
International Journal of Bifurcation and Chaos, Vol. 8, No. 3 (1998) 609–617
c© World Scientific Publishing Company

SPIN ROTOR STABILIZATION OF A
DUAL-SPIN SPACECRAFT WITH

TIME DEPENDENT MOMENTS OF INERTIA

V. LANCHARES
Departamento de Matemáticas y Computación,
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We consider a dual-spin deformable spacecraft, in the sense that one of the moments of inertia
is a periodic function of time such that the center of mass is not altered. In the absence of
external torques and spin rotors, by means of the Melnikov’s method we prove that the body
motion is chaotic. Stabilization is obtained by means of a spinning rotor about one of the
principal axes of inertia.

1. Introduction

A dual spin spacecraft, also called a gyrostat, is
a mechanical system S composed by many bod-
ies; a rigid body P, called platform or core body,
and other axisymmetric bodies R, called rotors or
wheels, in such a way that the motion of the ro-
tors does not modify the distribution of masses of
the spacecraft. We will assume that the rotors are
aligned with the principal axes of the platform and
there are no external torques. This problem is an
integrable case, and its solution, in the case of one
rotor, is given in terms of elliptic functions (see
e.g. [Ruminatsev, 1961; Cochran et al., 1982]).

The dynamics of the gyrostat has been re-
cently the object of interest in Astrodynamics,
and it is used for controlling the attitude dy-
namics of spacecraft and for stabilizing their
rotations [Hubert, 1980; Hall & Rand, 1994;
Tsiotras & Longuski, 1994]. Other authors
have used the Melnikov method to point out
the chaotic behavior of a gyrostat under sev-
eral kinds of perturbations. Holmes and Mars-
den [1983] consider certain asymmetry in the rotor,

Koiller [1984] deals with an attachment with small
imperfections and, recently, Tong et al. [1995] treat
the gyrostat in the uniform gravity field. These
studies are based on the premise that the rotat-
ing body can be considered to be perfectly rigid.
Unfortunately, the rigid body is only a convenient
approach to simplify the analysis. However, all real
materials are elastic and deformable to some degree.

This fact has moved us to focus our attention
on the dynamics of a deformable dual-spin space-
craft in the absence of external torques. Here, de-
formable means that one of the moments of inertia
of the platform is a periodic function of time and
that the center of mass of the spacecraft is not mod-
ified. This is a more realistic approximation to the
attitude motion of a spacecraft but not exempt of
considerable simplifications.

The problem is treated in noncanonical vari-
ables, the components of the angular momentum
in the body frame. This treatment has the ad-
vantage that phase space reduces to a constant ra-
dius sphere and the phase flow is easily interpreted
[Hubert, 1980]. In this set of variables the un-
perturbed system matches with several interesting
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problems in nuclear and atomic physics [Elipe &
Ferrer, 1994] and in optical problems [David et al.,
1990] and as it was demonstrated by Elipe [1996]
the gyrostat model reduces to a generic quadratic
Hamiltonian in a set of variables on the unit sphere.
This kind of Hamiltonians has been widely studied
in order to determine their equilibria, bifurcations
and phase flow evolution [Lanchares & Elipe, 1995;
Lanchares & Elipe, 1995; Lanchares et al., 1995].

We demonstrate that in the absence of spin-
ning rotors the system shows chaotic behavior in the
sense that it exhibits Smale’s horseshoes. We prove
this statement by means of the Melnikov method
(see e.g. [Ozorio de Almeida, 1990]). The presence
of chaos may be viewed as a stochastic layer sur-
rounding the unperturbed separatrix in a Poincaré
surface of section.

The knowledge of the phase flow structure for
the unperturbed system allows us to conjecture that
the chaotic motion can be eliminated by means of a
spinning rotor about one of the principal axes. The
process of stabilization is well observed through a
sequence of Poincaré surfaces of section for increas-
ing values of the relative momentum of the rotor.

2. Hamiltonian and Equations
of Motion

Let us consider a gyrostat, consisting of an asym-
metric core body and three axisymmetric rotors
aligned with the principal axis of the platform. Let
us assume that the gyrostat has a fixed point O,
identified with the center of mass of the gyrostat.
Centered on it we will consider two orthonormal
reference frames

— S, the space frame Os1s2s3 fixed in space.

— B, the body frame Ob1b2b3 fixed in the

platform.

The well known relations between the two reference
frames result by means of three rotations involving
the Euler angles (ψ, θ, φ) (see Fig. 1).

The total kinetic energy of the gyrostat (see
e.g. [Tong et al., 1995; Elipe, 1996; Elipe et al.,
1997]) is given by

T = TP + TR1 + TR2 + TR3

=
1

2
ω · IP ω +

1

2
ω1 · IR1 ω1

+
1

2
ω2 · IR2 ω2 +

1

2
ω3 · IR3 ω3 (1)

Fig. 1. Asymmetric gyrostat with three attached rotors.

where ω = (ωx, ωy, ωz), ω1 = (ωx + Ωx, ωy, ωz),
ω2 = (ωx, ωy + Ωy, ωz), ω3 = (ωx, ωy, ωz + Ωz);
ωx, ωy, ωz are the components of the angular ve-
locity ω of the gyrostat in the body fixed refer-
ence frame; Ωx, Ωy, Ωz are the relative spin speeds
of the rotors with respect to the platform. IP =
diag (A0, B0, C0), IR1 = diag (A1, B1, B1), IR2 =
diag (A2, B2, A2), IR3 = diag (A3, A3, C3) are the
tensor of inertia of the platform and the rotors, re-
spectively. Denoting by A = A0 + A1 + A2 + A3,
B = B0 + B1 + B2 + A3, C = C0 + B1 + A2 + C3

we obtain for the kinetic energy

T =
1

2
(Aω2

x +Bω2
y + Cω2

z) +A1ωxΩx +B2ωyΩy

+C3ωzΩz +
1

2
(A1Ω

2
x +B2Ω

2
y + C3Ω

2
z) . (2)

We will assume that the relative angular momenta
hx = A1Ωx, hy = B2Ωy, hz = C3Ωz are constant.

The total angular momentum G of the gyrostat
is given by

G = GP + GR1 + GR2 + GR3 ,

where, expressed in the body frame

GP = IPω, GR1 = IR1ω1 ,

GR2 = IR2ω2, GR3 = IR3ω3 .

Using the orthogonal basis (b1, b2, b3) in the body
frame we have

G = IGω + hxb1 + hyb2 + hzb3 ,
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where IG = diag(A, B, C) is the tensor of inertia of
the whole gyrostat. Hence, the components of G in
the body frame are

g1 = Aωx + hx ,

g2 = Bωy + hy ,

g3 = Cωz + hz

and, by inversion,

ωx =
g1
A
− hx
A
,

ωy =
g2
B
− hy
B
,

ωz =
g3
C
− hz
C
.

The total kinetic energy, in terms of the com-
ponents of the total angular momentum, takes the
form

T =
1

2

(
g2
1

A
+
g2
2

B
+
g2
3

C

)
− 1

2

(
h2
x

A
+
h2
y

B
+
h2
z

C

)

+
1

2

(
h2
x

A1
+
h2
y

B2
+
h2
z

C3

)
.

The components of the total angular momentum
can, also, be expressed in terms of the Euler angles
(ψ, θ, φ) and the Euler angle velocities (ψ̇, θ̇, φ̇)
as 

g1 = A(ψ̇ sin θ sinφ+ θ̇ cosφ) + hx ,

g2 = B(ψ̇ sin θ cosφ− θ̇ sinφ) + hy ,

g3 = C(ψ̇ cos θ + φ̇) + hz .

(3)

As we consider a gyrostat in free rotation (V = 0),
the Lagrangian L of the system is

L = T − V = T ,

that depends on (ψ, θ, φ, ψ̇, θ̇, φ̇) through g1, g2
and g3 by (3).

The momenta conjugate of the Euler angles are
defined by

pψ =
∂L
∂ψ̇

= g1 sin θ sinφ

+ g2 sin θ cosφ+ g3 cos θ ,

pθ =
∂L
∂θ̇

= g1 cosφ− g2 sinφ ,

pφ =
∂L
∂φ̇

= g3

and, by inversion we obtain

g1 =

(
pψ − pφ cos θ

sin θ

)
sinφ+ pθ cosφ ,

g2 =

(
pψ − pφ cos θ

sin θ

)
cosφ− pθ sinφ ,

g3 = pφ .

The Hamiltonian H of the system is given by the
Legendre transformation

H = pψψ̇ + pθθ̇ + pφφ̇−L ,

and we obtain

H=
1

2

(
g2
1

A
+
g2
2

B
+
g2
3

C

)
−
(
g1hx
A

+
g2hy
B

+
g3hz
C

)

+
1

2

(
h2
x

A
+
h2
y

B
+
h2
z

C

)
− 1

2

(
h2
x

A1
+
h2
y

B2
+
h2
z

C3

)
.

Since the relative angular momenta hi are sup-
posed to be constant, the Hamiltonian becomes,
after dropping constant terms,

H =
1

2

(
g2
1

A
+
g2
2

B
+
g2
3

C

)
−
(
g1hx
A

+
g2hy
B

+
g3hz
C

)
.

(4)

The Hamiltonian (4) is invariant under the group
SO(2) of rotations R(φ, s3) about the space axis
s3, since the angle φ is ignorable in H as it can
be checked replacing Eqs. (3) into Eq. (4). Be-
sides, the problem also is invariant under the group
SO(3) of rotations about the origin O. Indeed, it
is easy to derive from (3) that the Poisson brackets
satisfy

{g1; g2} = −g3, {g2; g3} = −g1 ,
{g3; g1} = −g2 .

(5)

These structural identities yield the Eulerian equa-
tions of the motion

ġ1 = {g1;H} = (a3 − a2)g2g3

+ a2hyg3 − a3hzg2 ,

ġ2 = {g2;H} = (a1 − a3)g1g3

+ a3hzg1 − a1hxg3 ,

ġ3 = {g3;H} = (a2 − a1)g1g2

+ a1hxg2 − a2hyg1,

(6)
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where a1 = 1/A, a2 = 1/B and a3 = 1/C; we will
assume, from here on, that a1 < a2 < a3.

The system (6) admits two integrals, the Hamil-
tonian H and the norm of the total angular momen-
tum since

g1ġ1 + g2ġ2 + g3ġ3 = 0

and the problem is, therefore, integrable. The phase
space of (6) may be regarded as a foliation of invari-
ant manifolds

S2(G) = {(g1, g2, g3) | g2
1 + g2

2 + g2
3 = G2} .

3. Chaotic Motion

We now suppose that the inverse of the maximum
moment of inertia is the periodic function of time

a1 = a10 + ε cos νt .

In the absence of spinning rotors the problem re-
duces to the Hamiltonian

H = H0 + εV (g1, g2, g3; t) , (7)

where the unperturbed term H0 is that of a rigid
body in free rotation

H0 =
1

2
(a10g

2
1 + a2g

2
2 + a3g

2
3)

and V is the periodic function of time

V =
1

2
g2
1 cos νt

with period T = 2π/ν.
For the unperturbed term there are two un-

stable equilibria located at the intersections of the
s2 axis with the sphere S2(G). They are con-
nected by four heteroclinic orbits as plotted in
Fig. 2. We may expect that under the perturba-
tion, the motion near the unperturbed separatrix
behaves in an extremely complicated way in such a
way that transverse heteroclinic (homoclinic) orbits

Fig. 2. The phase flow on an integral manifold for the rigid
body in free rotation.

may appear and chaotic motion occurs. Since the
unperturbed system has one degree of freedom, we
can use the Melnikov method (see e.g. [Ozorio de
Almeida, 1990]) to prove the existence of hetero-
clinic (homoclinic) points in the Poincaré map of
the perturbed problem.

The Melnikov function for the Hamiltonian (7)
is given by

M(t0) =

∫ ∞
−∞
{H0(gi(t− t0)); εV (gi(t− t0), t)} dt .

The Poisson bracket {H0; εV } can be evaluated tak-
ing into account the structural identities (5) and we
obtain

{H0; εV } = (a2 − a3)εg1g2g3 cos νt .

The Melnikov function results

M(t0) =

∫ ∞
−∞

(a2 − a3)εg1g2g3 cos νt dt . (8)

The solutions of the heteroclinic orbits for the un-
perturbed problem are (see e.g. [Deprit & Elipe,
1993])



g1 = (−1)[(k−1)/2] G

√
a2 − a3

a10 − a3
sech(n2t) ,

g2 = (−1)k−1G tanh(n2t) ,

g3 = (−1)[k/2]G

√
a10 − a2

a10 − a3
sech(n2t)

k = 1, 2, 3, 4 . (9)
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Fig. 3. Poincaré surface of section for a10 = 0.1, a2 = 0.2,
a3 = 0.3, G = 1, ε = 0.005 and ν = 0.1.

where

n2 =
√

(a10 − a2)(a2 − a3) (10)

and [b] stands for the integer part of b.
By substitution of (9) into (8) we obtain

M(t0) = εG3 (a2 − a3)n2

(a10 − a3)

×
∫ ∞
−∞

sinhn2(t− t0)
cosh3 n2(t− t0)

cos νt dt .

Integrating by parts and using the table of integrals
by Gradshteyn and Ryzhik [1980, p. 505] it results

M(t0) =
(a2 − a3)G

3πεν2

2(a10 − a3)n
2
2 sinh

πν

2n2

sin νt0 . (11)

We can conclude from (11) that the function M(t0)
has simple zeroes and therefore the perturbation
gives rise to chaotic motion in the sense that the
system has Smale’s horseshoes. Note that a formula
similar to (11) would have been obtained if anyone
of the moments of inertia (i.e. not necessarily the
maximum moment of inertia) varies with time.

The chaotic behavior of the body is observed by
means of a Poincaré surface of section. The surface
consists of time sections of the fourth-dimensional
(g1, g2, g3, t) extended phase space. Figure 3 shows
the presence of a stochastic layer around the unper-
turbed separatrix.

4. Spin Rotor Stabilization

Let us introduce, now, a spin rotor in the s3 axis
with relative angular momentum hz. The Hamilto-

nian of the problem becomes

H =
1

2
(a10g

2
1 + a2g

2
2 + a3g

2
3)

− a3hzg3 +
1

2
εg2

1 cos νt . (12)

The unperturbed part of (12) is

H0 =
1

2
(a10g

2
1 + a2g

2
2 + a3g

2
3)− a3hzg3 . (13)

After suitable transformations the unperturbed
Hamiltonian may be reduced to

H′0 =
1

2
(g2

3 + Pg2
1)−Qg3 , (14)

where P = (a10−a2)/(a3−a2) and Q = a3hz/(a3−
a2). This type of Hamiltonian has been studied by
Lanchares and Elipe [1995] and the equilibria so-
lutions and the phase flow evolution are known in
terms of the parameters P and Q. Since we are
assuming a10 < a2 < a3, the parameter P is a neg-
ative constant quantity for fixed values of a10, a2

and a3. Therefore, the unperturbed Hamiltonian
depends on the parameter Q, that is, on hz.

Let us recall the division of the parameter space
for the biparametric quadratic Hamiltonian (14),
as well as the equilibria solutions (see Table 1 and
Fig. 4). It is observed that for negative P the ef-
fect of increasing hz is a transition from region 6 to
4 and 2. At the same time this transition takes
place, two pitchfork bifurcations occur when the
boundaries between regions 6 and 4 first and 4 and

Fig. 4. Partition of the parametric plane PQ for the un-
perturbed Hamiltonian corresponding to one spinning rotor
about the b3 axis.
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Table 1. Equilibria points, their existence and stability for the biparametric quadratic
Hamiltonian H′0 = 1/2g2

3 + 1/2Pg2
1 −Qg3.

Equilibrium point Existence Stable
in coordinates (g1, g2, g3)

(0, 0, G) Always (G−Q)[(1− P )G−Q] > 0

(0, 0, −G) Always (Q+G)[(1− P )G+Q] > 0(
±
√
G2 − Q2

(1− P )2
, 0,

Q

1− P

)
|Q| ≤ |P − 1|G P

(P − 1)2G2 −Q2

P − 1
> 0(

0, ±
√
G2 −Q2, Q

)
|Q| ≤ G (G2 −Q2)P > 0

2 second are crossed. Once in region 2, only two
equilibria exist and no separatrix exists in phase
space.

Our task, now, is to compute the Melnikov
function as hz increases. It is clear that two sit-
uations have to be considered: one for the region
6 and the other for region 4. For the sake of sim-
plicity (we do not want to perform excessive calcu-
lations) we will compute the Melnikov function in
region 4 in order to investigate what happens when
the region 2 is reached, that is, when the separatrix
disappears.

To calculate the Melnikov function we need the
solutions for g1, g2 and g3 at the separatrix in region
4. Since the modulus of the angular momentum
is constant the Hamiltonian (13) may be written
as

H0 =
1

2
(a10−a2)g

2
1+

1

2
(a3−a2)g

2
3−a3hzg3+

1

2
a2G

2 .

From the last equation we obtain

g2
1 =

1

a2 − a10
(a2G

2− 2H0 +(a3− a2)g
2
3 − 2a3hzg3)

(15)

and finally

g2
2 = G2 − g2

1 − g2
3 =

1

a2 − a10
(2H0 − a10G

2

−(a3 − a10)g
2
3 + 2a3hzg3) .

(16)

If we consider a value of hz such that

a3hz
a3 − a10

< G <
a3hz
a3 − a2

,

that is, when we are in region 4, the homoclinic
orbits stand for the energy value

H0 =
1

2
a3G

2 − a3Ghz .

Substitution of this value into Eqs. (15) and (16)
yields

g2
1 =

1

a2 − a10
(G− g3)[2a3hz − (a3 − a2)(g3 +G)] ,

g2
2 =

1

a2 − a10
(G− g3)[(a3 − a10)(g3 +G)− 2a3hz ] .

Now, from the third differential equation of (6) it
results

ġ3 = (G− g3)
√

[2a3hz − (a3 − a2)(g3 +G)][(a3 − a10)(g3 +G)− 2a3hz ] .

This equation may be written as

ġ3 = α(G− g3)
√

(g3 − r1)(r2 − g3) (17)

where

α =
√

(a3 − a10)(a3 − a2), r1 =
2a3hz
a3 − a10

−G,

r2 =
2a3hz
a3 − a2

−G.

Let

z =
1

G− g3
then, we may write Eq. (17) as

αdt =
dz√

[z(G− r1)− 1][z(r2 −G) + 1]
. (18)
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By introduction of the new quantities

M = (G− r1)(r2 −G) , N = 2G− r1 − r2 ,

L2 =
4M +N2

4M2
,

Eq. (18) is transformed into

αdt =
dz

√
M

√(
z +

N

2M

)2

− L2

.

and then

α
√
Mt = argch

z +
N

2M
L

.

Finally, we obtain for g3 the following expression

g3 = G− 1

L cosh
(
α
√
Mt
)
− N

2M

. (19)

By means of Eqs. (15) and (16) it results

g2
1 =

a3hz

2[(a3 − a10)G− a3hz]

1 + cosh(α
√
Mt)(

L cosh(α
√
Mt)− N

2M

)2

g2
2 =

a3hz

2[a3hz − (a3 − a2)G]

cosh(α
√
Mt)− 1[

L cosh(α
√
Mt)− N

2M

]2 .
(20)

The Poisson bracket {H0; εV } can be evaluated tak-
ing into account the structural identities (5) and we
obtain

{H0; εV } = [(a2 − a3)g1g2g3 + a3hzg1g2]ε cos νt .

Now, we can construct the Melnikov function from
the results above as

M(t0) =

∫ +∞

−∞
[(a2 − a3)g1g2g3

+ a3hzg1g2]ε cos ν(t− t0) dt

and the substitution of g1, g2 and g3 for their values at the separatrix yields

M(t0) = ε(a3 − a2)K cos νt0

∫ +∞

−∞

sinh
(
α
√
Mt
)

cos νt[
L cosh

(
α
√
Mt
)
− N

2M

]3 dt

+ ε(a3 − a2)K sin νt0

∫ +∞

−∞

sinh
(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]3 dt

+(a3hz − (a3 − a2)G)εK cos νt0

∫ +∞

−∞

sinh
(
α
√
Mt
)

cos νt[
L cosh

(
α
√
Mt
)
− N

2M

]2 dt

+(a3hz − (a3 − a2)G)εK sin νt0

∫ +∞

−∞

sinh
(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]2 dt

(21)

where

K =
a3hz

2
√

[(a3 − a10)G− a3hz][a3hz − (a3 − a2)G]
.

Since sin vt, sinhα
√
Mt are odd functions as well as cos vt, coshα

√
Mt are even functions, the first and

third terms in (21) vanish after integration. Thus

M(t0)=εK sin νt0

(a3−a2)

∫ +∞

−∞

sinh
(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]3 dt+(a3hz−(a3 − a2)G)

∫ +∞

−∞

sinh
(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]2 dt
 .

(22)
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Fig. 5. Evolution of the Poincaré surfaces of section for a10 = 0.1, a2 = 0.2, a3 = 0.3, G = 1, ε = 0.005 and ν = 0.1 for
increasing values of hz.

The two expressions

sinh
(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]3

and
sinh

(
α
√
Mt
)

sin νt[
L cosh

(
α
√
Mt
)
− N

2M

]2

are zero for t = 0 and decay exponentially as
t −→ +∞. Since L > N/(2M) the two expressions
above are larger than zero and, hence, for small val-
ues of the frequency ν, the two integrals in (22) are
nonzero. Thus, we can conclude that the Melnikov
function (22) has simple zeroes and chaotic motion
can take place.

Nevertheless, as hz −→ G(a3 − a10)/a3 the
Melnikov function tend to zero because both g1
and g2 tend to zero as can be observed taking
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limits in Eq. (20). This is a consequence of the
disappearance of the unperturbed separatrix for
hz = G(a3 − a10)/a3. Hence, chaotic motion can
be removed by increasing the relative angular mo-
mentum hz. In this way, we obtain stabilization
of the motion by means of increasing the spin of
the rotor about the s3 axis. The transition from
chaotic to stable motion may be observed through
a sequence of Poincaré surfaces of section for in-
creasing values of hz. From a starting value hz = 0
we get the plot depicted in Fig. 3. As hz increases
we observe, in Fig. 5, how the stochastic layer fol-
lows the evolution of the unperturbed separatrix.
Once the unperturbed separatrix has disappeared
no chaotic structures are observed in the Poincaré
sections.

5. Conclusions

We have shown that for a deformable spacecraft in
torque free rotation, chaotic motion can be removed
by means of a spinning rotor about one of the prin-
cipal axes of inertia. This is understood, in terms
of the unperturbed Hamiltonian, as a consequence
of the disappearance of the separatrix.
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