aspects of the motion of a rotating
rigid body were studied by many authors as Euler,
Cauchy, Jacobi, Poinsot, Lagrange and Kovalevskaya.
Many of these theoretical results have been collected
in Leimanis’s book [1].

However, the study of the dynamics of rotating
bodies is still very important in modern science. From
a theoretical point of view, this topic offers quite inter-
esting models and problems in the field of non-linear

∗ Corresponding author.

0020-7462/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2005.06.010

dynamics. In this way, the Euler’s equations of mo-
tion of a rotating body are a representative example.
Moreover, the dynamics of bodies in rotation have
had many applications in the explanation of differ-
ent physical phenomena as the motion of Earth’s
poles [2,3], the variation of the latitude on the sur-
face of the Earth [4], the motion of gyrostats and
gyroscopes [5], and the chaotic rotations of irregular-
shaped natural satellites as Hyperion [6]. During the
last decades, the interest in the dynamics of rotating
bodies has considerably increased in astrodynamics
and space engineering because it is an useful model
to study, at first approximation, the attitude dynamics
of spacecrafts and irregular-shaped natural satellites
[7,8].
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Any spacecraft in orbit is under the action of several
kinds of external disturbance torques as the solar ra-
diation pressure, the gravity gradient torque, the mag-
netic torque caused by the Earth’s magnetic field, or
the aerodynamic torque due to the action of a resist-
ing medium like the Earth’s atmosphere [9]. Although
all these external disturbances are not large in com-
parison with the weight of the vehicle, they cannot be
considered as negligible in a closer study of the atti-
tude dynamics of a spacecraft, because their influence
may be significant in the real attitude motion of the
vehicle.

The gravity gradient torque results from the varia-
tion in the gravitational force over the distributed mass
of the spacecraft. This torque is related to one of the
more interesting aspect in the attitude dynamics of a
spacecraft: the so-called pitch motion [7]. An asym-
metric satellite in closed orbit around the Earth tends
to ride with its longest axis vertical, due to the effect
of the gravity gradient torque. If it is deviated from
this equilibrium position, the satellite would oscillate
or rotate about that attitude. This kind of oscillation
is sometimes called librations. In the XVIII century
Euler [10], d’Alambert [11] and Lagrange [12], devel-
oped the first studies on the effect of the gravity gra-
dient torque on the motion of celestial bodies as the
Earth and the Moon. During the second part of the last
century, the topic of the effects of the gravity gradient
torque was revisited in relation to the determination
of the spacecrafts motions. Klemperer and Baker [13],
Schindler [14] and Klemperer [15], studied the libra-
tions of dumbbell and ellipsoid of revolution satellites
in circular orbit. On the other hand, Moran [16] ana-
lyzed the effects of the planar librations on the orbital
motion of an asymmetric satellite.

The aerodynamic drag torque is another disturbance
torque that must be considered in a deeper study of
the attitude dynamics of a spacecraft. In fact, there is
a range of altitudes with operative satellites at which
aerodynamic drag not only is not negligible but it also
may even be dominant [7]. Several authors as Wain-
wright [17], Deimel [5], Gray [18], and other ones
cited in Leimanis’s book [1] have studied the dynam-
ics of a revolving symmetric body under the influence
of an aerodynamic drag. All of them assume that the
action of the resisting medium surrounding the body
results in a drag torque opposite to the motion and
proportional to the first power of the angular velocity

of the body. All these studies are also based on the
premise that the rotating system is a perfectly rigid
body. Unfortunately, all real materials are elastic and
deformable to some degree. The model of a perfectly
rigid body can lead to results not coincident with the
real behavior of a spacecraft. This mistake was dra-
matically pointed out in 1958 when a not expected
instability appeared in the rotation of the Explorer I
satellite [19].

All these considerations have moved us to focus our
attention in the pitch motion dynamics of an asym-
metric non-rigid spacecraft in circular orbit and under
the influence of an external aerodynamic drag torque.
Here, non-rigid means that one of the moments of in-
ertia is a periodic function of time. This model is a
more realistic approximation to the attitude motion of
a spacecraft than the perfectly rigid model, but not ex-
empt of considerable simplifications. We also assume
that the center of mass of the body is not modified.
It is important to note that, due to the change in the
orientation of the spacecraft in its pitch motion, the
center of gravity of the satellite does not coincide, in
general, with its mass center. Therefore, there is a cou-
pling between the orbital and the libration motion of
the spacecraft. However, as the vehicle is small com-
pared to its distance to the mass center of the Earth,
the deviations of the center of gravity of the spacecraft
from its mass center may be considered very small.
So, we also assume that there is no coupling between
the orbital and pitch motion, hence the circular orbit of
the spacecraft around the Earth is not affected by the
libration motion. In the absence of any external torque,
this system has already been studied by Lanchares et
al. [20], and Iñarrea and Lanchares [21]. They ana-
lyzed and described the chaotic behavior of a dual-spin
spacecraft with time-dependent moments of inertia in
free motion. When an external viscous drag torque is
considered Iñarrea et al. [22], studied the rotations of
an asymmetric body with time dependent moments of
inertia. The main contribution of the drag results in
the despin of the body until it reaches an equilibrium
position. However, the time dependence of the mo-
ment of inertia introduces a certain chaotic dimension
in the behavior of the system in such a way that the
final state of the body is in some cases unpredictable.

In the study of this kind of systems the Melnikov
method proves to be a powerful tool. The Melnikov
method [23] is an analytical tool to determine, at first
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order, the existence of homo/heteroclinic intersections
and so chaotic behavior in near-integrable systems.
Recently, many authors have applied the Melnikov
method to reveal chaotic dynamics in several prob-
lems on rotating bodies under different kinds of per-
turbations. In this way, Gray et al. [24] have investi-
gated a viscously damped free rigid body perturbed by
small oscillating masses. Holmes and Marsden [25],
Koiller [26], and Peng and Liu [27] have considered
free gyrostats with a slightly asymmetric rotor. Tong
et al. [28] have treated an asymmetric gyrostat under
the uniform gravitational field. In order to study the
persistence of the heteroclinic chaos in our rotating
body in the presence of aerodynamic drag, we have
also made use of the Melnikov method.

Despite of analytical techniques to highlight the
chaotic behavior of the system, numerical computer
simulations are needed to confirm the predicted be-
havior and give a deeper understanding on the global
dynamics of the system. These simulations have been
performed by means of numerical integration of the
equations of motion. We have made use of several nu-
merical tools such as, time history, Poincaré map and
attractions basins. This allows us to characterize the
dynamical behavior of the spacecraft pitch motion as
regular or chaotic. Besides, Poincaré surfaces of sec-
tion are used to reveal the existence of a stochastic
layer in the absence of aerodynamic viscous drag. Fi-
nally, a comprehensive study of the final asymptotic
behavior of the system is achieved focusing on the
geometry of the attraction basins of the two asymp-
totic stable points. These all numerical features show
an extremely random behavior for weak aerodynamic
drag. Moreover, despite of the viscous drag, the time-
periodic moment of inertia may work as a source of
energy for the pitch motion. Thus, some non-decaying
periodic pitch motions persist for a viscous drag small
enough.

The present paper is structured in the following way.
In Section 2, we describe in detail the perturbed sys-
tem and we also express the equation of motion of the
spacecraft pitch motion. Then we point out the main
features of the phase space of the unperturbed sys-
tem. In Section 3 we calculate the Melnikov function
of the perturbed spacecraft. The Melnikov function
yields an analytical criterion for heteroclinic chaos in
terms of the system parameters. Finally, in Section
4, by means of computer numerical simulations of

the spacecraft pitch motion, we use several numerical
techniques to check the validity of the analytical crite-
rion for chaos obtained through the Melnikov method.
We also study in a qualitative way the chaos-order evo-
lution of the attraction basins of the perturbed system
with the strength of the aerodynamic drag.

2. Description of the system and equations of
motion

Let us consider an asymmetric spacecraft with a
time-dependent moment of inertia in a circular orbit
with orbital angular velocity �o in the gravitational
field of the Earth. We will make use of two differ-
ent orthonormal reference frames: the orbital frame
R{O, X, Y, Z} and the body frameB{O, x, y, z}, both
with the same origin O located at the center of mass
of the spacecraft.

• The orbital frame R{O, X, Y, Z} is established
with the Z-axis pointing to the mass center of
the Earth Oe, the X-axis is the direction of the
velocity vector of the spacecraft, and the Y-axis
is normal to the orbital plane completing a right-
hand orthogonal system. The base vectors of R
are �r1, �r2, �r3. See Fig. 1. In the usual aircraft
and spacecraft terminology, the X, Y, Z axes
are called, respectively, roll, pitch and yaw axes
[7,8].

• The body frame B{O, x, y, z}, is established
with the directions of the axes coincident with
the principal axes of the spacecraft. The base
vectors of B are �b1, �b2, �b3.

The relative orientation between these two reference
frames results by means of three consecutive rotations
involving the Euler angles (�, �, �). To move from the
orbital axes {X, Y, Z} to the body axes {x, y, z}, the
first rotation is about the Z-axis through an angle �
(yaw). The second rotation is about the new axis Y ′ by
an angle � (pitch). Finally, the third rotation is about
the new axis x through an angle � (roll), reaching
the body axes {x, y, z} (see Fig. 2). This particular
set of Euler angles are commonly used in aircraft and
spacecraft attitude and are also known as Tait–Bryan
or Cardan angles [7,19,29]. We do not make use of
the classical Euler angles [30] because they have a
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Fig. 2. The three consecutive rotations from the orbital frame R
to the body frame B through the Euler yaw, pitch and roll angles
(�, �,�).

singularity in the particular orientation that is studied
in this paper.

The moments of inertia of the spacecraft are de-
noted by A, B, C, and we assume a triaxial spacecraft
with the relation A > B > C. We suppose specifically
that the greatest moment of inertia of the body is a pe-
riodic function of time, that is, A = A(t) whereas the
two other moments of inertia, B and C, remain con-
stant. Although A varies with time, we will suppose
that the body always holds the same triaxial condition,
A(t) > B > C, at any time. Also, we will suppose that

the center of mass of the body is not altered. It is im-
portant to note that the choice of the greatest moment
of inertia as function of time, and the other two con-
stant, is not relevant in the dynamics of the problem.
In fact, the results and conclusions are similar if we
suppose B to be variable with time and the other two
constant.

The function that defines the change of the body
greatest moment of inertia A(t) is supposed to have
the specific form

A(t) = A0 + A1 cos �t , (1)

where A1 is a parameter much smaller than A0
(A1>A0). In this way, our system can be considered
as a simple model of a non-perfectly rigid body.

Due to the gravity gradient and the finite dimension
of the spacecraft, it is under the action of a gravita-
tional torque �Ng about the body mass center O. The
components of this torque �Ng in the body frame B are
given by [7,8,19]

Ngx = 3�

R5
(C − B)RyRz,

Ngy = 3�

R5
(A − C)RxRz,

Ngz = 3�

R5
(B − A)RxRy , (2)

where � = Gme = 3.986 × 1014 Nm2/kg is the mass
parameter of the Earth. Besides, R is the radius of
the circular orbit of the spacecraft, and Rx, Ry, Rz are
the components, in the body frame B, of the position

vector �R of the mass center O with respect to the mass
center of the Earth Oe. With our choice of the reference
frames, the position vector �R takes the following forms
in both frames:

�R = Rx
�b1 + Ry

�b2 + Rz
�b3 = −R�r3.

Making use of the rotation matrix from the orbital
frame R to the body frame B [7,8,19], the components
of �R can be expressed in the body frame B in terms
of the Euler angles as

Rx = R sin �,

Ry = −R sin � cos �,

Rz = −R cos � cos �. (3)
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If we denote ��=�x
�b1 +�y

�b2 +�z
�b3 as the rotation

angular velocity of the body about its center of mass O,
expressed in the body frameB, the angular momentum
�G of the body about O can be written as

�G = I�� = A(t)�x
�b1 + B�y

�b2 + C�z
�b3,

where I is the tensor of inertia of the body. As it
is expressed in the frame B of the principal axes
of the body, this tensor is a diagonal one, that is,
I = diag(A(t), B, C).

We consider that the spacecraft is in a lightly resist-
ing medium and its action on the body is a small drag
torque �Nd opposite to the rotation motion about O. We
also assume that the torque is directly proportional to
the angular velocity �� of the body, that is,

�Nd = −��� = −�(�x
�b1 + �y

�b2 + �z
�b3),

where � > 0 is the coefficient of the viscous drag.
Under all these assumptions, and by means of the

classical theorem of angular momentum about the
mass center O of a body,

d �G
dt

= �Ng + �Nd.

Thus, the Euler equations of motion of the system,
expressed in terms of the angular velocity components
(�x, �y, �z), can be easily obtained

A(t)�̇x + Ȧ(t)�x + (C − B)�y�z

= 3�

R5
(C − B)RyRz − ��x ,

B�̇y + (A(t) − C)�x�z

= 3�

R5
(A(t) − C)RxRz − B�y ,

C�̇z + (B − A(t))�x�y

= 3�

R5
(B − A(t))RxRy − ��z. (4)

As it is well known, the components (�x, �y, �z) of
the angular velocity �� in the body frame B, can be
written in terms of the Euler angles (�, �, �) and their
velocities (�̇, �̇, �̇) as [7,8,19,29]

�x = �̇ − �̇ sin �,

�y = �̇ cos � + �̇ cos � sin �,

�z = �̇ cos � cos � − �̇ sin �. (5)

Making use of Eqs. (3) and (5) the equations of motion
(4) could be explicitly written in terms of the Euler
angles (�, �, �), their velocities (�̇, �̇, �̇) and their
accelerations (�̈, �̈, �̈), resulting in quite cumbersome
expressions.

Nevertheless, if the roll and yaw motions are ini-
tially quiescent, that is, �(0) = �̇(0) = 0 and �(0) =
�̇(0) = 0, the equations of motion become

�̈ = 0,

�̈ = 3�2
o[C − A(t)]

B
sin � cos � − �

B
�̇,

�̈ = 0.

where �o = √
�/R3 is the orbital angular velocity of

the spacecraft. Therefore, in this situation, roll and
yaw motions are not excited by the pitch one, and
there is only one non-trivial equation of motion for
the dynamics of the system.

Taking into account (1), the equation of the pitch
motion can be written as

�̈ = 3�2
o(C − A0)

B
sin � cos � − 3�2

oA1

B

× sin � cos � cos(�t) − �

B
�̇.

In order to analyze the dynamics of the pitch motion,
it is convenient to introduce a new dimensionless time
� = �ot . In this way, we arrive at the equation

�̈ = 3(C − A0)

B
sin � cos � − 3A1

B

× sin � cos � cos

(
��

�o

)
− �

B�o
�̇,

where the derivatives are with respect to the new di-
mensionless time �. Now, by introducing the following
new dimensionless parameters

K = 3(A0 − C)

B
, 	 = 3A1

B
, 
 = �

�o
,

� = �

B�o
,

we obtain

�̈ = − K sin � cos �

− 	 sin � cos � cos(
�) − ��̇. (6)

The terms in 	 and � in Eq. (6) can be considered
as small perturbations because A1>A0 and a small
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aerodynamic drag torque is supposed. In this way, the
unperturbed system (	=�=0) coincides with an asym-
metric rigid spacecraft in circular orbit under the grav-
ity gradient torque. Thus, the equation of motion of
the unperturbed spacecraft is given by

�̈ = −K sin � cos �.

This equation may be rewritten in form of a system of
two differential equations of first order as

�̇ = � = f1,

�̇ = −K sin � cos � = f2. (7)

These differential equations correspond to the follow-
ing Hamiltonian:

H = 1

2
p2

� + K

2
sin2 �,

with p� = �. In this case, the Hamilton function co-
incides with the sum of the rotational kinetic energy
of the spacecraft about its mass center, plus the grav-
ity gradient potential energy of the body. As it can be
seen, the unperturbed spacecraft is one degree of free-
dom and, therefore, it is an integrable system.

Eq. (7) are those corresponding to a non-linear pen-
dulum taking 2� as the angular variable. Therefore,
it is known that the system has unstable equilibria at
(�, �) = (±(2n + 1)�/2, 0), and stable equilibria at
(±n�, 0). The two unstable equilibria, denoted by E1
and E2, are connected by four heteroclinic trajectories.
These orbits are the separatrices of the phase space.
Fig. 3 shows the main features of the phase flow for
the unperturbed system (7) for K = 1.

The energy of the system corresponding to the un-
stable equilibria and the separatrices is Esep = K/2.
These separatrices divide the phase space in two dif-
ferent classes of the pitch motion. On the one hand,
oscillations inside the separatrices, when the energy
of the spacecraft is E<Esep,

� = arcsin

[
1

k
sn

(√
K�,

1

k

)]
,

� = √
2Ecn

(√
K�,

1

k

)
,

k2 = K

2E
, (8)

which are periodic with period T = K(1/k)/
√

K ,
being K the complete integral of first kind. On the
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Fig. 3. The phase space of the unperturbed pitch motion of an
asymmetric rigid spacecraft in circular orbit under the gravity
gradient torque for K = 1.

other hand, tumbling rotations outside the separatrices,
when the energy of the spacecraft is E>Esep,

� = arcsin[sn(
√

2E�, k)],
� = √

2E dn(
√

2E�, k),
k2 = K

2E
, (9)

which are periodic with period T = K(k)/
√

2E. Be-
sides, the solutions corresponding to the four asymp-
totic heteroclinic trajectories are

[�±(�), �±(�)] = {± arcsin[tanh(
√

K�)],
± √

K sech(
√

K�)}, (10)

subject to the initial conditions (�±
o (0), �±

o (0)) =
(0, ±√

K). The four heteroclinic trajectories form the
stable Ws(E1), Ws(E2) and unstable Wu(E1), Wu(E2)

manifolds corresponding to the two unstable equi-
libria, that join smoothly together. So it holds that
Ws(E1) = Wu(E2) and Wu(E1) = Ws(E2).

3. Chaotic pitch motion. The Melnikov function

Let us consider the perturbed system. Now the sta-
ble and unstable manifolds are not forced to coincide
and it is possible that they intersect transversally lead-
ing to an infinite number of new heteroclinic points.
Then, a heteroclinic tangle is generated. In this case,
because of the perturbation, the pitch motion of the
spacecraft, near the unperturbed separatrices, becomes
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extremely complicated and chaotic, in the sense that
the system exhibits Smale’s horseshoes and a stochas-
tic layer appears. Inside this chaotic layer small iso-
lated regions of regular motion with periodic orbits
can also appear.

The existence of heteroclinic intersections may
be proved, at first order, by means of the Melnikov
method [31]. In order to apply the Melnikov method,
Eq. (6) is written in a more convenient form. Let us
define a new parameter �̂ = �/	, in order to consider
	 as the only one small parameter of our system. In
this way, Eq. (6) can be expressed as the following
system of two differential equations of first order:

�̇ = � = f1 + g1,

�̇ = − K sin � cos �

− 	[sin � cos � cos(
�) + �̂�]
= f2 + g2, (11)

where g1 = 0 and g2 = −	[sin � cos � cos(
�) + �̂�].
The Melnikov function, M±(�0), for system (11) is

given by

M±(�0)

=
∫ ∞

−∞
�f [�z±(�)] ∧ �g[�z±(�), � + �0] d�

=
∫ ∞

−∞
{f1[�z±(�)] g2[�z±(�), � + �0]

− f2[�z±(�)]g1[�z±(�), � + �0]} d�

=
∫ ∞

−∞
f1[�z±(�)] g2[�z±(�), � + �0] d�

= −	
∫ ∞

−∞
�±(�){sin[�±(�)]

× cos[�±(�)] cos[
(� + �0)]
+ �̂�±(�)} d�, (12)

where �z±(�) = (�±(�), �±(�)) are precisely the solu-
tions of the unperturbed heteroclinic orbits (10).

The Melnikov function M±(�0) give us a measure
of the distance between the stable and unstable mani-
folds of the perturbed hyperbolic fixed points. Thus, if
M±(�0)=0 there are transverse intersections between
the stable and unstable trajectories.

Now, by substitution of Eqs. (10) into (12) we ob-
tain, for the positive branch of the Melnikov function,

M(�0) = M1 + M2

= − 	
√

K

∫ ∞

−∞
sech2(

√
K�)

× tanh(
√

K�) cos[
(� + �0)] d�

− 	�̂K

∫ ∞

−∞
sech2(

√
K�) d�, (13)

being M1 and M2 the Melnikov functions correspond-
ing to both perturbations: the time-dependent moment
of inertia and the aerodynamic viscous drag, respec-
tively.

To compute the first term M1(�0) the Cauchy’s
residue theorem can be used. However, after integrat-
ing by parts we arrive at an integral that is tabulated
in [32]. In this way, we obtain

M1(�0) = �	
2

2K
cosech

(
�


2
√

K

)
sin(
�0)

= M1 max sin(
�0), (14)

where M1 max represent a good measure of the max-
imum splitting of the stable and unstable manifolds
when the spacecraft is only under the action of the first
perturbation: the time-dependent moment of inertia.

The second integral M2 yields directly

M2 = − 	�̂K

∫ ∞

−∞
sech2(

√
K�) d�

= − 2	�̂
√

K . (15)

Thus, the complete Melnikov function M(�0) results
in

M(�0) = M1 + M2

= 	

[
�
2

2K
cosech

(
�


2
√

K

)

× sin(
�0) − 2�̂
√

K

]
. (16)

It is important to note that Eq. (16) give us an analytical
criterion for heteroclinic chaos in terms of the system
parameters. Indeed, from (16) it is easy to derive that
the Melnikov function M(�0) has simple zeros for

�̂ < �̂c = �
2

4
√

K3
cosech

(
�


2
√

K

)
. (17)
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Fig. 4. Three-dimensional plot of the critical value �c versus the
amplitude 	 and the frequency 
 for K = 1.

Thus, for �̂ < �̂c the perturbations produce heteroclinic
intersections between the stable and unstable mani-
folds of the hyperbolic equilibria E1 and E2, and there-
fore chaotic behavior near the unperturbed separatrix.
On the other hand, for �̂ > �̂c, the Melnikov function
M(�0) is bounded away from zero, and hence there
are no heteroclinic intersections and no chaos in the
pitch motion of the perturbed spacecraft.

Taking into account that �̂ = �/	, the analytical cri-
terion (17) for chaotic behavior can be expressed in
terms of �, 	 and 
 as

� < �c = �	
2

4
√

K3
cosech

(
�


2
√

K

)
. (18)

It is worth to note that the critical value �c is directly
proportional to the maximum width of the stochastic
layer M1 max in the absence of external viscous drag,
see (14). In this way, �c can be written as

�c = 1

2
√

K
M1 max.

This fact proves that the wider the layer a stronger drag
is necessary to eliminate the chaotic pitch motion.

In Fig. 4 we show a three-dimensional plot of the
critical value �c versus the parameters 	 and 
 for
K = 1. It can be observed, according to Eq. (18), that,
fixed the frequency 
, the critical value �c is a linear
function of the amplitude 	. On the other hand, keeping
	 constant and varying the frequency 
 we see that �c
grows, as a function of �, until it reaches a maximum

value and then decreases asymptotically to zero. In
fact, we can observe that �c goes to 0 as 
 → 0 or

 → ∞, that is to say, this two limit cases are regular
limits for the pitch motion of the perturbed spacecraft.

4. Numerical analyses

In order to check the validity of the analytical cri-
terion given by (18), several numerical techniques
are used. They are based on the numerical integra-
tion of the equations of motion (11) by means of a
Runge–Kutta algorithm of fifth order with fixed step
[33].

Firstly, we have analyzed the evolution of the dy-
namical behavior of the spacecraft as the system pa-
rameters vary, studying the time histories of the an-
gle �, the Poincaré surfaces of section and the power
spectra of several trajectories. To this end, we have
used appropriate algorithms [34,35] implemented with
the symbolic manipulator MATHEMATICA [36]. The
Poincaré surfaces of section consist of time sections
t = cte.(mod T ) of the three-dimensional (�, �, t) ex-
tended phase space.

Fig. 5 shows the numerical simulations of the same
trajectory with initial conditions close to the unper-
turbed separatrix (�o, �o) = (0, 0.999) for the un-
perturbed spacecraft (left column), and for the time-
dependent moment of inertia spacecraft (K=
=1, 	=
0.1) without drag (� = 0) (right column). In this fig-
ure, we can see clearly how the regular trajectory in
the unperturbed system becomes a chaotic one when
the greatest moment of inertia varies. This transforma-
tion is confirmed in the right column by the irregular
time evolution of pitch angle � (a) which turns into a
complex trajectory in the phase space (b) where oscil-
lations and tumbling rotations alternate in an irregular
order. The Poincaré map (c) also shows how this or-
bit lies mainly in the stochastic layer around the un-
perturbed separatrix. Finally, the broadly distributed
power spectrum (d) gives another sign of the chaotic
behavior of the orbit.

The effect of the viscous drag in the dynamical be-
havior of the spacecraft is shown in Fig. 6. This fig-
ure depicts the numerical simulations of the same tra-
jectory with initial conditions near the unperturbed
separatrix (�o, �o) = (−�/2, 0.001) for a small drag,
�=0.001 (left column), and for a bigger drag, �=0.01
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Fig. 5. Numerical simulation of the pitch motion for a single initial condition near the unperturbed separatrix (�o,�o) = (0, 0.999). Left
column: unperturbed spacecraft (K = 
 = 1, 	 = � = 0). Right column: spacecraft perturbed with time-dependent moment of inertia and
without drag (K = 
 = 1, 	 = 0.1, � = 0). (a) Time evolution of angle �. (b) Trajectory in the phase space. (c) Poincaré surface of section.
(d) Power spectrum.

(right column), keeping constant the rest of the sys-
tem parameters, K =
=1, 	=0.1. It can be observed
that for small drag, trajectories starting close to the

unperturbed separatrix exhibit an initial long transient
chaotic regime and then a slow decay to an attract-
ing fixed equilibrium, (0, 0) or (±�, 0). That transient
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Fig. 6. Numerical simulation of the pitch motion of the spacecraft under both perturbations (K = 
 = 1, 	 = 0.1, � �= 0) for a single initial
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chaotic regime generates the corresponding transient
stochastic layer in the Poincaré surface of section (c)
and the broadly distributed power spectrum (d). Nev-

ertheless, the bigger the drag the shorter the transient
chaotic regime. In this way, for big drags, the trajec-
tory becomes a regular one decaying to an attracting
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fixed point. It is confirmed by the disappearance of the
stochastic layer in the phase space (c) and the simple
neat peaked power spectrum (d).

Therefore, for fixed parameters K, 
, and 	, the dy-
namical behavior of the spacecraft near the unper-
turbed separatrix suffers a transition from a chaotic
regime to a regular one, when the viscous drag param-
eter � is increased. This transition from chaos to order
is in a qualitative good agreement with the analytical
criterion (18) obtained from the Melnikov method in
the previous section.

In order to check in a quantitative way the validity
of the analytical criterion (18) we focus on the evolu-
tion of the stable Ws(Ei) and unstable Wu(Ei) man-
ifolds associated to the saddle fixed points E1, E2 of
the Poincaré map as a function of the drag param-
eter �. We have numerically calculated the invariant
manifolds with the commercial software DYNAMICS
[37]. Fixing the parameters K =
=1, 	=0.1 Eq. (18)
gives a critical drag parameter �c ≈ 0.0341285. Now,
we tune � from values less than �c to greater ones
(see Fig. 7). It can be observed clearly that, for � < �c
(�=0.03), the stable and unstable manifolds transver-
sally intersect each other (7(a)). However, when � > �c
(� = 0.04), the invariant manifolds do not intersect
(7(c)). Finally, Fig. 7(b) shows just the situation for
the critical value �c, where it can be seen the tangency
of the stable and unstable manifolds. This description,
based on numerical simulations for concrete parame-
ter values, is in very good agreement with the analyt-
ical criterion (18) provided by the Melnikov method.

Both numerical and analytical studies show, with
very good agreement, the existence of transient chaotic
behavior for given values of the parameters K, 	 and

 despite of � < �c. This chaotic behavior is not only
reflected in the existence of irregular oscillations and
tumbling rotations alternated in a random way near the
unperturbed separatrix. The chaotic dynamical feature
of the system is also reflected, as we will see, in a very
random asymptotic behavior. As it is well known, the
main contribution of the viscous drag in a dynamical
system is opposing the motion of the system. So, it is
expected that it does not matter the initial conditions
are, the oscillations and rotations of the pitch motion
will decay, and the final state of the spacecraft will be
with a constant pitch angle � = 0 or � = �. That is to
say, the two fixed equilibria located at (�o, �o)=(0, 0)

or (�, 0) are two sinks for the system. However, not

all trajectories will end in an equilibrium position;
some periodic orbits of period T =2�n/
, n ∈ N, will
survive for perturbations small enough [38].

We focus on the geometry of attraction basins of the
two sinks depending on the parameters of the space-
craft. In this way, for given values of K, 	 and 
, we
tune � from the chaotic regime (� < �c) to the reg-
ular one (�> �c) with the aim to detect changes in
the geometrical structure of the basins. To this end, a
two-dimensional grid of initial conditions (�, �) with
steps of 0.02, has been considered. The trajectories
corresponding to each one of these initial conditions
have been numerically integrated in order to know its
w-limit point. This grid is transformed into a binary
matrix depending on the corresponding w-limit point
of each initial conditions. The resulting matrix is sub-
mitted as input to the commercial software TRANS-
FORM [39] which produces the pictures in Fig. 8 by
assigning the same colors (black or white) to the same
values of the matrix.

Fig. 8 shows how the basins look like as � varies
from the chaotic regime to the regular one. We note
that for regular behavior the two attraction basins are
well defined and separated by smooth curves in phase
plane. Thus, given an initial condition, it is possible to
decide the w-limit point of the trajectory through it,
that is, the final state of the spacecraft. On the contrary,
for chaotic behavior the attraction basins are no longer
well defined and we find areas where the two basins
merge. These mixing areas are bigger as the chaotic
behavior increases, that is, for small values of �.

Note that the basins are mainly destroyed outside
the separatrix while inside it two well-defined basins
remain. This fact is owing to the different nature of the
trajectories inside and outside of the separatrix. Inside
orbits are not affected by heteroclinic chaos except
those orbits that initially lie on the stochastic layer. On
the other hand, outside trajectories necessarily have
to cross this stochastic layer to reach one of the two
attractors. So, the longer the time the trajectory spends
in chaotic regime (surrounding the separatrix inside
the stochastic layer) the more the uncertainty to know
the final state. Thus, for small values of � the points
of the attraction basin of each of the two sinks are
distributed at random outside the separatrix as well
along the stochastic layer, as it can be seen in Fig. 8(a)
and (b). We also note that the figures are symmetric
with respect to the origin. This is a consequence of the
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discrete symmetry of Eq. (11). Indeed, if (�(�), �(�))
is a solution, (−�(�), −�(�)) is also a solution with
the same asymptotic behavior.

As we mentioned above, not all initial conditions
correspond to trajectories decaying to the w-limit
points (0, 0) or (�, 0). In fact, for certain parameter
values there are some few initial conditions that cor-
respond to non-decaying periodic pitch motions of
oscillation or tumbling rotation. Some of this special
initial conditions can be hardly seen depicted in gray
in Fig. 8(c) for � = 0.02. They are close to the 2�n/

periodic orbits of the unperturbed problem.

Fig. 9 shows the time history, trajectory, Poincaré
surface of section and power spectrum of one of these
periodic pitch motions with initial condition (�o, �o)=
(−1.38159, 0.1) for the parameter values (K = 
 =
1, 	 = 0.1, � = 0.02). In Fig. 9(c) and (d) may be ob-
served that the frequency � = 0.5 of this periodic tra-
jectory is half of the frequency 
 = 1 of the time-
dependent perturbation. Fig. 9(b) also shows, plotted
in dashed line, the periodic trajectory of frequency
� = 0.5 corresponding to the unperturbed problem. It
can be seen that both trajectories almost coincide and
therefore, this particular periodic pitch oscillation is
practically not affected by the perturbations.

At first, the existence of these periodic pitch mo-
tions under a viscous drag may seem paradoxical, as
the drag produces a dissipation of the energy. Nev-
ertheless, the other perturbation on the spacecraft,
the time-periodic moment of inertia, may work as a
source of energy, depending on the frequency of the
perturbation and the natural frequency of the oscilla-
tion or rotation of the unperturbed pitch motion. This
source of energy is due to the extra gravity gradient
torque resulting from the variation of the moment of
inertia. In this way, those periodic pitch motions, as
the one shown in Fig. 9, that persist under the viscous
drag, are determined by a balance between the energy
added by the time-dependent moment of inertia pertur-
bation and the energy dissipated by the viscous drag.
The phenomenon of the existence of periodic motions
under viscous drag also appears in the well-known
problem of the driven damped simple pendulum
[40].

5. Conclusions

The pitch motion dynamics of an asymmetric space-
craft in circular orbit subject to a gravity gradient
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torque has been studied. The system is perturbed by
an aerodynamic viscous drag and a time-dependent
periodic moment of inertia.

We have established the existence of transient het-
eroclinic chaos by means of the Melnikov method.
Moreover, this method has provided an analytical cri-
terion for the existence of chaotic behavior in terms
of the system parameters. We have found a transition
from chaotic to regular regime in the pitch motion
of the spacecraft, as the heteroclinic chaos can be re-
moved by increasing the viscous drag.

In addition, we have also investigated numeri-
cally the pitch motion dynamics by using several
tools based on computer simulations, including time
history, Poincaré map, power spectrum and attrac-
tion basins. In these numerical studies, we have
found the persistency of some non-decaying peri-
odic pitch motions in the perturbed system. This
persistency may be explained as a consequence of a
balance between the addition and dissipation of en-
ergy produced by both perturbations. The analytical
results given by the Melnikov method have been con-
firmed with very good agreement by this numerical
research.
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