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Abstract. In the frame work of classical mechanics, we study the nonlinear dynamics of a single ion trapped
in a Penning trap perturbed by an electrostatic sextupolar perturbation. The perturbation is caused by a
deformation in the configuration of the electrodes. By using a Hamiltonian formulation, we obtain that the
system is governed by three parameters: the z-component of the canonical angular momentum Pφ – which
is a constant of the motion because the perturbation we assume is axial-symmetric –, the parameter δ that
determines the ratio between the axial and the cyclotron frequencies, and the parameter a which indicates
how far from the ideal design the electrodes are. We study the case Pφ = 0. By means of surfaces of section,
we show that the phase space structure is made of three fundamental families of orbits: arch, loop and box
orbits. The coexistence of these kinds of orbits depends on the parameter δ. The escape is also explained
on the basis of the shape of the potential energy surface as well as of the phase space structure.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 39.10.+j Atomic and molecular
beam sources and techniques – 52.25.Gj Fluctuation and chaos phenomena

1 Introduction

One of the most useful devices in atomic physics for trap-
ping charged particles is the Penning trap [1]. Because
charged particles can be confined in a Penning trap for
a long time, experiments have led, among other things,
to very precise spectroscopic measurements [2], Coulomb
crystal studies [3] and accurate atomic clocks [4]. More-
over, as Cirac and Zoller [5] introduced for the first time,
one of the most important applications of ion traps today
is in quantum computing. In this sense, experimentalists
are able to manipulate the quantum information stored
in an array of trapped ions by using laser pulses [6]. In
particular, the idea of Marzoli and Tombesi [7] of using
electrons as trapped particles for quantum computation
is very promising. For a general review of the state of the
art of ion trapping, we refer the reader to [8].

Besides the above cited features, Penning traps proved
to be a very useful theoretical and experimental tool for
studying nonlinear collective phenomena in classical and
quantum mechanics (see e.g. [9] and references therein).
When we are dealing with a perfect Penning trap, the mo-
tion of the non interacting trapped ions remains harmonic.
However, as it was studied by several authors [10–13], elec-
trostatic field perturbations may arise from imperfections
in the physical design of the electrodes as well as from
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misalignments in the experimental mounting. We can sep-
arate these perturbations in two groups: harmonic and an-
harmonic perturbations. In particular, the second group is
the most interesting because it leads to nonlinear motion.

A starting point to study the classical nonlinear dy-
namics of perturbed Penning traps is to consider a sin-
gle trapped ion. This possibility was also pointed out
by Bergeman for a single cooled atom trapped in a
Quadrupole Magnetostatic Trap [14]. As we will see in
the next section, a general theoretical study of the motion
of a single ion in a perturbed Penning trap is an almost
impossible task. Hence, in this paper we only consider
axially-symmetric perturbations of the three-dimensional
Penning trap, which is also axially-symmetric. In particu-
lar, we will treat the sextupolar perturbation and, follow-
ing previous works on perturbed Rydberg atoms under
external fields [15], the study is performed from a numer-
ical point of view by using Poincaré surfaces of section.

At this point, we remark that, although electrostatic
perturbations are usually undesirable, they may be experi-
mentally added by modifying the electrostatics of the trap.
Theoretical works along this line were done by Backhaus
et al. [16]. An alternative to these kinds of perturbed traps,
based on a combined Penning-Ioffe trap, has been recently
suggested [17].

The paper is organized as follows. Section 2 is devoted
to the posing of the problem. A general model for the
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nonlinear electrostatic imperfections is assumed. In order
to manage a two-degrees of freedom system, we assume
that only axial-symmetric electrostatic perturbations take
place. Moreover, among all the axial-symmetric nonlinear
terms appearing in the model, we only consider the axial-
symmetric sextupolar one. The corresponding Hamilto-
nian for a single ion is established, and the relevant param-
eters controlling the dynamics are determined. Section 3 is
dedicated to analyzing the effective potential energy sur-
face appearing in the Hamiltonian. From this study, we
can understand part of the dynamics. In Section 4, we
find the fundamental families of orbits that determine the
phase space structure by using Poincaré surfaces of sec-
tion. Special attention is paid to three points: the stability
of the fixed points appearing in the surfaces of section, the
bifurcation between them, and the ion escape mechanics.
Finally, in Section 5 we present a discussion of the results.

2 The perturbed Penning trap

The Penning trap provides three-dimensional trapping
by means of an axially-symmetric (“perfect”) quadrupole
electric field plus a static homogeneous magnetic field
along the z-direction. The perfect electric quadrupole po-
tential is achieved by means of a set of three electrodes.
These electrodes are infinite hyperboloids of revolution
whose equations are

ρ2

ρ2
0

− z2

z2
0

= ±1, ρ2 = x2 + y2. (1)

The minus sign in (1) stands for the electrode called the
ring, while the plus sign refers to the other two electrodes
called end-cap placed above and below the ring. The con-
stants ρ0 and z0 are, respectively, the inner radius of the
ring electrode and half the distance between the two end-
caps, and they are related through ρ2

0 = 2z2
0. A voltage U0

is applied to the end-cap electrodes with respect to the
ring. In this configuration, a single ion of mass m and
charge q is subjected to a electrostatic quadrupole poten-
tial given by

V (x, y, z) =
mw2

z

4q
(2z2 − x2 − y2), (2)

where wz = (4qU0/mR
2
0)1/2 is the axial frequency and

R2
0 = ρ2

0 + 2z2
0 is the physical dimension of the trap. We

assume the product qU0 to be always positive. The mag-
netic field B = Bẑ introduces the cyclotron frequency
wc = qB/m.

In this arrangement, the quadrupole potential acts as
a trap only in one dimension, along the axis between the
end-caps (we call this axis z), while the motion in the
radial plane (x−y-plane) is unstable. The presence of
the magnetic field along the z-axis provides trapping in
the radial plane. For a complete description of the Penning
trap configuration, see [11].

The Hamiltonian for a particle with the charge q and
mass m in these fields is

H =
1

2m
(P 2
x + P 2

y + P 2
z )− wc

2
(xPy − yPx)

+
m

8
(
w2

c − 2w2
z

) (
x2 + y2

)
+
m

2
w2
zz

2. (3)

From Hamiltonian (3) we get the trapping condition; that
is to say, the factor w2

c − 2w2
z must be positive in order

to obtain stable motion in the radial plane. Hereafter, we
assume this condition. The dynamics arising from this sys-
tem has been widely studied (see e.g. [13]), and its main
feature is the harmonicity of the motion.

From the classical dynamics point of view, if we de-
fine w2 = (w2

c − 2w2
z)/4, the Hamiltonian (3) repre-

sents a three-dimensional harmonic oscillator of frequen-
cies w:w:wz which is rotating around the z-axis with
constant angular velocity −wc/2. In particular, wz is an
“eigenfrequency” of the system and it governs the har-
monic oscillation of the ion along the z-axis. However, the
frequency w does not correspond to any of the two re-
maining eigenfrequencies of the system [13], the modified
cyclotron frequency w+ and the magnetron frequency w−.
The expressions of w± are

w± =
1
2

(wc ± 2w).

In this sense, the ion trajectory is periodic only when
the frequencies (w+, wz) become degenerate at wz =
(2/3)wc [13], which implies wc = 6w = (3/2)wz.

At this point, in order to clarify the role played by
the frequencies w and wz in the rest of the paper, we
express (3) in cylindrical coordinates (ρ, z, φ, Pρ, Pz, Pφ)
having

H =
1

2m
(P 2
ρ + P 2

z )− wc
2
Pφ +

P 2
φ

2mρ2
+
m

2
w2ρ2 +

m

2
w2
zz

2,

(4)

where Pφ is the conserved z-component of the canoni-
cal angular momentum. The corresponding six Hamilton
equations of the motion are

ρ̇ = Pρ, ż = Pz , φ̇ = −wc

2
+

Pφ
mρ2

,

Ṗρ = −
P 2
φ

mρ3
+ w2

cρ, Ṗz = w2
zz, Ṗφ = 0. (5)

Let us suppose now that w and wz are commensurable.
In this case, any solution ρ(t) and z(t) corresponds to a
periodic solution in the (ρ, z) plane – the meridian plane –.
However, although φ̇(t) will be also periodic with the same
period T , we have for the polar angle φ

φ(t) = −wc

2
t+

Pφ
m

∫ t

0

dt
ρ2

dt,

φ(t + T ) = φ(t) + constant.
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This angle indicates the position of the meridian plane,
and it can be considered as the sum of two angles: one in-
dicates the position of the ion in the orbit, and the other
indicates the precession of the orbital plane. The preces-
sion of the orbital plane always exists, and in general, its
frequency will not be resonant with the rotating frequency
of the ion in the orbit. In other words, the existence of a
periodic orbit in the plane (ρ, z) does not guarantee a pe-
riodic orbit in the three-dimensional space (x, y, z).

However, the precession of the orbital plane does not
affect the periodicity of ρ and z, and this feature will be
very useful to understand the dynamics when the ideal
trap is perturbed.

Electrostatic perturbations may arise from imperfec-
tions in the physical design of the electrodes as well as
from misalignments in the mounting. We model the elec-
trostatic imperfections by means of the multipole expan-
sion of the electrostatic potential [18]. This expansion, in
spherical coordinates (r, θ, φ), takes the form

V =
∑
l≥0

Vl, Vl =
l∑

k=0

al,k r
l Pkl (cos θ) cos(k φ), (6)

Pkl being the Legendre polynomials with 0 ≤ k ≤ l. The
first two terms are linear and give rise to constant forces.
The next one is the quadrupole term V2, which expressed
in Cartesian coordinates is

V2 =
1
2
a2,0(2z2 − x2 − y2)− 3a2,1xz + 3a2,2(x2 − y2),

(7)

where the first term on the right-hand corresponds to the
perfect quadrupole potential appearing in (2). Since all
terms in (7) are polynomials of second order, the motion
remains harmonic. All higher orders in (6) will introduce
nonlinearities in the motion.

In general, most of the terms in (6) can be made neg-
ligible by means of a careful design of the electrodes. For
example, in a typical real Penning trap, the electrodes can
be assumed to be cylindrically symmetric. Hence, all the
terms in (6) with k 6= 0 vanish and we can write (6) as

V = V2 + U0

∑
l=3

al

(
r

R0

)l
P0
l (cos θ), (8)

where we have dropped the constant term V0 and where V2

is the perfect quadrupole potential. With this model, the
electrostatic perturbations depend on the actual geometry
of the trap, because the coefficients al≥3 describe how far
from the ideal configuration the electrodes are.

In this work, we consider the contribution of the first
term in the expansion (8): the sextupolar term V3,

V3 = a3
U0

R3
0

(2z2 − 3x2 − 3y2)z. (9)

We remark that we can consider the presence of V3 not
only as an undesirable perturbation, but as a term we can
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Fig. 1. Experimental realization of the sextupolar perturbed
Penning trap. The dashed lines correspond to the electrodes in
the ideal quadrupole configuration, while solid lines correspond
to the electrodes deformed by the presence of a sextupolar
perturbation (a = 0.2).

intentionally introduce by means of a specific design of the
electrodes different from the ideal one.

At this point, we express the complete electrostatic
potential as

V =V2+V3 =
mw2

z

4q

[
2z2−x2−y2+

a3

R0

(
2z2−3x2−3y2

)
z

]
.

(10)

In Figure 1 a typical electrode configuration is shown when
a sextupolar contribution is added.

When the sextupolar perturbation is present, in cylin-
drical coordinates (ρ, z, φ, Pρ, Pz, Pφ), the Hamiltonian de-
scribing the system reads

H =
1

2m
(P 2
ρ + P 2

z )− wc

2
Pφ +

P 2
φ

2mρ2
+
m

8
(w2

c − 2w2
z)ρ2

+
m

2
w2
zz

2 + a3
m

4
w2
z

R3
0

(2z2 − 3ρ2)z. (11)

Because the system is invariant under rotations around
the z-axis (z-axially symmetric), Pφ is a constant of
the motion, and Hamiltonian (11) represents a two-
dimensional dynamical system. At a first glance, the
dynamics arising from (11) depends on the parameters
(m,wc, wz, Pφ, a, R0) as well as on the energy H. How-
ever, it is possible to reduce the number of parameters
by means of the following procedure. First, we define the
dimensionless time τ = wct and the dimensionless coordi-
nates ρ′ = ρ/R0, z′ = z/R0. After applying these trans-
formations to Hamiltonian (11) and after dropping primes
in variables to simplify the notation, we get the following
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Fig. 2. (a) Equipotential curves of U(ρ, z) and (b) potential energy surface U(ρ, z) for Pφ = 0. All figures for a = 0.2 and
δ = 0.5. Dimensionless units are used.

dimensionless Hamiltonian

H′= H
mR2

0w
2
c

=
1
2

(P 2
ρ + P 2

z )− 1
2
Pφ +

P 2
φ

2ρ2
+

1
8

(1− 2δ2)ρ2

+
1
2
δ2z2 +

1
4
aδ2(2z2 − 3ρ2)z,

(12)

where we have defined δ = wz/wc < 1/
√

2. Now the
trapping condition reads as δ < 1/

√
2. Hence, after this

transformation, the number of parameters is reduced to
(Pφ, δ, a) and the dimensionless energy H′ = E.

Note that the sextupolar term is controlled by two di-
mensionless parameters, on one side by a, that indicates
the physical deformation of the electrodes, and on the
other by δ, which modulates the effect of the deforma-
tion and determines the ratio between the axial and the
cyclotron frequencies, e.g. the ratio between the electro-
static and the magnetic interactions.

At this point, we simplify the study by considering
only the case Pφ = 0. This situation can be easily achieved
experimentally and is quite representative of the dynamics
for all Pφ. For Pφ = 0, the orbital plane (ρ, z) of the ion is
not only rotating with angular velocity −1/2, i.e. −wc/2
(see Eq. (5) for Pφ = 0), but its orientation is always
perpendicular to the x−y-plane. Taking this into account,
the motion of the ion in the rotating orbital plane (ρ, z)
is described by the Hamiltonian

H′ =
1
2

(P 2
ρ + P 2

z ) +
1
8

(1− 2δ2)ρ2 +
1
2
δ2z2

+
1
4
aδ2(2z2 − 3ρ2)z, (13)

that formally represents a two-dimensional (ρ, z) harmonic
oscillator of frequencies w = wc

√
1− 2δ2/2 – the radial

frequency – and wz = wcδ – the axial frequency –. From
the mathematical point of view, Hamiltonian (13) belongs
to the so-called Hénon-Heiles family [19].

3 The potential energy surface

In order to know how the sextupolar perturbation modifies
the perfect trapping, it is useful to study the shape of the
effective potential U(ρ, z) in (13),

U(ρ, z) =
1
8

(1− 2δ2)ρ2 +
1
2
δ2z2 +

aδ2

4
(2z2 − 3ρ2)z,

(14)

as the parameters δ and a vary. Now it is more illustrative
to work in coordinates (±ρ, z). It is easy to show that
U(ρ, z) has four critical points (see Figs. 2a and 2b): a
minimum P1, and three saddle points P2,3,4. These critical
points are

P1 = (0, 0), P2 =
(

0,− 2
3a

)
,

P3,4 =

(
± 1

3aδ2

√
1− 4δ4

2
,

1− 2δ2

6aδ2

)
· (15)

The three saddle points reduce to P2 and P3 when cylin-
drical coordinates (ρ, z) are used. We note that P2 does
not depend on δ. From expressions (15), we obtain the
functions

D2 =
2

3 a
, D3,4 =

√
3− 4 δ2 − 4 δ4

6 a δ2
, (16)

where D2,3,4 are the distances from the minimum P1 –
the center of the trap – to the saddle points P2,3,4. When
δ =

√
3/10 we find that D2 = D3,4 = 2/3a, e.g. the three

saddle points are located at the same distance from the
minimum P1.

The energies of P1,2,3,4 are

E1 = 0, E2 =
2δ2

27a2
, E3,4 =

(1− 2δ2)2(1 + 4δ2)
432a2δ4

,

(17)

and for δ = 1/2 we find for the energies E2 = E3,4 = Ec =
1/54a2.
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Fig. 3. (a) Evolution of the functions a2E2,3,4 as a function of δ. (b) Evolution of the functions aD2,3,4 as a function of δ.

We note that expressions (16, 17) scaled with respect
to 1/a and 1/a2, respectively: when a increases, the posi-
tion of the saddle points shifts to the minimum P1, while
their corresponding energies E2,3,4 decrease. As it was ex-
pected, when the deformation of the electrodes increases,
the trapping energy interval and the zone where the ion
can be trapped (the trapping zone) decrease.

To study the influence of δ on the energies and po-
sitions of the saddle points, it is convenient to plot the
evolution of the functions a2E2,3,4 and aD2,3,4 as a func-
tion of δ. These plots are shown in Figure 3. From Fig-
ure 3a we obtain that when δ increases, the energy E2

increases while E3,4 decreases, in such a way that when
δ < 1/2, E2 < E3,4 and for δ > 1/2, E2 > E3,4. One
more interesting feature arising from this figure is that E2

shows a smoother evolution than E3,4. Hence, while in the
operating interval 0 < δ < 1/

√
2 the energy E2 varies be-

tween 0 < E2 < 1/27a2, the energy E3,4 varies between
0 < E3,4 <∞. These energies are similar when δ ≈ 1/2.

When the position D2,3,4 of the saddle points is ana-
lyzed, from Figure 3b we find a similar behavior. While the
position of P2 is constant with respect to δ, the positions
of P3,4 vary in the interval 0 < δ < 1/

√
2 between the

values 0 < D3,4 < ∞. These distances are similar when
δ ≈

√
3/10.

As a general conclusion, we can say that the effect
of the perturbation is to create three channels of escape
through which the ion is able to leave the trap. By fixing a,
the position and energy of these channels – the saddle
points – is actually controlled by the parameter δ. When δ
is small, the axial frequency δ is smaller than the radial
frequency w = wc

√
1− 2δ2/2 and the sextupolar pertur-

bation is mainly affecting the motion in the z-direction.
Hence, the energy of P2 is much smaller than E3,4 and it is
located nearer to P1 than P3,4, so P2 is the easiest chan-
nel to escape. When δ tends to 1/

√
2, we find that the

axial frequency is bigger than the radial frequency and
the sextupolar perturbation mainly affects the motion in
the ρ-direction. Thence, E2 is much bigger than E3,4 and
P3,4 are located nearer to P1 than P2 and so P3,4 are the
easiest channels to escape.

Moreover, the possibility of escape always exists be-
cause in the interval 0 < δ < 1/

√
2 at least one of the

saddle points can have energy smaller than the energy of

the ion. In this sense, for ion energies well below the cross-
ing value Ec = 1/54a2, Figure 3a suggests a safe zone to
avoid escape centered around δ = 1/2.

4 Phase space structure

In this section we focus on the study of the phase space
governed by Hamiltonian (13). As it is well-known, the
phase space structure is mainly characterized by the num-
ber and stability of the periodic orbits living in phase
space [20]. When dealing with a system of two degrees
of freedom, the computation of surfaces of section allows
us to illustrate the phase space structure: in the regions
of the phase space where the motion is regular, periodic
orbits are clearly identified as fixed points of the Poincaré
map. With this technique, we explore the evolution of the
phase space as the parameters (E, δ, a) vary.

Firstly, we identify the values of the parameters (δ, a)
for which periodic analytical solutions exist. The Hamilton
equations of motion arising from (13) are

ρ̇ = Pρ, Ṗρ = −1
4

(1− 2δ2)ρ+ a
3
2
δ2ρz,

ż = Pz , Ṗz = −δ
2

4
(4z + 6az2 − 3aρ2). (18)

In searching for particular solution of (18), we look for
rectilinear solutions of the form z = αρ. By substituting
in (18), we find the following solutions

• ρ = 0, which corresponds to a rectilinear orbit along
the z-axis;
• α = ±1/2 when δ = 1/

√
6.

We recall that the rectilinear orbit along the z-axis
always exists. However, the other two only exist for the
special value δ = 1/

√
6.

To look for additional periodic orbits, we compute the
corresponding surface of section for δ =

√
1/6. We de-

fine the surface of section as ρ = 0 and Pρ ≥ 0. Under
these conditions, it appears as a region in the plane (z, Pz)
bounded by the curves

Pz = ±
√

2E − δ2z2 − aδ2z3. (19)
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6.

It is worth noting that curves (19) correspond to the rec-
tilinear orbit along the z-axis. Because we have to fix the
the sextupolar parameter a and energy E, we take a = 0.2
and E = 0.01. For a = 0.2, the electrodes are quite de-
formed (see Fig. 1) and the energy E = 0.01 value is well
below the crossing value Ec = 1/54a2 = 0.462963, and the
escape is only possible outside the interval 0.073485 < δ <
0.666756. The mentioned surface of section (see Fig. 4a)
presents four important structures.

(i) The stable (elliptic) fixed point located near the
point (0, 0) which corresponds to an arch-like orbit local-
ized above the ρ-axis (see Fig. 4b). Note that this periodic
orbit, named as Ra, does not cross the ρ-axis. We remark
that Ra becomes a rectilinear orbit along the ρ-axis when
the energy tends to zero. The levels around Ra correspond
to quasiperiodic orbits with the same symmetry pattern
as Ra. We call this kind of orbits arch orbits (see Fig. 4c).

(ii) The two stable fixed points C located near the axis
ρ (see Fig. 4a). These fixed points correspond to almost
circular orbits traveled in opposite sense (see Fig. 4b).
These periodic orbits become circular orbits when the en-
ergy tends to zero, in such a way that they would be lo-
cated at (±

√
6E, 0). The levels around C correspond to

quasiperiodic orbits with the same symmetry pattern. We
call this kind of orbits loop orbits (see Fig. 4c).

(iii) The separatrix dividing these two regions
of motion accumulates in the unstable (hyperbolic)
fixed points symmetrically located at the point
(0,±

√
2E/5 = ±0.063245). These hyperbolic points,

named as Ru in Figure 4a, correspond to the rectilinear
orbits z = ±1/2ρ (see Fig. 4b).

(iv) Finally, taking into account that the limit of the
surface of section is the rectilinear orbit along the z-axis
– named Rz –, the levels above the separatrix correspond
to quasiperiodic orbits with the same symmetry pattern,
mainly localized along the z-axis. We call this kind of or-
bits box orbits [21] (see Fig. 4c). At this point, it is clear
that the stability of Rz cannot be determined by looking
at the surface of section, because this orbit appears as the
limit of the section instead of a single point. However, if
we compute the surface of section defined as z = 0 and
Pz ≥ 0, the periodic orbit Rz is the elliptic – stable – fixed
point at (0, 0) (see Fig. 4d), while Ra does not appear be-
cause it does not cross the ρ-axis. We use the surface of
section (ρ = 0, Pρ ≥ 0) because with this definition we
cover the entire phase space, while with the surface of sec-
tion (z = 0, Pz ≥ 0) the orbits that never cross the ρ-axis
– e.g. Ra – are lost.

As it was expected when the energy is much smaller
than the escape energies E2,3,4, the phase space of the
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Fig. 5. Evolution of the surfaces of section (ρ = 0, Pρ ≥ 0) for E = 0.01, a = 0.2 as a function of δ.

system is regular and all the orbits are confined in adia-
batic invariant tori.

When the parameter δ increases, the phase space suf-
fers two consecutive changes that take place in the short
interval 1/

√
6 < δ < 0.42. These changes can be observed

in the surfaces of section shown in Figures 5a to 5d. In this
way, when δ ≈ 0.42, the phase space is made of rotations
around Ra. These rotations correspond to arch-like orbits
when they are near Ra, which become progressively box
orbits as they go away from Ra, that is to say, as they ap-
proach the limit of the surface of section – the orbit Rz –.

These changes can be perfectly understood in terms of
two consecutive pitchfork bifurcations when the surfaces
of section (z = 0, Pz ≥ 0) are computed (see Fig. 6). In
the first bifurcation, the two unstable orbits Ru and the
stable orbit Rz come into coincidence, and, as a conse-
quence, only Rz survives becoming unstable (see Figs. 6a
and 6b). In the second bifurcation, the stable orbits C
and the unstable orbit Rz collapse and only Rz survives,
becoming stable again (see Figs. 6c and 6d).

When δ increases (see Fig. 5e for δ = 0.55) the
described phase space configuration remains almost the
same. However, when δ < 0.666756, the energy E = 0.01
is bigger than the energy E3,4 of the saddle points P3,4

(see Fig. 3a), and the ion is able to leave the trap through
the saddles P3,4. This fact can be observed in Figure 5f.
This surface of section shows a gap in the central region
which corresponds to the set of orbits which have initial
conditions of escape. This gap is surrounded by a narrow
stochastic layer inside which the fixed point Ra survives.
Note that, even above the escape energy E3,4, this sur-
face of section shows a wide region of regular bounded or-

bits around Rz. These orbits correspond to orbits mainly
oriented along the z-axis – box orbits –, that remain iso-
lated from the channels of escape P3,4. In this sense, when
δ > 1/

√
6, the arch orbits are the first that will be able

to escape from the trap because they are more oriented
along these channels than the box orbits.

Let us now to study the phase space evolution when
δ < 1/

√
6. This evolution can be observed in Fig-

ure 7. When δ = 0.4075, the phase space structure has
changed through a pitchfork bifurcation (compare Fig. 4a
to Fig. 7a): the unstable fixed points Ru have disappeared,
while Ra have became unstable. As a consequence, the
phase space is filled with box orbits around Rz and loop
orbits around C. When δ = 0.4 a second pitchfork bifur-
cation takes place (see Fig. 7b): the stable fixed points
C have disappeared while Ra becomes stable. Now, for
δ < 0.4, the surfaces of section are made of rotations
around Ra (see Fig. 6c) which correspond to arch orbits
when they are near Ra, and to box orbits when they are
near the limit of the surface of section – near Rz –. This
phase space structure remains constant as δ decreases.

Finally, when δ < 0.073485, the energyE = 0.01 is big-
ger than the energy E2 of the saddle point P2 (see Fig. 3a),
and the ion is able to leave the trap through the saddle P2.
This fact can be observed in Figure 6d. We observe in that
figure that the surface of section is not a bounded region
because the rectilinear orbit Rz – which corresponds to
the limit of the surface of section – is now an escape or-
bit. Note that Figure 7c shows an empty region which
corresponds to the set of orbits with initial conditions of
escape. Again, this empty region is surrounded by a very
narrow stochastic layer. Moreover, the surface of section
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Fig. 6. Evolution of the surfaces of section (z = 0, Pz ≥ 0) for E = 0.01, a = 0.2 as a function of δ. From (a) to (b) the first
pitchfork bifurcation is observed, while between (c) and (d) the second one is observed. See the text for explanation.

Fig. 7. Evolution of the surfaces of section (ρ = 0, Pρ ≥ 0) for E = 0.01, a = 0.2 as a function of δ. In (a) the first pitchfork
bifurcation has occurred, while between (c) and (d) the second one is observed. See the text for explanation.

shows a wide region of regular bounded orbits around Ra.
These orbits correspond to arch-like orbits that remain
isolated from the channel of escape along P2. Hence, when
δ < 1/

√
6, the box orbits are the first that will be able to

escape from the trap because they have a better orienta-
tion along this channel than the arch orbits.

As a final remark, we have to take into account that in
general not all the bounded orbits represented in the se-
quences of surfaces of section of Figures 4, 5, 6 and 7 have

a physical meaning because, in addition to be bounded or-
bits, they must have a “size” smaller than the physical di-
mension of the trap. This fact can be understood by plot-
ting the equipotential curve U(ρ, z) = E for several values
of δ. Such a plot is shown in Figure 8 for E = 0.01. We ob-
serve in that figure that, when δ is small, the equipotential
curve spreads over a wide region of the z-axis. In this way,
when δ tends to zero, most of the box orbits aroundRz will
be big to large in size, and therefore unphysical meaning,
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Fig. 8. Equipotential curves U(ρ, z) = E = 0.01, for a = 0.2
as a function of δ. The dashed curves are the electrodes.

while most of the arch orbits around Ra will have small
size, being therefore real trapped orbits. When δ tends to
1/
√

2, the equipotential curve mainly spreads over the ρ-
axis and, thence, most of the arch orbits around Ra will
have too much size to be physical, while most of the box
orbits around Rz will be real trapped orbits.

A compensated behavior takes place for δ ≈ 1/2: the
equipotential curve is well confined inside the trap, more-
over the saddle points are located far away from the center
of the trap and their energies are big and almost equal.

5 Conclusions

In the present work, we have studied the phase space
(orbit) structure of a single ion in a realistic sextupo-
lar perturbed Penning trap. In order to manage a two–
dimensional Hamiltonian system, we assume that the per-
turbation is axial-symmetric. This assumption converts
the z-component Pφ of the angular momentum into a con-
stant of the motion, which can be treated as a common
parameter. Besides the energy E and Pφ, two more pa-
rameters appear in the system: the parameter δ which
indicates the ratio between the cyclotron and the axial
frequencies, and the parameter a which indicates how far
from the ideal quadrupolar configuration the electrodes
are. We restrict our study to the case Pφ = 0.

From the study of the effective potential of the prob-
lem, we find that the effect of the sextupolar parameter a
is to create three channels of escape – saddle points –
through which the ion is able to escape. The position and
energy of these critical points are scaled with respect to
a and in fact their energies and positions depend on the
value of δ.

We find that three different families of orbits (arch,
box and loop orbits) determine the structure of the phase
space. Moreover, we show that the coexistence of these
families depends on a very sensitive way on the parame-
ter δ: when the system moves slightly away from the value

δ = 1/
√

6, the family of loop orbits disappears through
two consecutive pitchfork bifurcations.

When δ tends to zero, we find that the box orbits are
the first which are able to leave the trap, while when δ
tends to 1/

√
2, the arch orbits are the first to escape.

We base the explanation of these facts on the shape of
the potential energy surface as well as on the phase space
structure.

It is worth noting that, although the rich dynamics we
have studied arises from the presence of the sextupolar
perturbation (parameter a), its effect on the ion motion is
actually controlled by the parameter δ.

Although we have only considered in detail the axial-
symmetric sextupolar perturbation, this paper provides a
useful reference point to study the dynamics of trapped
ions in more generally perturbed ion traps. In this sense,
other axial-symmetric terms as the octupolar one [10],
should be considered too. Moreover, a classical perturba-
tive approach should be very useful in order to obtain a
general geometric description of the perturbed ion motion.
Work along these lines is now in progress [22].
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