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Abstract

We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the
influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a
small magnetic torque generated by the interaction between the Earth’s magnetic field and the magnetic moment of the
spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of
the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character
of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the
governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular atti-
tude motions and transform them into periodic ones.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of a rotating body has been a classic topic of study in mechanics. So, in the XVIII and XIX centuries,
several aspects of the motion of a rotating rigid body were studied by many authors such as Euler, Cauchy, Jacobi,
Poinsot, Lagrange and Kovalevskaya. However, the study of the dynamics of rotating bodies is still very important
in modern science. From a theoretical point of view, this topic offers quite interesting models and problems in the field
of non-linear dynamics. Moreover, during the last decades, the interest in the dynamics of rotating bodies has consid-
erably increased in astrodynamics and space engineering because it is an useful model to study, at first approximation,
the attitude dynamics of spacecrafts [20,51].

Any spacecraft in orbit is under the action of several kinds of external disturbance torques as the solar radiation
pressure, the gravity gradient torque, the magnetic torque caused by the Earth’s magnetic field, or the aerodynamic drag
torque. Although all these external disturbances are not large in comparison with the weight of the vehicle, they can not
be considered as negligible in a closer study of the attitude dynamics of a spacecraft because their influence may be sig-
nificant in the real attitude motion of the vehicle. Sometimes, these external torques can be considered as perturbations
with undesirable effects on the attitude motion of the spacecraft, as they may generate chaotic behaviors. Nevertheless,
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it is important to note that, from other point of view, these torques can also be considered in a positive way, exploiting
their effects as control methods over the spacecraft attitude with the goal of stabilizing chaotic orientation motions.

The gravity gradient torque results from the variation in the gravitational force over the distributed mass of the
spacecraft. This torque is related to one of the more interesting aspect in the attitude dynamics of a spacecraft: the
so-called pitch motion [20]. An asymmetric satellite in closed orbit around the Earth tends to ride with its longest axis
vertical due to the effect of the gravity gradient torque. If it is deviated from this equilibrium position, the satellite would
oscillate or rotate about that attitude. This kind of oscillation is sometimes called librations. During the second part of
the last century, the topic of the effects of the gravity gradient torque was studied in relation to the determination of the
spacecrafts motions. Klemperer and Baker [28], Schindler [50] and Klemperer [29], studied the librations of dumbbell
and ellipsoid of revolution satellites in circular orbit. On the other hand, Moran [40] analyzed the effects of the planar
librations on the orbital motion of an asymmetric spacecraft. Modi and Brereton [38,39] investigated the libration peri-
odic solutions of a gravity-gradient oriented satellite in circular and elliptic orbit.

The magnetic torque is generated by the interaction between the possible magnetic features of the spacecraft and the
magnetic field of the Earth. These magnetic features may arise from both internal electric currents and spacecraft mate-
rials subject to induced or permanent magnetization. The cases of the Vanguard I and Tiros I satellites can be cited as
representative examples of the effects of magnetics torques on the attitude motion of spacecrafts [20,41]. The strength of
the magnetic torque depends on the intrinsic magnetic moment of the spacecraft, but it is usually smaller than a tenth
part of the gravity gradient torque [5,20].

Data obtained from the flight experience of different satellites launched during the aerospace history show that unex-
pected behaviors have arisen in the attitude motion of several spacecrafts. These undesirable orientation motions have
been frequently due to the action of those external torques which had not been taken into account in the spacecraft
design [41–43]. Therefore, these unexpected behaviors move to study, analyze and understand, from a theoretic point
of view, the attitude motion of spacecrafts in different conditions, in order to detect in advance and prevent undesirable
orientation motions. During last decades, numerous theoretic studies have pointed out the existence of chaotic attitude
behaviors in several kinds of satellites under the action of different perturbations. In this way, Tong and Rimrott [56]
have numerically investigated the planar libration of an asymmetric satellite in elliptic orbit under the gravity gradient
torque. Teofilatto and Graziani [55] have studied the same system but considering the three-dimensional libration
motion of the spacecraft. Holmes and Marsden [19], Koiller [30], and Peng and Liu [47] have analyzed free gyrostats
with a slightly asymmetric rotor. Karasopoulos and Richardson [26,27] have studied analytically and numerically the
attitude dynamics of a satellite under the gravity gradient torque. Nixon and Misra [44] and Fujii and Ichiki [11] have
investigated numerically the orientation motion of tethers. Tong et al. [57] have also treated the case of an asymmetric
gyrostat under the uniform gravitational field. Meehan and Asokanthan [35] and Gray et al. [16] have studied the atti-
tude motion of satellites with internal dissipation of energy. Beletsky et al. [2] have treated numerically the case of a
magnetic spacecraft in circular polar orbit subject only to the torque generated by the geomagnetic field. Lanchares
et al. [33] and Iñarrea et al. [21–23] have investigated analytically and numerically the chaotic orientation motions
of several kinds of asymmetric spacecrafts with time-dependent moments of inertia in different external conditions.
In many of these studies, the authors have applied the Melnikov method [37], which proves to be a powerful analytical
tool to determine, at first order, the existence of homo/heteroclinic intersections and so chaotic behavior in near-inte-
grable systems.

In this paper, we study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular
orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic
orbit and by a small magnetic torque generated by the interaction between the Earth’s magnetic field and the magnetic
moment of the spacecraft. In this, work we have also made use of the Melnikov method to analyzed if our perturbed
spacecraft exhibits heteroclinic chaotic attitude motions. It is important to note that, due to the change in the orienta-
tion of the spacecraft in its pitch motion, the center of gravity of the satellite does not coincide, in general, with its mass
center. Therefore, there is a coupling between the orbital and the libration motion of the spacecraft. However, as the
vehicle is small compared to its distance to the mass center of the Earth, the deviations of the center of gravity of
the spacecraft from its mass center may be considered very small. So, we also assume that there is no coupling between
the orbital and pitch motion, hence the orbit of the spacecraft around the Earth is not affected by the libration motion.

As it has been theoretically shown and proved in real experience, many spacecraft systems in different conditions
may exhibit chaotic or unstable behaviors. Therefore, this kind of dynamical systems represents a suitable field for
the applications of control methods. During last years, new control techniques have been developed to be applied to
nonlinear dynamical systems in order to transform chaotic or unstable behaviors into regular or periodic motions
[4]. These new techniques have a goal: to achieve the control of chaos, that is, the possibility of bringing order into
chaos. Some investigations have been undertaken using control schemes with and without feedback. However, the feed-
back control methods became a distinguished and important group among the plethora of different control techniques.
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Probably, the reason should be found in the advantage that they offer: they need comparatively small perturbations to
get the control of the system, with respect to the non-feedback schemes (see [49]).

Several time delayed feedback control methods have been recently applied to stabilize different dynamical systems by
various authors [6,25,34,46,53]. One of the simplest of these time delayed control techniques was first proposed by Pyr-
agas [48] in order to synchronize the current state of a system and a time delayed version of itself. Taking this delayed
time as the period of an unstable periodic orbit such a control scheme can be used to stabilize the orbit. This method of
control is usually named time-delayed autosynchronization or TDAS. Two important advantages of this method are
related with the feedback used: it does not requires rapid switching or sampling, nor does it require a reference signal
corresponding to the desired orbit. This technique has been improved in [52,3] using a more elaborated feedback: the
extended time-delayed autosynchronization or ETDAS, where TDAS appears as a limiting case.

Control schemes based on feedback methods have been utilized in orbital and attitude dynamics of spacecrafts. In
this way, Ge et al. [13], have applied a delay feedback control method, among other ones, to remove chaos in the
motion of a gyrostat satellite in absence of external torques. Tsui and Jones [58] have compared the relative efficacy
of three control techniques, one of them time-delay feedback, in the chaotic attitude of a rigid satellite with thrusters
and generic perturbations. Fujii and co-workers [12] have investigated the application of a time-delay feedback
method in order to get the stabilization of the libration motion of a rigid satellite in elliptic orbit. El-Gohary and
Youssif [7,8] have considered the optimal feedback control law to stabilize the equilibrium positions of a rotating rigid
body using internal rotors. Meehan and Asokanthan [36] have analyzed the chaos removal in the attitude of a gyro-
stat satellite with internal dumping by means of a feedback control method based on the action of a external torque.
Peláez and Lorenzini [46] and Iñarrea and Peláez [24] have studied the application of different feedback control tech-
niques to transform unstable periodic orbits into asymptotically stable ones in the attitude dynamics of an electrody-
namic tether.

The present paper is structured in the following way. In Section 2, we describe in detail the perturbed system and we
also express the equation of motion of the spacecraft pitch motion. Then we point out the main features of the phase
space of the unperturbed system. In Section 3 we calculate the Melnikov function of the perturbed spacecraft. In Sec-
tion 4 by means of computer numerical simulations of the spacecraft pitch motion we use several numerical techniques
to check the validity of the analytical result obtained through the Melnikov method. Poincaré surface of sections reveal
us the persistence of periodic pitch motions in the perturbed system with the same period of the orbital motion. In Sec-
tion 5, we apply the ETDAS control method to the governing equations of motion in order to transform initially cha-
otic pitch motions into one of the persistent periodic ones.

2. Description of the system and equations of motion

Let us consider an asymmetric magnetic spacecraft in a polar almost circular orbit in the gravitational and magnetic
fields of the Earth. The spacecraft has its own magnetic moment generated by permanent magnets or electric current
loops. The magnetic field of the Earth is modeled as a perfect dipole aligned with the Earth’s rotation axis. We focus the
analysis on the system attitude dynamic and we neglect any decay or raise in the orbit followed by the spacecraft.

We make use of three different right oriented orthonormal reference frames:

• The inertial geocentric frame EfOE;X E; Y E; ZEg with the origin OE at the center of mass of the Earth, the X EY E plane
coincident with the equatorial plane, the X E axis passing through the ascending node N, and the ZE axis aligned with
the Earth’s rotation axis.

• The orbital frame RfO;X ; Y ; Zg with origin O at the mass center of the spacecraft, the Z axis along the local vertical
pointing to the mass center of the Earth OE, the Y axis is normal to the orbital plane and the X axis is in the orbital
plane but it does not coincides exactly with the velocity vector of the spacecraft due to the eccentricity of the orbit.
The base vectors of R are~r1;~r2;~r3. See Fig. 1. In the usual aircraft and spacecraft terminology, the X ; Y ; Z axes are
called respectively roll, pitch and yaw axes [51,20].

• The body frame BfO; x; y; zg, is established with the directions of the axes coincident with the principal axes of the
spacecraft. The base vectors of B are ~b1;~b2;~b3.

As it is well known, the relative orientation between two of these three reference frames results by means of three
consecutive rotations involving the Euler angles ðw; h;/Þ. To move from the orbital axes fX ; Y ; Zg to the body axes
fx; y; zg, the first rotation is about the Z axis through an angle w (yaw). The second rotation is about the new axis
Y 0 by an angle h (pitch). Finally, the third rotation is about the new axis x through an angle / (roll), reaching the body
axes fx; y; zg (see Fig. 2). This particular set of Euler angles are commonly used in aircraft and spacecraft attitude and
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are also known as Tait-Bryan or Cardan angles [20,59,18]. We do not make use of the classical Euler angles [14] because
they have a singularity in the particular orientation that is studied in this paper.

Without control, two kind of forces are acting upon the magnetic spacecraft: the gravitational interaction and the
magnetic one. Therefore, the attitude dynamics of the spacecraft is governed by two torques: (i) the one provided by the
gravity gradient and (ii) the magnetic torque generated by the interaction between the magnetic moment of the space-
craft and the Earth’s magnetic field. Taking into account these torques, the classical theorem of angular momentum
about the mass center O of the spacecraft, expressed in the inertial geocentric frame E, is

d~G
dt
¼ ~N g þ ~N m;

where ~G is the angular momentum of the spacecraft, ~N g is the gravitational torque, and ~N m the magnetic one. This
equation can be also expressed in the non-inertial body frame B as

d0~G
dt
þ ~xT � ~G ¼ ~N g þ ~N m;

where ~xT is the total angular velocity of the spacecraft, and the prime in the derivative stands for it is calculated in the
body frame B.
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Fig. 1. The inertial geocentric frame E and the orbital reference frame R.
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Fig. 2. The three consecutive rotations from the orbital frame R to the body frame B through the Euler yaw, pitch and roll angles
ðw; h;/Þ.
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In this frame B, the angular momentum ~G can be written as ~G ¼ I~xT, where I is the tensor of inertia of the space-
craft. As it is expressed in the body frame B of the principal axes of the spacecraft, this tensor is a diagonal one, that is,
I ¼ diagðIx; Iy ; IzÞ, where Ix, Iy and Iz are the moments of inertia of the spacecraft. We assume an asymmetric spacecraft
with this specific relation Ix > Iy > Iz. In this way, the theorem of the angular momentum takes the form

I
d~xT

dt
þ ~xT � I~xT ¼ ~N g þ ~N m; ð1Þ

where the prime is dropped because it is not necessary to distinguish between the temporal derivatives calculated in one
frame or the other.

Taking into account that in the total angular velocity xT of the spacecraft there are two contributions: one from the
orbital motion and other form the attitude one, thus this total angular velocity xT can be written in the body frame B as

~xT ¼ ~xþ CRB~xo ¼ xx
~b1 þ xy

~b2 þ xz
~b3 þ CRBð� _m~r2Þ: ð2Þ

Here ~x ¼ xx
~b1 þ xy

~b2 þ xz
~b3 is the attitude angular velocity of the body about its mass center O in the body frame B.

Besides, ~xo ¼ � _m~r2 is the orbital angular velocity of the spacecraft expressed in the orbital frame R, where m is the true
anomaly that gives us the angular position of the spacecraft in its orbit. Finally, CRB is the transformation matrix from
the orbital frame R to the body frame B, that is, the matrix of the three consecutive rotations involving the Euler angles
ðw; h;/Þ.

As it is well known, the components ðxx;xy ;xzÞ of the angular velocity ~x in the body frame B, can be written in
terms of the Euler angles ðw; h;/Þ and their velocities ð _w; _h; _/Þ as [59,51,18,20]

xx ¼ _/� _w sin h;

xy ¼ _h cos /þ _w cos h sin /;

xz ¼ _w cos h cos /� _h sin /:

8><
>: ð3Þ

Due to the gravity gradient and the finite dimension of the spacecraft, it is under the action of a gravitational torque
~N g about the body mass center O. The components of this torque ~N g in the body frame B are given by [59,51,20]:

N gx ¼ 3lg

R3 ðIz � IyÞ sin / cos / cos2 h;

N gy ¼
3lg

R3 ðIz � IxÞ cos / sin h cos h;

N gz ¼ 3lg

R3 ðIx � IyÞ sin / sin h cos h;

8>><
>>: ð4Þ

where lg ¼ Gme ¼ 3:986� 1014 N m2=kg is the mass parameter of the Earth, and R is the distance between the mass
centers of the spacecraft and Earth.

As we consider that the spacecraft has its own magnetic moment, it is also under the action of another torque gen-
erated by the interaction with the Earth’s magnetic field. We suppose that the terrestrial magnetic field~B is generated by
a perfect dipole located at the mass center of the Earth and aligned with its rotation axis [59,51,20]. In this way, the
components of the magnetic field ~B ¼ Bx~r1 þ By~r2 þ Bz~r3 are expressed in the orbital frame R in IS units as

Bx ¼ lo

4p
lm
R3 sin i cosðmþ XÞ;

By ¼ � lo

4p
lm
R3 cos i;

Bz ¼ lo

4p
lm
R3 2 sin i sinðmþ XÞ;

8><
>: ð5Þ

where lo is the magnetic permeability of free space, lm � 7:8� 1022A � m is the geomagnetic dipole moment [31], i and X
are the inclination and the argument of perigee of the spacecraft orbit respectively.

The magnetic torque ~N m acting over the spacecraft, calculated in the body frame B, is given by the cross product,

~Nm ¼ ~M � CRB
~B ¼ ðMx

~b1 þMy
~b2 þMz

~b3Þ � CRBðBx~r1 þ By~r2 þ Bz~r3Þ; ð6Þ

where ~M ¼ Mx
~b1 þMy

~b2 þMz
~b3 is the own magnetic moment of the spacecraft expressed in the body frame B, the

components ðBx;By ;BzÞ are those of Eq. (5), and CRB is the transformation matrix from the orbital frame R to the body
frame B.

Making use of Eqs. (2)–(6) the equation of motion (1) could be explicitly written in terms of the Euler angles
ðw; h;/Þ, their velocities ð _w; _h; _/Þ and their accelerations ð€w; €h; €/Þ, resulting in quite cumbersome expressions.

Nevertheless, in this paper we adopt the following assumptions: (i) the spacecraft is tracing a polar orbit, that is, its
inclination is i ¼ p=2; (ii) the magnetic moment ~M of the spacecraft keeps constant and aligned with the principal axis z

of the spacecraft, that is, ~M ¼ ð0; 0;MÞ in the body frame B; and (iii) the roll and yaw motions are initially quiescent,
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that is, wð0Þ ¼ _wð0Þ ¼ 0 and /ð0Þ ¼ _/ð0Þ ¼ 0. Under all these assumptions, the equations of the attitude motion
become

d2w
dt2 ¼ 0;

d2h
dt2 ¼ d2m

dt2 �
3lgðIx�IzÞ

Iy R3 sin h cos hþ loMlm

4pIy R3 ½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ�;
d2/
dt2 ¼ 0;

8>>><
>>>:

Therefore, in this situation, roll and yaw motions are not excited by the pitch one. The direction of the principal axis
y of the spacecraft is fixed in space and it is always normal to the orbital plane. The orientation of the spacecraft can be
described with only one angle h, the pitch one. And there is only one non–trivial equation of motion for the attitude
dynamics of the system.

Now it is convenient to replace the time t by the true anomaly m as the independent variable of the problem. In this
change of variable, we make use of the following equations

R ¼ p
1þ e cos m

dm
dt
¼

ffiffiffiffiffiffiffilgpp

R2
;

where e is the eccentricity and p ¼ að1� e2Þ is the parameter of the orbit traced by the spacecraft. By means of the chain
rule, we obtain the following equation for the pitch motion,

€h ¼ � 3ðIx � IzÞ
Iy

sin h cos h
1þ e cos m

þ 2e sin m
1þ e cos m

ð _h� 1Þ þ loMlm

4plgIy

½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ�
1þ e cos m

;

where m is the independent variable. From this equation and along the rest of the paper, the dot means derivation with
respect to the true anomaly m. In this equation, the last term comes from the interaction with the Earth’s magnetic field,
whereas the other terms arise from the gravity gradient and inertial Coriolis forces.

Now, by introducing the following new dimensionless parameters

K ¼ 3ðIx � IzÞ
Iy

; b ¼ loMlm

4plgIy
;

we obtain

€h ¼ �K sin h cos h
1þ e cos m

þ 2e sin m
1þ e cos m

ð _h� 1Þ þ b
½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ�

1þ e cos m
:

Therefore, the attitude dynamics of the spacecraft depends basically on three parameters: K which describes the
spacecraft’s asymmetry, the orbit eccentricity e, and b which describes the strength of the magnetic interaction.

As we consider that the spacecraft is tracing an almost circular orbit, and also we assume that the magnetic inter-
action is much weaker than the gravitational one, in this case we can suppose that both parameters e and b are small,
that is, e� 1 and b� 1. Hence, making use of the expansion ð1þ e cos mÞ�1 � 1� e cos m, and omitting terms of sec-
ond order in the small parameters e and b, the equation of the pitch motion results in

€h ¼ �K sin h cos hþ Ke cos m sin h cos hþ 2e sin mð _h� 1Þ þ b½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ�: ð7Þ

The terms in e and b in this equation can be considered as small perturbations. In this way, the unperturbed system
ðe ¼ b ¼ 0Þ coincides with an asymmetric spacecraft in circular orbit under only the gravity gradient torque. Thus, the
equation of motion of the unperturbed spacecraft is given by

€h ¼ �K sin h cos h:

This equation may be rewritten in form of a system of two differential equations of first order as

_h ¼ x ¼ f1;

_x ¼ �K sin h cos h ¼ f2:

(
ð8Þ

These differential equations correspond to the following Hamiltonian

H ¼ 1

2
p2

h þ
K
2

sin2 h;

with ph ¼ x. In this case, the Hamilton function coincides with the sum of the rotational kinetic energy of the spacecraft
about its mass center, plus the gravity gradient potential energy of the body. As it can be seen, the unperturbed space-
craft is one degree of freedom and, therefore, it is an integrable system.
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Eqs. (8) are those corresponding to a nonlinear pendulum taking 2h as the angular variable. Therefore, it is known
that the system has unstable equilibria at ðh;xÞ ¼ ð�ð2nþ 1Þp=2; 0Þ, and stable equilibria at ð�np; 0Þ. The Fig. 3 shows
the main features of the phase flow for the unperturbed system (8) for K ¼ 1. The two unstable equilibria, denoted by E1

and E2, are connected by four heteroclinic trajectories. These orbits are the separatrices of the phase space, the thick
continuous lines in that figure.

The energy of the system corresponding to the unstable equilibria and the separatrices is Esep ¼ K=2. These separa-
trices divide the phase space in two different classes of the pitch motion. On the one hand, oscillations, the dotted lines
inside the separatrices, when the energy of the spacecraft is E < Esep,

h ¼ arcsin 1
k sn

ffiffiffiffi
K
p

m; 1
k

� �� �
;

x ¼
ffiffiffiffiffiffi
2E
p

cn
ffiffiffiffi
K
p

m; 1
k

� �
;

k2 ¼ K
2E

(
ð9Þ

which are periodic with period T ¼Kð1=kÞ=
ffiffiffiffi
K
p

, being K the complete integral of first kind. On the other hand, tum-
bling rotations, the dashed lines outside the separatrices, when the energy of the spacecraft is E > Esep,

h ¼ arcsin sn
ffiffiffiffiffiffi
2E
p

m; k
� �� �

;

x ¼
ffiffiffiffiffiffi
2E
p

dn
ffiffiffiffiffiffi
2E
p

m; k
� �

;
k2 ¼ K

2E

(
ð10Þ

which are periodic with period T ¼KðkÞ=
ffiffiffiffiffiffi
2E
p

. Besides, the solutions corresponding to the four asymptotic heteroclinic
trajectories, are

½h�ðmÞ;x�ðmÞ� ¼ f� arcsin tanh
ffiffiffiffi
K
p

m
� �h i

; �
ffiffiffiffi
K
p

sech
ffiffiffiffi
K
p

m
� �

g; ð11Þ

subject to the initial conditions ðh�o ð0Þ;x�o ð0ÞÞ ¼ 0;�
ffiffiffiffi
K
p� �

. The four heteroclinic trajectories form the stable W sðE1Þ,
W sðE2Þ and unstable W uðE1Þ, W uðE2Þ manifolds corresponding to the two unstable equilibria, that join smoothly to-
gether. So it holds that W sðE1Þ ¼ W uðE2Þ and W uðE1Þ ¼ W sðE2Þ.

3. Chaotic pitch motion: the Melnikov function

Let us consider the perturbed system. Now the stable and unstable manifolds are not forced to coincide and it is
possible that they intersect transversally in the corresponding Poincaré surface of section, leading to an infinite number
of new heteroclinic points. Then, a heteroclinic tangle is generated. In such a case, because of the perturbations, the
pitch motion of the spacecraft near the unperturbed separatrices becomes extremely complicated and chaotic in the
sense that the system exhibits Smale’s horseshoes and a stochastic layer appears near the unperturbed separatrices.
Inside this chaotic layer small isolated regions of regular motion with periodic orbits can also appear.

The existence of heteroclinic intersections may be proved, at first order, by means of the Melnikov method [17]. In
order to apply the Melnikov method, the Eq. (7) can be expressed as the following system of two differential equations
of first order

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0

E1 E2

Fig. 3. The phase space of the unperturbed pitch motion of an asymmetric spacecraft in circular orbit under the gravity gradient
torque for K ¼ 1.
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_h ¼ x ¼ f1 þ g1;

_x ¼ �K sin h cos hþ Ke cos m sin h cos hþ 2e sin mðx� 1Þ þ b½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ� ¼ f2 þ g2;

(

ð12Þ

where g1 ¼ 0 and g2 ¼ Ke cos m sin h cos hþ 2e sin mðx� 1Þ þ b½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ�.
The Melnikov function, M�ðm0Þ, for the system (12) is given by

M�ðm0Þ ¼
Z 1

�1
~f ½~z�ðmÞ� ^~g½~z�ðmÞ; mþ m0�dm ¼

Z 1

�1
ff1½~z�ðmÞ�g2½~z�ðmÞ; mþ m0� � f2½~z�ðmÞ�g1½~z�ðmÞ; mþ m0�gdm

¼
Z 1

�1
f1½~z�ðmÞ�g2½~z�ðmÞ; mþ m0�dm

¼
Z 1

�1
x�ðmÞfKe cosðmþ m0Þ sin h�ðmÞ cos h�ðmÞ þ 2e sinðmþ m0Þðx�ðmÞ � 1Þ þ b½cos h�ðmÞ cosðmþ m0

þ XÞ � 2 sin h�ðmÞ sinðmþ m0 þ XÞ�gdm; ð13Þ

where~z�ðmÞ ¼ ðh�ðmÞ;x�ðmÞÞ are precisely the solutions of the unperturbed heteroclinic orbits (11).
The Melnikov function M�ðm0Þ give us a measure of the distance between the stable and unstable manifolds of the

perturbed hyperbolic fixed points. Thus, if M�ðm0Þ has simple zeroes, there are transverse intersections between the sta-
ble and unstable manifolds in the corresponding Poincaré surface of section.

Now, by substitution of Eqs. (11) into (13) we obtain, for the positive branch of the Melnikov function,

Mðm0Þ ¼ M1 þM2 þM3

¼ K3=2e
Z 1
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� �
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h i
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h i
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p

�
Z 1

�1
sech2

ffiffiffiffi
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p

m
� �

cosðmþ m0 þ XÞ � 2
sinh

ffiffiffiffi
K
p

m
� �

cosh2
ffiffiffiffi
K
p

m
� � sinðmþ m0 þ XÞ

" #
dm ð14Þ

being M1 and M2 the Melnikov function corresponding to the perturbation coming from the elliptic orbit, and M3 the
one arising from the magnetic interaction.

These three integrals, M1, M2 and M3 can be calculated integrating them by parts and arriving at other simpler inte-
gral tabulated in [15]. In this way, we obtain

M1 ¼ �
pe
2

cosech
p

2
ffiffiffiffi
K
p

	 

sinðm0Þ;

M2 ¼ 2pe cosech
p

2
ffiffiffiffi
K
p

	 

� sech

p

2
ffiffiffiffi
K
p

	 
� �
sinðm0Þ;

M3 ¼
pbffiffiffiffi

K
p cosech

p

2
ffiffiffiffi
K
p

	 

� 2sech

p

2
ffiffiffiffi
K
p

	 
� �
cosðm0 þ XÞ:

ð15Þ

Thus, the complete Melnikov function Mðm0Þ results in

Mðm0Þ ¼ C1 sinðm0Þ þ C2 cosðm0 þ XÞ; ð16Þ

where the coefficients C1 and C2, which depends on the system parameters K, e and b, are given by

C1ðK; eÞ ¼ pe
3

2
cosech

p

2
ffiffiffiffi
K
p

	 

� 2sech

p

2
ffiffiffiffi
K
p

	 
� �
;

C2ðK; bÞ ¼
pbffiffiffiffi

K
p cosech

p

2
ffiffiffiffi
K
p

	 

� 2sech

p

2
ffiffiffiffi
K
p

	 
� �
:

ð17Þ

Therefore, as the coefficients C1 and C2 vanish for different values of parameter K, we can conclude from Eq. (16)
that the Melnikov function Mðm0Þ of the perturbed spacecraft has simple zeroes. Hence, both perturbations produce
heteroclinic intersections between the stable and unstable manifolds of the hyperbolic equilibria E1 and E2 in the cor-
responding Poincaré surface of section. Therefore the perturbed spacecraft shows chaotic pitch motions near the unper-
turbed separatrices.
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4. Numerical analyses

In order to check the validity of the analytical result given by the Melnikov method, we have made use of several
numerical techniques. They are based on the numerical integration of the equations of motion (12) by means of a Run-
ge–Kutta algorithm of fifth order with fixed step [32].

Firstly, we have numerically calculated the stable W sðEiÞ and unstable W uðEiÞ manifolds associated to the saddle
fixed points E1, E2 of the Poincaré map. The Poincaré surface of section consist of sections m ¼ cte � ðmod2pÞ of the
three–dimensional ðh;x; mÞ extended phase space. This computation has been carried out by means of the commercial
software DYNAMICS [45]. Fig. 4a shows the invariant manifolds of the unstable equilibria E1 in the perturbed space-
craft with K ¼ 1 and e ¼ b ¼ 0:1. Fig. 4b shows the same for the other unstable equilibria E2. For shake of clarity we
show the four invariant manifolds in two different graphs. The unstable manifolds are depicted as darker lines, whereas
the stable ones are depicted as clearer lines. As it can be seen clearly in both figures, the stable and unstable manifolds of
each equilibria transversally intersect each other in many heteroclinic points. This numerical calculation confirms the
analytical results provided by the Melnikov method: the perturbations of our system generate the intersections between
the invariant manifolds, and therefore the arising of chaotic behavior in the pitch motion of the spacecraft.

In order to visualize the effect of the perturbations in the pitch motion dynamics of the spacecraft, we have studied
the time histories of the pitch angle h, the trajectories of the system in the reduced phase space ðh;xÞ, the m ¼ 2p Poin-
caré surfaces of section, and the power spectra of several trajectories. To this end, we have used appropriate algorithms
[54,9] implemented with the symbolic manipulator MATHEMATICA [60].

Fig. 5 shows the numerical simulations of the same trajectory with initial conditions near to the unperturbed sep-
aratrix ðho;xoÞ ¼ ð1:39412; 0Þ for the unperturbed spacecraft (left column), and for the perturbed spacecraft with
(K ¼ 1, e ¼ 0:03 and b ¼ 0:02 (right column). For these initial conditions, in absence of perturbations, the pitch motion
corresponds with a periodic oscillation with the positive z axis of the spacecraft pointing to Earth. Moreover, this peri-
odic oscillation has a period twice the orbital period 2p, as only two points appear in the Poincaré surface of section (c),
and a sharp isolated peak stands out at frequency f ¼ 0:5 in the flat power spectrum (d). In this figure, we can see
clearly how this periodic pitch motion in the unperturbed system becomes a chaotic one when the perturbations go into
action. This transformation is confirmed in the right column by the irregular time evolution of pitch angle h (a) which
turns into a complex trajectory in the reduced phase space (b) where oscillations and tumbling rotations alternate in a
random order. The Poincaré map (c) also shows how this motion appear as a cloud of disordered points located at a
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Fig. 4. Heteroclinic intersections of the invariant manifolds of the equilibria E1 (a) and E2 (b) in the m ¼ 2p Poincaré map for K ¼ 1
and e ¼ b ¼ 0:1.
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stochastic layer around the unperturbed separatrix. Finally, the broadly distributed power spectrum (d) gives another
sign of the chaotic behavior of the pitch motion.

It is important to note that, not all the regular pitch motions of the unperturbed spacecraft become into chaotic
ones when the perturbations go into action. Despite of the perturbations, some periodic pitch motions persist with
the same period as the orbital motion, that is, m ¼ 2p (or multiples of it). This fact can be observed in Fig. 6. The
m ¼ 2p Poincaré surface of section of the perturbed system is shown in Fig. 6a with different initial conditions and
parameters K ¼ 1 and e ¼ b ¼ 0:03. In this graph, four centers appear labeled with letters A–D. As it is well known,

Fig. 5. Numerical simulation of the pitch motion for initial conditions near the unperturbed separatrix ðho;xoÞ ¼ ð1:39412; 0Þ. Left
column: unperturbed spacecraft ðK ¼ 1; e ¼ b ¼ 0Þ. Right column: perturbed spacecraft ðK ¼ 1; e ¼ 0:03; b ¼ 0:02Þ. (a) Time
evolution of angle h. (b) Trajectory in the phase space. (c) m ¼ 2p Poincaré surface of section. (d) Power spectrum.
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these centers correspond to four different periodic pitch motions with the same period as the orbital motion, 2p. The
trajectories of these 2p-periodic motions in the reduced phase space ðh;xÞ can be seen in Fig. 6b. The motions A and
B are periodic oscillations. In motion A, the positive z axis of the spacecraft is pointing towards Earth, whereas in
oscillation B, the positive z axis is pointing outwards Earth. The motions C and D, are periodic tumbling rotations
with opposite directions. Around the four centers of Fig. 6a there are closed curves which correspond to quasi-peri-
odic motions. Finally, the big cloud of disordered points that fill the central part of this graph correspond to the
chaotic pitch motions.

5. Control of the pitch motion with the ETDAS method

In this section a feedback method for controlling chaos is applied to the equations of motion (12) of the perturbed
spacecraft in order to transform the chaotic pitch motions into one of those persistent 2p-periodic motions we have
mentioned in the previous section. The particular feedback control method that we use in this section is the so-called
extended time-delay autosynchronization or ETDAS. This method is a natural extension of the time-delay autosyn-
chronization or TDAS technique [48]. The ETDAS method was first proposed by Socolar et al. [52] to overcome
the limitations of the TDAS technique in stabilizing periodic orbits. In this way, the ETDAS has been successfully
applied in several systems were TDAS had previously failed [3,52,1,49]. The ETDAS method has two important advan-
tages: it does not requires fast switching or sampling, nor does it needs a reference signal corresponding to the desired
regular motion. It only requires the knowledge of the period of the desired periodic orbit.

The basic block diagram of the ETDAS control method is shown in Fig. 7. In the operation of this method, the
control variable y is progressively delayed at the output by multiples of some amount of time s. Then all these delayed
control values yðt � jsÞ are re-introduced into the system through the feedback control signal

F ðtÞ ¼ k yðtÞ � ð1� RÞ
X1
j¼1

Rj�1yðt � jsÞ
" #

:

where 0 6 R < 1 and k are the two adjustable parameters of this control signal.
When applied to periodic motion the delay time s coincides with the period of the motion. In this way, the ETDAS

method uses information of many previous states of the system in order to get the stabilization of the periodic orbit with
period s. It is worth to emphasize that for any values of the control parameters R and k, when the system follows a s-
periodic orbit, the control signal F ðtÞ vanishes, because in that case, yðt � jsÞ ¼ yðtÞ for all j (the identity

1

1� R
¼
X1
k¼0

Rk

has to be taken into account).
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Fig. 6. (a) m ¼ 2p Poincaré surface of section of the perturbed spacecraft ðK ¼ 1; e ¼ b ¼ 0:03Þ with different initial conditions. (b)
Trajectories in the reduced phase space of the 2p-periodic pitch motions corresponding to the centers labeled A–D.
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Therefore, we assume that the perturbed spacecraft is acted upon additional forces, which introduce new terms in the
equations of motion in order to control effectively the attitude dynamics of the spacecraft. To this end, we have applied
the ETDAS method in such a way that the equations of motion of the perturbed spacecraft take the form

_h ¼ x;

_x ¼ �K sin h cos hþ Ke cos m sin h cos hþ 2e sin mðx� 1Þ þ b½cos h cosðmþ XÞ � 2 sin h sinðmþ XÞ� þ F ðmÞ;

(

ð18Þ

where the feedback control signal F ðmÞ is given by

F ðmÞ ¼ k xðmÞ � ð1� RÞ
X1
j¼1

Rj�1xðm� jsÞ
" #

:

Thus, we have chosen as control variable the angular velocity x. The delay time s must be precisely the period of the
persistent periodic pitch motions in the uncontrolled spacecraft, that is, the orbital period s ¼ 2p. In this way, we have
two different adjustable control parameters, k and 0 6 R < 1 in the added control term to get the control over the pitch
motions of the spacecraft.

DYNAMICAL
SYSTEM

outputy(t)

DELAYS  j

k·y(t)

input

k(1-R)     R
j-1

y(t-j  )
j=1

F(t)=k  y(t) - (1-R)     R
j-1

y(t-j  )
j=1

Fig. 7. Block diagram of the ETDAS control method.

Fig. 8. An example of the success of the ETDAS control method for the case ðho;xoÞ ¼ ð�1:4; 0Þ and K ¼ 1; e ¼ b ¼ 0:03. Time
history of h angle (a) and trajectory in phase space (b) for the uncontrolled spacecraft. The same for the controlled spacecraft with
control parameters k ¼ �0:1, R ¼ 0:1 in (c) and (d).
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It is worth to point out that, when the controlled spacecraft follows a 2p-periodic motion, the control signal F van-
ishes. Thus, any 2p-periodic motion of the uncontrolled system (12) is also a 2p-periodic libration of the controlled
spacecraft (18). As a consequence, when the system moves in the neighborhoods of the 2p-periodic motion we should

Fig. 9. Another example of the success of the ETDAS control method for the same parameters as Fig. 8 but different initial conditions
ðho;xoÞ ¼ ð�p=2;�0:9Þ.
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Fig. 10. Attraction basins of the 2p-periodic motions for the controlled spacecraft with K ¼ 1, e ¼ b ¼ 0:03 and k ¼ �0:1, R ¼ 0:5.
Black color stands for initial conditions tending to periodic motion A (Fig. 6). White color – periodic motion B. Dark grey color –
periodic motion C. Clear grey color – periodic motion D. Striped areas – other periodic motions.
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expect small values for the controlling force F (in fact, it is a torque acting on the spacecraft center of mass). Therefore,
if this control method is successful, and if from the very beginning the spacecraft is moving close to one of those per-
sistent periodic pitch motions, it can be controlled with small controlling forces. This is an attractive feature of this
control method.

Fig. 8 shows an example of the tests we have carried out integrating numerically the equations of motion (18) of the
controlled spacecraft. This example corresponds to a pitch motion with initial conditions ðho;xoÞ ¼ ð�1:4; 0Þ, and sys-
tem parameters K ¼ 1, e ¼ b ¼ 0:03, which are the same of Fig. 6. The upper graphs of this figure show the time history
of the pitch angle h (a), and the trajectory in phase space (b) for the uncontrolled spacecraft. The lower graphs show the
same for the controlled spacecraft with control parameters k ¼ �0:1, R ¼ 0:1. The dashed vertical line in (c) indicates
the moment when the control method is switched on. As it can be seen in figures (c) and (d), the control method suc-
ceeds transforming the initially chaotic pitch motion into a periodic oscillation of relatively small amplitude. In figure
(d) it is depicted the controlled trajectory during only the last ten orbital periods. As it can be observed, it practically
coincides with the persistent 2p-periodic oscillation of the uncontrolled spacecraft (black dashed line) which corre-
sponds to the trajectory labeled A in Fig. 6b.

In Fig. 9 we show another example of control test for the same values of the system and control parameters, but
different initial conditions ðho;xoÞ ¼ ð�p=2;�0:9Þ. As it can be seen in the graphs of this figure, the control method
succeeds again, but now it transforms the initially chaotic pitch motion into a different 2p-periodic motion from the
one of the previous example. In this case, the final periodic motion is not an oscillation but a tumbling rotation which
correspond to the persistent periodic rotation of the uncontrolled spacecraft labeled C in Fig. 6b.

As these two examples of control shown in Figs. 8 and 9 point out, when the control method is applied to different
initial conditions, not always it transforms the corresponding chaotic pitch motions into the same final periodic motion.
Therefore, in order to get a global view of the effect of the control method on the system, we have focused on the geom-
etry of the attraction basins of the four different persistent 2p-periodic motions of the uncontrolled spacecraft, when the
control method is applied to it. To this end, a two-dimensional grid of initial conditions ðh;xÞ with steps of 0.02, has
been considered with fixed values of the system and control parameters. The controlled trajectories corresponding to
each one of these initial conditions have been calculated integrating numerically the controlled equations of motion
(18) in order to know its w-limit periodic trajectory. This grid is transformed into a matrix with different values depend-
ing on the corresponding w-limit periodic motion of each initial conditions. The resulting matrix is then submitted as
input to the commercial software TRANSFORM [10] which produces the pictures as the one in Fig. 10 by assigning the
same colors to the same values of the matrix.

Fig. 10 shows an example of the attraction basins of the different final periodic pitch motion for K ¼ 1, e ¼ b ¼ 0:03
and k ¼ �0:1, R ¼ 0:5. Black color stands for those initial conditions whose controlled trajectories tend to the periodic
oscillation labeled A in Fig. 6b. White color stands for those ones tending to the periodic oscillation labeled B in the
same figure. Dark grey color stands for those ones tending to the periodic rotation labeled C. Clear grey color stands for
those ones tending to the periodic rotation labeled D. Finally, the upper striped areas contain those ones tending to
other different periodic motions. It is worth to note that, as it can be observed in Fig. 10, not only there are areas where
the limits of the attraction basins are not well defined, but also many other areas where the attraction basins are com-
pletely mixed each other. We think that this fact means that although the perturbed system is under a control method, it
has not lost its strong chaotic character, as it is still present the sensible dependence on initial conditions. Indeed,
although two different initial conditions are very close together inside one of these mixing areas, it can be that their
corresponding controlled trajectories tend to very different final periodic pitch motions.

6. Conclusions

The pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit subject to the
influence of a gravity gradient torque has been studied. The system is perturbed by the small eccentricity of the ellip-
tic orbit and by a small magnetic torque generated by the interaction between the Earth’s magnetic field and the
magnetic moment of the spacecraft. The geomagnetic field is modeled as a dipole aligned with the rotation axis
of the Earth.

We have analytically established by means of the Melnikov method that both perturbations generate heteroclinic
chaotic behavior in the pitch motion of the spacecraft. In addition, we have also investigated numerically the pitch atti-
tude dynamics by using several tools based on computer simulations, including time history, Poincaré map and power
spectrum. The analytical result given by the Melnikov method have been confirmed by this numerical research. Despite
of the generation of chaos by the perturbations, we have also found in these numerical studies the persistency of some
periodic pitch motions in the perturbed system with the same period as the orbital motion of the spacecraft.
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In order to remove the chaotic motion generated by the perturbations, we have investigated the application of a
feedback method for controlling chaos, the so-called extended time-delay autosynchronization or ETDAS. This control
technique has two important advantages: it neither requires rapid switching or sampling, nor needs any reference signal
corresponding to the desired periodic orbit, but only the period of it. By means of numerical simulations of the pitch
motion of the controlled spacecraft, we have found that the ETDAS method succeeds being able to convert the initially
chaotic pitch motions into those persistent periodic motion of the perturbed system.

Finally, with the goal of getting a global view of the effect of this control method on the attitude dynamics, we have
calculated the attraction basins of the persistent 2p-periodic motions when the control method is applied. The study of
the geometry of the attraction basins has revealed us that, despite of the control, the system has not lost completely its
chaotic features, as it is present a sensible dependence on initial conditions with respect to the final periodic motions of
the controlled attitude trajectories.

Acknowledgements

This work is included in the framework of the research project MTM2005-08595 supported by the Spanish Ministry
of Education and Science.

References

[1] Batlle C, Fossas E, Olivar G. Extended time-delay autosynchronization of the buck converter, electronically available at http://
arxiv.org/abs/chao-dyn/9609009.

[2] Beletsky VV, Lopes RVF, Pivovarov ML. Chaos in spacecraft attitude motion in Earth’s magnetic field. Chaos 1999;9:493–8.
[3] Bleich ME, Socolar JES. Stability of periodic orbits controlled by time-delay feedback. Phys Lett A 1996;210:87–94.
[4] Boccaletti S, Grebobi C, Lai YC, Mancini H, Maza D. The control of chaos: theory and applications. Phys Rep 2000;329:103–97.
[5] Bryson AE. Control of spacecraft and aircraft. Princeton: Princeton University Press; 1994.
[6] Chen M, Zhou D, Shang Y. A simple time-delayed method to control chaotic systems. Chaos, Solitons & Fractals

2004;22:1117–25.
[7] El-Gohary A, Youssif YG. Optimal stabilization of the equilibrium positions of a rigid body using rotors. Chaos, Solitons &

Fractals 2001;12:2007–14.
[8] El-Gohary A. Optimal stabilization of an equilibrium position of a rigid body using rotors system with friction forces. Chaos,

Solitons & Fractals 2005;23:1585–97.
[9] Enns RH, McGuire GC. Nonlinear physics with mathematica for scientists and engineers. Boston: Birkhäuser; 2001.
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