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a b s t r a c t

We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate)
magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain
orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by
the charge–mass ratio of the particle. If the non-sphericity of the planet is taken into
account this constraint is modified or, in some cases, it disappears.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of a test body orbiting another one under the action of several disturbing forces is derived from the so
called perturbed Keplerian systems. If the perturbation is small enough, the motion of the test body is expected to be close
to the unperturbed one, given by the classical orbits of the two body problem. However, for some particular systems, special
type of non-Keplerian orbits can appear. This is the case of circular orbits lying in a plane perpendicular to the z-axis within a
measurable distance to the equatorial plane. They are the halo orbits and have been reported in several problems. For in-
stance, in the classical problem of the movement of an artificial satellite, when the two first dominant terms in the gravita-
tional potential are considered, if the attracting body is prolate [17]. They also appear in the problem of the movement of a
charged dust particle orbiting a magnetic planet [4,10,11].

The two problems can be combined and, with the influence of radiation pressure, we arrive at a realistic model to study
the motion of charged dust grains into the electromagnetic ambient of giant planets. This model has been already considered
by several authors for the study of dusty rings, like the E ring in Saturn [6,7,9,12]. By numerical simulations, it is proved that
the model in [4,10,11], where the planet is supposed to be spherical and there is no radiation pressure, gives rise to a dynam-
ics close to that of the full perturbed system, in the case of Saturn. In particular, orbits parallel or almost parallel to the equa-
tor are found [12].

In the present paper, we will consider the problem of a charged particle orbiting a non-spherical magnetic planet. The
main goal will be to perform an analytic study of the influence of the parameters of the system in the existence/persistence
of circular orbits parallel to the equator or lying in it. We will pay special attention to the role played by the oblateness coef-
ficient J2, regardless its sign, i.e. if the body is either oblate or prolate. Sometimes, to highlight the differences with limit cases
(spherical planet, no charge), unusual big values of J2 will be considered, as well as it is done in [2] for the main problem of
artificial satellite.

The paper is structured as follows. In Section 2, we state the Hamiltonian corresponding to the problem at hand. Section 3
is devoted to establish the equilibrium solutions. In Section 4, we analyze the existence of equatorial orbits, whereas in
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Section 5 we consider halo orbits; pointing out the differences existing between the oblate (J2 > 0) and prolate (J2 < 0) cases.
The concluding remarks appear in Section 6.

2. The model

Our starting point is a model derived by Dullin et al. [4], a generalization of the classical one corresponding to a particle
subject to a magnetic dipole field [22,23]. It is known as the generalised Størmer problem and it describes the dynamics of a
dust particle of mass m and charge q orbiting a rotating magnetic planet of mass M. In this model, the magnetic field of the
planet is supposed to be a perfect magnetic dipole of strength l aligned along the north–south poles of the planet. Moreover,
the planet’s magnetosphere is taken as a rigid conducting plasma which rotates with the same angular velocity X as the pla-
net, in such a way that the charge q is subject to a corotational electric field. In this way, using cylindrical coordinates and
momenta ðq; z;/; Pq; Pz; P/Þ and assuming that the gravitational interaction is purely Keplerian, the generalised Størmer
problem can be modeled by the following dimensionless two-degree-of-freedom Hamiltonian

HS ¼
1
2

P2
q þ P2

z þ
P2

/

q2

 !
� 1

r
� d

P/

r3 þ
d2

2
q2

r6 þ db
q2

r3 ; ð1Þ

where lengths and time are expressed, respectively, in units of the planetary radius R and the Keplerian frequency

wK ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

q
(Gaussian units). The variable r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p
stands for the distance of the charged particle to the center of mass

of the planet.
As the system is invariant under rotations around the z-axis, P/ is an integral of the system. Furthermore, Hamiltonian (1)

depends on two external parameters d and b, introduced in [13,14], which indicate, respectively, the ratio between the mag-
netic and the Keplerian interactions and the ratio between the electrostatic and the Keplerian interactions. Specifically,
d ¼ xc=wK , accounts for the charge–mass ratio (q/m), being xc the cyclotron frequency, and b ¼ X=wK , thus b > 0. On the
other hand, the system depends on the two internal parameters P/ and HS ¼ E (the energy).

Some interesting consequences can be derived from this model. For instance, Dullin et al. [4] and Howard et al. [10,11]
provide a comprehensive view of circular orbits, reporting what kind of particles and what frequencies are expected for a
given distance away from the planet. They speculate with the possibility of finding halo orbits around Saturn. Grotta-Ragazzo
et al. [5] give a possible explanation of the origin of the spokes detected on Saturn’s rings by a detailed analysis of bifurca-
tions among circular equatorial orbits. Iñarrea et al. [13,14], by studying the global Keplerian dynamics, report a special cir-
cular orbit that can be responsible for the narrowing of dusty rings.

Now we will introduce the effect of the oblateness of the planet in the Hamiltonian function (1). A classical model for the
non-sphericity of a planet is given by means of the J2 term [20]. In this way, Hamiltonian (1) becomes

H ¼ 1
2

P2
q þ P2

z þ
P2

/

q2

 !
� 1

r
� d

P/

r3 þ
d2

2
q2

r6 þ db
q2

r3 þ 3J2
z2

2r5 �
J2

2r3 ; ð2Þ

where J2 is a positive dimensionless parameter for an oblate planet, whereas it is negative for a prolate one. For example, in
the case of Saturn, J2 = 0.016298 [1]. It is worth noting that Hamiltonian (2) generalises the cases studied by Langbort [17]
(d = 0) and by Dullin et al. [4] (J2 = 0), as it is the purpose of this paper.

3. Equilibrium solutions

Circular periodic trajectories around the z-axis correspond to equilibria (q0,z0) in the rotating meridian plane q–z, i.e. they
appear as the equilibrium points of the system

_q ¼ @H
@Pq

; _z ¼ @H
@Pz

; _Pq ¼ �
@H

@q
; _Pz ¼ �

@H

@z
;

or equivalently, they are the critical points of the effective potential Ueff in (2), that is

Ueff ¼
P2

/

2q2 �
1
r
� d

P/

r3 þ
d2

2
q2

r6 þ db
q2

r3 þ 3J2
z2

2r5 �
J2

2r3 : ð3Þ

Following the procedure of Dullin et al. [4] and Howard et al. [10,11], in order to better interpret the results, instead of P/, we
introduce in (3) the particle angular velocity x,

x ¼ _/ ¼ @H
@P/
¼ P/

q2 �
d
r3 :

The sign of x determines if the motion of the particle is prograde (positive sign) or retrograde (negative sign) with respect to
the planet. Besides, x = b = X represents a synchronous motion of the particle with the planet, thanks to the units of time
chosen.

As a last change of variables, in order to simplify the calculations, we move to spherical variables (r,h,/), given by
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q ¼ r sin h; z ¼ r cos h;

with h 2 [0,p/2], due to the discrete symmetry z ? �z of Hamiltonian (2). Now, the effective potential reads as

Ueff ¼ �
1
r
þ db

sin2 h
r
þx2 r2 sin2 h

2
þ 3J2

cos2 h
2r3 �

J2

2r3 : ð4Þ

The critical points of Ueff are found as the solutions of the system of equations

@Ueff

@r
¼ �3J2

r4 þ
1
r2 þ

9J2

2r4 �
dðb�xÞ

r2 � rx2
� �

sin2 h ¼ 0;

@Ueff

@h
¼ � 3J2

2r3 þ
dðb�xÞ

r
� r2x2

2

� �
sin 2h ¼ 0:

ð5Þ

The above system gives rise to the equivalent non-linear system

� 6J2 þ 2r2 þ ð9J2 � 2dðb�xÞr2 � 2r5x2Þ sin2 h ¼ 0;

ð�3J2 þ 2dðb�xÞr2 � r5x2Þ sin 2h ¼ 0:
ð6Þ

Looking at the second equation in (6) we notice that the roots of this system can be divided into two types depending on the
value of h: the ones corresponding to sin 2h = 0 or the ones associated to �3J2 þ 2dðb�xÞr2 � r5x2 ¼ 0 with sin2h – 0. On
the one hand if sin2h = 0, we have to consider two different situations, either h = 0 or h = p/2. If h = 0, then q = 0 and the dust
grains are placed symmetrically on the z-axis at a distance of

ffiffiffiffiffiffiffi
3J2

p
whenever J2 > 1/3, in order to get a meaningful solution

lying outside the planet. If h = p/2 we have equatorial orbits. On the other hand, when h – p/2, we obtain the halo orbits.
Note that the values of the parameters b and J2 are fixed for a given planet. Thus, the occurrence of equatorial and halo

orbits depends on the values of d and x.

4. Existence of equatorial orbits

As it was said above, equatorial orbits appear when h = p/2. In this case the second equation of (6) vanishes, and r must
satisfy the polynomial equation

3J2 þ 2ð1� bdþ dxÞr2 � 2x2r5 ¼ 0: ð7Þ

Then, the occurrence of equatorial orbits is reduced to the existence of positive real roots of (7). We note that this equation,
for d = 0, reduces to a quadratic polynomial equation in r, provided that now x ¼ P/=r2. Indeed, we have

2r2 � 2P2
/r þ 3J2 ¼ 0;

which gives rise to the equatorial orbits reported by Langbort [17].
For d – 0, we first note that if x = 0 Eq. (7) is regarded as a second degree polynomial equation in r with a positive real

root if and only if J2ð1� bdÞ < 0. As a consequence, for the oblate case (J2 > 0) we have equatorial orbits if bd > 1 and for the
prolate case (J2 < 0) if the inequality is the opposite, that is bd < 1.

In the general case (x – 0), Descartes rule of signs [21] shows, as previously, that the prolate and oblate cases are
different.

On the one hand, for the prolate case (J2 < 0), it follows that Eq. (7) has no positive real roots for (b �x)d P 1, as
there are no changes in the sequence of signs in the coefficient list. Nevertheless, when (b �x)d < 1 the sequence of
signs presents two changes, thus there are none or two positive real roots. The limit curve dividing the plane d–x into
two regions with none or two positive real roots can be obtained from the discriminant of the polynomial in (7) and it is
given by

3125J3
2x

4 þ 32ð1� bdþ dxÞ5 ¼ 0: ð8Þ

On the other hand, for the oblate case (J2 > 0) the number of sign changes in the coefficient list is one. Thus, Eq. (7) has a
positive real root. This means that regardless of the values of x and d, there is always an equatorial orbit.

Note that the scenario of existence of equatorial orbits for J2 – 0 is modified from that of the case J2 = 0 (for more details
see [4]), where the existence of one equatorial orbit is constrained to a certain region of the plane d–x whose boundary is
given by the curve

ðb�xÞd ¼ 1; ð9Þ

which can be obtained from (8) by taking J2 = 0.
It is interesting to discuss the existence curve of equatorial orbits, given by (8), for J2 6 0 in terms of b and J2.

Indeed, for J2 = 0, Eq. (9) is the standard hyperbola x = �1/d displaced b units along the x-axis. However, if J2 < 0,
Eq. (8) is no longer a hyperbola, although it is still a two-branched curve with the same asymptotic lines as (9).
The disposal of the two branches depends on the values of J2 and b. Thence, if b is fixed, there is a critical value
of J2, namely
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Jc
2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

3125b4
3

s

such that if Jc
2 < J2 < 0 the left branch of the curve is above the horizontal asymptotic line x = b, whereas the right branch is

below it. The curve resembles the case J2 = 0. On the contrary, if J2 < Jc
2 < 0 the left branch is now below the line x = b,

whereas the right branch is above it. In the limit case, J2 ¼ Jc
2, the two branches intersect at the point (4/(5b),b) and one

of the branches is precisely x = b, as it can be seen in Fig. 1. It is worth noting that all the limit curves, regardless of the value
of J2 < 0, have the point (1/b,0) in common, which is a cuspidal point. Moreover, the region of existence of equatorial orbits is
given by the condition

3125J3
2x

4 þ 32ð1� bdþ dxÞ5 > 0

and it gets smaller as J2 decreases.
If we fix now the value of J2, the situation is similar to that discussed above. There is a critical value of b in such a way that

the disposal of the two branches of the curve changes with respect to the asymptotic lines (see Fig. 2). We note now that all
the curves intersect at the points

0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�32

3125J3
2

4

s !
;

and the region of existence of equatorial orbits is modified in a different way, depending on the sign of d. In fact, if d > 0, the
region of existence is smaller for increasing values of b. However, if d < 0 the region of existence is bigger for increasing val-
ues of b.

By now, we see that the oblateness of the body affects the region of existence of equatorial orbits in the plane d–x. In this
way, it does not matter how oblate the body is, there always exists an orbit with fixed values of d and x (except for the limit
case x = 0). For a spherical body, the region for equatorial orbits is no longer the whole plane, and a limit boundary appears
in such a way that, inside this region, an equatorial orbit exists for fixed values of d and x. Finally, for a prolate body, the
region of existence diminishes as J2 decreases, but now, for fixed values of d and x within the region, there exist two equa-
torial orbits.

Beyond the existence of equatorial orbits, we have to pay attention to the radius of the orbit in the sense that if r < 1 the
orbit would lie inside the planet and it constitutes a meaningless situation. In this way, the effective boundary for the exis-
tence of equatorial orbits is obtained by making r = 1 in Eq. (7), that is

2� 2bdþ 3J2 þ 2dx� 2x2 ¼ 0: ð10Þ

3 2 1 0 1 2 3

3

2

1

0

1

2

3

β = 0.9

J   = -0.1 J   = -0.2499 J   = -0.42 2 2
c

Fig. 1. Boundaries for the existence of equatorial orbits in the plane d–x for b = 0.9 and different values of J2 for the prolate case.
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Then, the region for orbits with r P 1 is defined by

2� 2bdþ 3J2 þ 2dx� 2x2 P 0:

Eq. (10) defines a hyperbola whose asymptotic lines are x = b and x = d � b. If J2 and b satisfy the relation

3J2 þ 2� 2b2 ¼ 0;

then the two branches of the hyperbola are precisely the two asymptotic lines. Moreover, if we fix a value of b and vary the
value of J2 the limit curves do not cut each other and the region of admissible equatorial orbits diminishes as J2 decreases as it
is depicted in the upper part of Fig. 3. Thus, the oblateness favors the existence of equatorial orbits. However, if we fix J2 and
vary b all the curves intersect at the points

0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
J2

r !
;

in such a way that the region enlarges for d > 0 and decreasing b and the opposite for d < 0, that is, the region enlarges for
increasing b (see the lower part of Fig. 3).

Nevertheless, we recall that in the prolate case (J2 < 0), although the existence region is smaller, for fixed b, there are two
equatorial orbits associated to each of the allowed parameters’ values.

Now the question is whether there is a region where the two orbits have r > 1 at the same time or not. To solve this ques-
tion, we note that orbits appear by pairs when a double root takes place. As a consequence, the region we are looking for
must be delimited by the existence curve given by (8) and by the effective existence curve given by (10). The resultant of
the two polynomials in (8) and (10),

32ðb�xÞ5ðJ2 þx2Þ2ð243J3
2 � 1296J2

2x
2 þ 304J2x4 � 32x6Þ ¼ 0;

gives us the contact points between both pairs of curves.
No factors except for ðJ2 þx2Þ2 yield to valid solutions. Then, the two pairs of curves (8) and (10) are tangent at the points

ðd;xÞ ¼ �2� 5J2

2ð�b�
ffiffiffiffiffiffiffiffi
�J2

p
Þ
;�

ffiffiffiffiffiffiffiffi
�J2

p !
:

As a consequence, the region for two equatorial orbits is delimited by (8) and (10) between the two contact points.
However, this region depends on the relative values of b and J2. Indeed, we note that if J2 ¼ �b2 the tangent points
go to infinity and the region must change after this value is reached. The region also changes with the critical values
of J2 as it can be seen in Figs. 4 and 5 where a global evolution of the limit curves for a prolate body is depicted for
b = 0.9 and b = 0.5 in terms of J2.

The situation described above can be understood if we pay attention to the set of equatorial orbits of constant r. This set is
a family of hyperbolas in the d–x plane, with asymptotic straight lines given by

3.0 2.5 2.0 1.5 1.0 0.5 0.0

3

2

1

0

1

2

3

β = 0.4 β  = 1.0637 β = 2
c

J  = -0.22

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3

2

1

0

1

2

3

J  = -0.22

β = 0.4 β  = 1.0637 β = 2

Fig. 2. Boundaries for the existence of equatorial orbits in the plane d–x for J2 = �0.2 and different values of b for the prolate case.
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x ¼ b; x ¼ d
r3 � b:

Moreover, the curves of constant radius, for a fixed b, do not touch each other if J2 > 0, all of them are tangent at (1/b,0) if
J2 = 0 and every pair of curves cut each other twice for J2 < 0. This is the reason why the prolate case is more intricate than the
oblate one. Besides, we note that the asymptotic straight lines of the family correspond to the radius of the synchronous orbit
ðrsÞ obtained by setting x = b (the frequency of the synchronous orbit). Once again the prolate case differs from the oblate
one. On the one hand, for J2 > 0, rs is the positive solution of the equation

2b2r5 � 2r2 � 3J2 ¼ 0; ð11Þ

and we stress that now rs is not given by Kepler’s third law b2r3 ¼ 1, but by a modified one. We can express it asymptotically
in terms of J2 as

2 0 2 4

3

2

1

0

1

2

3

β = 0.9

J   = 0.3 J   = 0 J   = -0.1266 J   = -0.32 2 2 2

3.0 2.5 2.0 1.5 1.0 0.5 0.0

3

2

1

0

1

2

3

β = 0.2           β = 0.5            β = 1.14018

J  = 0.22

0 1 2 3 4 5

3

2

1

0

1

2

3

J  = 0.22

β = 0.2           β = 0.5            β = 1.14018

Fig. 3. Boundaries for the effective existence of equatorial orbits in the plane d–x: (top) for b = 0.9 and varying J2; (bottom) for J2 = 0.2 and different values
of b.
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b2r3 ¼ 1þ 3
2

b4=3J2 �
3
2

b8=3J2
2 þ OðJ3

2Þ:

The most remarkable fact is that the synchronous orbit plays the role of a separatrix in the sense that if r > rs there is a closed
interval of non-allowed charge–mass ratio values, but all the frequencies are possible (see Fig. 6). Indeed, those particles with
d belonging to the interval ½d�; dþ�, with

Fig. 4. The regions of existence and effective existence of equatorial orbits for different prolate bodies and b = 0.9. Encircled is the number of equatorial
orbits.
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d� ¼ 2br3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rð2b2r5 � 2r2 � 3J2Þ

q
; ð12Þ

are not allowed to be in an equatorial orbit of radius r. Notice that the expression in the square root in (12) is related with the
radius of the synchronous orbit given by (11), in such a way that if r > rs the expression is positive and negative if r < rs.
Besides, as r tends to infinity, d� approaches 1/b, whereas dþ goes to infinity. As a consequence, as r increases, more and more
particles are swept from equatorial orbits if their charge–mass ratio is greater than 1/b.

Fig. 5. The regions of existence and effective existence of equatorial orbits for different prolate bodies and b = 0.5. Encircled is the number of equatorial
orbits.
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On the other hand, for J2 < 0, two synchronous orbits appear. One of them is obtained as a perturbation of the synchronous
orbit for the spheric case, J2 = 0, and the other one as a consequence of the prolate shape of the body. Nevertheless, if the
absolute value of J2 is small enough, the second synchronous orbit lies inside the body. But if the values of J2 and b satisfy
the inequality

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32
3125b4

3

s
6 J2 6

2
3
ðb2 � 1Þ;

and b 6
ffiffiffiffiffiffiffiffi
2=5

p
, the two synchronous orbits have r P 1 and are physically possible at the same time. For example, for b = 0.5

and J2 = �0.52 there are synchronous orbits at r = 1.0442 and r = 1.27925.
Finally, we remark that the trajectories discussed through this section correspond to the circular equatorial orbits found

in Iñarrea et al. [13–15] for J2 = 0 using normalisation and reduction techniques. Furthermore, they are the same orbits as the
ones encountered by Grotta-Ragazzo et al. [5] using P/ as a parameter instead of x.

5. Existence of halo orbits

Halo orbits appear as the solutions of system (6) when h – p/2. In this case, the term in r in the second equation of (6)
must be zero, and then the following equation is satisfied

3J2 þ 2dðx� bÞr2 þx2r5 ¼ 0: ð13Þ

It is worth noting that for d = 0, x2 ¼ P2
/=r4, and Eq. (13) gets simplified to

3J2 þ P2
/r ¼ 0:

Thus, halo orbits are obtained if J2 < 0, according to the results in [17].
For d – 0, we proceed as in the equatorial case, first considering x = 0, as it acts as a limit case. Now, Eq. (13) reduces from

a quintic to a quadratic one and at least one of the roots of (13) goes to infinity. This fact will provide further insight in the
discussion of the existence of halo orbits. Let us note that (13), when x = 0, has a positive solution if

dJ2 > 0;

provided that b > 0. Thus, for an oblate body only positively-charged particles are suitable to be in halo orbit. On the contrary,
for a prolate body, the admissible particles are those negatively-charged. However, the discrimination just made takes into
account only one of the equations of system (6). We must impose that the other equation is satisfied, that is

�6J2 þ 2r2 þ ð9J2 � 2dbr2Þ sin2 h ¼ 0: ð14Þ

Solving for sin2h, we get

sin2 h ¼ 6J2 � 2r2

9J2 � 2dbr2 :

Thence, we have a solution if

Fig. 6. Curves of constant radius for equatorial orbits with J2 = 0.1 and b = 0.5.
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0 6
6J2 � 2r2

9J2 � 2dbr2 6 1:

But, taking x = 0 in (13) we get that r2 ¼ 3J2=ð2dbÞ and, finally, we have a positive solution if

0 6
1
db
6 2:

This implies that d > 0, and we obtain solutions only for an oblate body, as in the prolate case only negatively-charged par-
ticles could be in a halo orbit for x = 0.

In the general case, when x – 0, we will follow a similar procedure, that is, to find r from Eq. (13) and then to substitute
this value into the first equation of (6) to obtain a value for sin2 h in the interval [0,1]. However, (13) being now a quintic
polynomial equation it is not possible to obtain r in terms of the parameters.

Descartes rule of signs yields a different behavior for prolate and oblate cases. Indeed, if J2 < 0, Eq. (13) has a unique
positive real root. On the contrary, if J2 > 0, Eq. (13) has none or two positive real solutions, depending on the values of
d and x, fixed b and J2. Taking into account the discriminant of the quintic, we have two positive real roots if and
only if

128d5ðb�xÞ5 � 3125J3
2x

4 > 0: ð15Þ

However, Eq. (13) is not enough to ensure the existence of halo orbits. First equation of system (6) must be also satisfied.
Therefore, obtaining J2 from Eq. (13) and substituting its value in the first equation of system (6), we get

r3x2ð5 sin2 h� 2Þ � 2½1þ 2dðb�xÞðsin2 h� 1Þ� ¼ 0:

This is a linear equation in r3 and sin2h. This means that each value of r is related with a unique value of sin2h and vice versa.
Thus, for a given r, i.e., a root of (13), we can obtain a halo orbit if

0 6 sin2 h ¼ 1� 3x2r3 � 2
5x2r3 þ 4dðx� bÞ 6 1:

If this holds, two symmetric halo orbits respect to the equatorial plane occur.
The preceding condition can be expressed in terms of d, b, x and h by elimination of r in system (6), arriving at the fol-

lowing equation in sin2h:

32½�1þ 3dðb�xÞ sin2 h�3½1� 2dðb�xÞð1� sin2 hÞ�2 � 27J3
2x

4ð5 sin2 h� 2Þ5 ¼ 0: ð16Þ

Now it is easy to find the limit curves for an admissible value of sin2h, by substitution of sin2h = 1 and sin2h = 0 in (16). Thus,
we find

sin2 h ¼ 1! 32½�1þ 3dðb�xÞ�3 � 6561J3
2x

4 ¼ 0; ð17Þ
sin2 h ¼ 0! 864J3

2x
4 � 32½1� 2dðb�xÞ�2 ¼ 0: ð18Þ

These two curves lie in the area of the plane d–x where the polynomial Eq. (13) has positive real roots.
Let us look more carefully what happens for the prolate and oblate cases. If J2 < 0, only the limit curve (17) must

be taken into account, provided there is no restriction for the existence of positive real roots of the polynomial equa-
tion (13), and (18) does not produce any limit curve. By fixing b and varying J2, it is seen that the region of halo
orbits in the plane d–x increases as J2 diminishes. This situation still remains if we consider those orbits with r > 1,
as it is depicted in Fig. 7. If we fix now J2 and vary b, the region of admissible halo orbits with r > 1 behaves dif-
ferently for positively and negatively charged particles, as it also happened for equatorial orbits. In this sense, the
region diminishes for increasing b if the particle is negatively charged, and for positively charged particles the region
enlarges for increasing b (see Fig. 8). Note that this is the opposite behavior observed for equatorial orbits in the
prolate case.

For the oblate case the situation is more complicated, as the three limit curves must be taken into account. They are tan-
gent at the points ðdt ;xtÞ given by

dt ¼
5

6ðb�xtÞ
; x4

t ¼
4

243J3
2

:

Moreover, it can be observed that, fixing b, the region of admissible halo orbits (r > 1) diminishes as J2 increases (see Fig. 9).
As a consequence, there exists a range of charge–mass ratios not allowed for particles to be in a halo orbit. This range de-
pends on b and J2 and it is bounded for the negative and positive real roots of the equation

d4 þ 72bJ2d� 24J3
2 ¼ 0:

For example, in the case of Saturn, we have b = 0.4 and J2 = 0.016298, and those particles such that

d 2 ½�0:777231;0:000221354�
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cannot be in a halo orbit. This implies that oblateness prevents low charged particles, specially those negative charged, to
orbit away the equatorial plane. For spherical dust particles of radius a, uniform density q and potential U, the parameter
d can be written as

d ¼ xc

wk
¼ 3UB0

4pkea2qwc
;

where B0 is the magnetic field strength of the planet on the equator and ke is the Coulomb electrostatic constant. If we con-
sider a typical icy micron-sized particle (a = 1 lm and q = 1 g/cm3) around Saturn (B0 = 0.210 G and wk ¼ 4:160� 10�4 rad/s),
parameter d only depends on the potential U. If we also assume that the potential varies from �10 to 5 V, for particles at
distances between 2 and 8 planetary radius [3], we have

d ¼ 0:00133887U 2 ½�0:0133887;0:00669433�
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Fig. 7. Regions of existence of halo orbits in the prolate case with r > 1, fixing b and varying J2.
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Fig. 8. Regions of existence of halo orbits in the prolate case with r > 1, fixing J2 and varying b.
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and, only those particles such that U > 0.16533 can be in a halo orbit. However, if the size of the particle is ten times smaller,
we can have particles in a halo orbit if U < �5.8 or U > 0.0016533.

Now, we fix J2 and vary the parameter b. Then, the region of admissible orbits enlarges for positive charged particles as b
increases. On the contrary, the region diminishes as b increases for negative charged particles (see Fig. 10). It is worth noting
that bigger values of b favor positively charged particles, whereas small values favor negatively charged ones.

The discussion above, for the oblate case, only takes into account the existence of, at least, one halo orbit, regardless the
radius of it. Obviously, if a lower bound is imposed to the radius, the region of existence turns to be smaller. Moreover, the
question of the existence of two halo orbits has not been faced till now. Let us go to this problem trying to demonstrate that
two halo orbits with r > 1 can occur at the same time for suitable values of b and J2. To this end, we need the results obtained
for the case x = 0. In this case, we got one of the halo orbits at infinity, whereas the other one got a radial distance given by
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Fig. 9. Regions of existence of halo orbits in the oblate case, fixing b and varying J2.
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Fig. 10. Regions of existence of halo orbits in the oblate case, fixing J2 and varying b.
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r ¼ 3J2

2db
;

provided 1/(2db) 6 1. This implies that if J2 > 1/3, two halo orbits with r > 1 are possible in a vicinity of x = 0. Fig. 11 shows a
thin region where two halo orbits with r > 1 exist at the same time, for J2 = 0.4 and b = 0.5.

However, the lower bound r = 1 is too restrictive, because the body is not spherical. In fact, depending on the shape of the
body, the lower bound for the radius is a function of the latitude h. For instance, if we assume that the body is a homogeneous
ellipsoid of revolution with semimajor axis equal to one and semiminor axis equal to b, the radius rh of the halo orbit must
satisfy

rh P
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 hþ b2 sin2 h
p : ð19Þ

Besides, J2 can be expressed in terms of the moments of inertia [8] as

J2 ¼
2C � A� B

2M
;

where A, B and C are the principal moments of inertia and M the total mass of the body. Taking into account that
A ¼ B ¼ ð1þ b2ÞM=5 and C = 2 M/5, it results in

J2 ¼
1
5
ð1� b2Þ: ð20Þ

Note that J2 cannot be greater than 1/5, a value less than the critical value obtained for J2 in order to have two halo orbits with
radius greater than one. The question now is if it is possible to have two admissible halo orbits, that is satisfying (19) pro-
vided J2 is given by (20). The answer is yes, but for very oblate bodies. The procedure to arrive at this answer is analogous to
the determination of the boundaries for the existence region of equatorial and halo orbits. By using the equation of the ellip-
soid we have a relation between r, h and the semiminor axis, or equivalently J2. This yields

sin2 h ¼ r2 þ 5J2 � 1
5J2r2 :

Substitution of this expression into the first equation of (6) gives

J2
2ð45� 30r2Þ þ J2ð�9þ 10r4 � 10r5x2 þ r2ð9� 10bdþ 10dxÞÞ � 2r2ð�1þ r2Þðbdþwð�dþ r3xÞÞ ¼ 0:

At this point, note that (6) is a system of polynomial equations in r. The resultant of them gives the condition for the exis-
tence of two halo orbits combined with (17) and (18). An inspection of these conditions shows that the relative position of
the limit curves does not depend on b but only on J2. Furthermore, if J2 = 1/8 the limit curve obtained from the ellipsoid and
the other one given by (18) turn to be the same. Thus, if J2 < 1/8 only one or none halo orbits are possible. However, if J2 > 1/8
there is a region, in most cases a thin region, where two halo orbits exist at the same time. For instance, in Fig. 12 it is de-

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

β = 0.5 J  = 0.4               2

1

1

2

Fig. 11. The dark area corresponds to the region where two halo orbits with r > 1 exist. Encircled is the number of halo orbits with r > 1.
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picted the region where two halo orbits appear for the selected parameters b = 0.5 and J2 = 0.13, which implies a semiminor
axis b = 0.5916. We stress that this value of J2 is close to the oblateness coefficient of some asteroids, as 22 Kalliope with
J2 � 0.127 [18].

6. Conclusions

We have studied the occurrence of equatorial and halo periodic orbits of charged particles around a magnetic planet,
where the perturbations taken into account include the gravity potential with the oblateness coefficient. Our analysis gen-
eralises the works [4,17] and exhibits a richer dynamics due to the effect of the oblateness of the planet.

The oblateness coefficient plays an important role on the existence of these kind of orbits. In fact, the character of the
body, oblate or prolate yields different behavior, which is stated in the plane d–x. In this way, for an oblate body, there al-
ways exists an equatorial orbit. However physical real meaningful orbits do not exist in all cases. Nevertheless, all frequen-
cies and all charge–mass ratios are suitable for equatorial orbits. The situation is more subtle for prolate bodies where, in
some situations, depending on critical values of J2 and b, particles with certain charge–mass ratios are swept from equatorial
orbits. Besides, two equatorial orbits with different radius can share the same type of particles with the same frequency.

For halo orbits the situation is similar, but the role played for the oblateness is the opposite. For prolate bodies only one
halo orbit appears inside a certain region, without no restriction on the charge–mass ratio. On the contrary, for an oblate
body, we have observed that, as soon as the value of J2 grows up, the range of particles swept from halo orbits increases.
Besides, two halo orbits at different latitude are possible if the body is oblate enough.

The reason to consider bodies with very big oblateness coefficients is twofold. On the one hand it serves to highlight the
effect of J2 contributing to make clear the differences with the spherical case, as it was made similarly by other authors [2].
On the other hand, the analysis carried out in the paper may be of interest for the dynamics of charged grains around aster-
oids, as these dust particles can damage the solar panels of a spacecraft orbiting a certain asteroid [19].

Finally, our approach can be helpful for the analysis of the structure and composition of the planetary rings. For instance,
it could be of interest in the study of Saturn’s largest ring, the E ring. In this respect, we mention one of the experiments of
the Cassini-Huygens mission, which consists in the analysis of the three-dimensional structure and dynamic behavior of the
rings of Saturn and, in particular, the case of the E ring [16,24].
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