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Abstract We study the dynamics of a satellite (artificial or natural) orbiting an Earth-like
planet at low altitude from an analytical point of view. The perturbation considered takes
into account the gravity attraction of the planet and in particular it is caused by its inhomo-
geneous potential. We begin by truncating the equations of motion at second order, that is,
incorporating the zonal and the tesseral harmonics up to order two. The system is formulated
as an autonomous Hamiltonian and has three degrees of freedom. After three successive Lie
transformations, the system is normalised with respect to two angular co-ordinates up to
order five in a suitable small parameter given by the quotient between the angular velocity of
the planet and the mean motion of the satellite. Our treatment is free of power expansions of
the eccentricity and of truncated Fourier series in the anomalies. Once these transformations
are performed, the truncated Hamiltonian defines a system of one degree of freedom which
is rewritten as a function of two variables which generate a phase space which takes into
account all of the symmetries of the problem. Next an analysis of the system is achieved
obtaining up to six relative equilibria and three types of bifurcations. The connection with
the original system is established concluding the existence of various families of invariant
3-tori of it, as well as quasiperiodic and periodic trajectories. This is achieved by using KAM
theory techniques.

Keywords Satellite dynamics · Zonal and tesseral harmonics · Delaunay normalisation ·
Reduction and invariant theories · Bifurcation lines · Non-linear stability · KAM theory ·
Invariant tori · Quasiperiodic and periodic orbits

1 Introduction

The gravity field of a planet is the most important perturbation affecting a satellite. In gen-
eral, analytical theories are employed to provide fast and accurate calculation of ephemeris,
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220 J. F. Palacián

although for a satellite orbiting at low altitude they are normally used to study the time vari-
ation of some tesseral coefficients of the gravity field. This paper deals with the influence of
the tesserals in the motion of a satellite orbiting an Earth-like planet at low altitude. We have
not taken into account the perturbations due to the a third orbit nor the atmospheric friction
of a planet.

Analytical study of the effects of the potential upon satellite orbits around a planet has been
an ongoing process, beginning with the original work of Brouwer (1959) and continuing to
the present. Brouwer considered the main problem of the artificial satellite, that is, the prob-
lem defined as the two-body Hamiltonian with the perturbation due to the bulge of the planet
caused by the oblateness coefficient of the gravity potential of the planet. Kozai (1962)
generalised Brouwer’s approach by considering a second-order theory for a Hamiltonian
which included more terms in the perturbation (he took into consideration the perturbation
of the oblateness coefficient plus the zonal harmonics up to J8, i.e., −C90). Improvements
of Brouwer and Kozai’s theories were tackled by Deprit and coworkers who pushed previ-
ous studies to higher orders (Coffey and Deprit 1982; Deprit 1981). They also analysed a
broader problem considering more zonal harmonics in the perturbation (up to J9) (Coffey
et al. 1994). A common feature of these works is that all treatments are performed avoiding
series expansions, thence they are valid for all elliptic motions. In Barrio and Palacián (2003)
a generalisation of the previous research was done by taking into account the atmospheric
friction.

One interesting area of this research has involved the contributions to the planet’s potential
of the longitude-dependent tesseral harmonics. The perturbations taking into account involve
the rotation of the planet and are in general more complex than the theories which include
only the zonal harmonics, the reason being that the tesseral problem is formulated by means
of a three-degree-of-freedom autonomous Hamiltonian whereas the zonal problem is repre-
sented as a system of two degrees of freedom. While a numerical integration usually provides
higher accuracy and even may gain in computation time, only an analytical theory can pro-
vide complete deeper insight into the nature of the perturbation. Indeed, this insight is often
useful in the development of more efficient numerical integrators especially devised for the
artificial satellite theory, see for instance (Segerman and Coffey 2000).

The tesseral problem has been studied by various authors since the pioneering work of
Kaula (1966). In some papers, the entire potential, that is, the series containing the zonals
and tesserals coefficients, is placed at first order. Then they expand the perturbation in power
series of the eccentricity and Fourier series of a short-periodic angle, applying thereafter
canonical transformations with the aim of eliminating the mean anomaly at first order of
perturbation, see for instance Métris et al. (1993). These approaches are usually done in a
phase space free of resonances.

More recently Segerman and Coffey (2000) have derived a theory for the tesseral problem
for low altitude satellites based on the relegation algorithm of Deprit et al. (2001), with the
purpose of producing ephemeris of the satellite’s motion. However, they do not analyse the
resulting Hamiltonian system. Periodic orbits for the tesseral problem have been investi-
gated from a numerical point of view (Lara 2003; Lara and Elipe 2002). The authors have
found families of periodic orbits emanating from the geostationary points as well as some
bifurcation lines. Nevertheless, an analytical study of the possible periodic and quasiperiodic
orbits as functions of the parameters of the problem remains an open but significant issue.
Our treatment is based on a scaling of the Hamiltonian in a way that we take into account
the relative values of the coefficients involved in the process. In particular we assume that the
oblateness coefficient, i.e., the zonal term C20 is much bigger than the rest of terms as is the
case of the Earth and other planets like Saturn or Mars, hence the reason of Earth-like planets.

123



Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field 221

Thus we are able to remove both short and long period terms from the equations of motion
applying Lie transformations (Deprit 1969). We choose the small parameter as the quotient
between the angular velocity of the planet and the mean motion of the satellite, arranging the
initial Hamiltonian in a convenient way such that the transformations can be performed.

Once the Hamiltonian is simplified we use reduction techniques to express it in an ade-
quate set of co-ordinates and its appropriate phase space, the so-called fully reduced phase
space, where the flow may be discussed. In this sense we enlarge the work done for the main
problem by Cushman (1983, 1988), Coffey et al. (1986) and Chang and Marsden (2003)—see
also Coffey et al. (1994) for the zonal problem—finding the relative equilibria of the reduced
Hamiltonian, analysing their non-linear stability and bifurcations and showing the existence
of KAM 3-tori and quasiperiodic motions around some families of equilibria.

Our approach is new and by no means trivial as we are dealing with a three-degree-of-
freedom conservative system. The amount of formulæ needed to achieve the simplifications
and to obtain the critical points and bifurcation lines is enormous and cannot be made by
hand as it may be done for the main and zonal problems (which are two-degree-of-freedom
systems). Furthermore our analysis cannot be considered standard; for instance, the normal-
isation of the mean anomaly is highly technical and not very known, but is crucial to deal
with perturbed Keplerian systems, especially when the perturbations depend upon negative
powers of the radial distance of the object under study and the centre of mass of the sys-
tem. Moreover, the proof of the existence of true 3-tori for the original (also called initial)
Hamiltonian is not a feature which can be concluded straigthforwardly if one does not choose
the right co-ordinates to check the non-degenerate hypotheses needed to achieve the existence
and persistence of the invariant tori.

A previous work pointing out the some of the main features of our theory appears in
the brief paper (Palacián, 2006). Here we extend this result, giving more details on the nor-
malisation and reduction methods. Moreover, we focus on the global analysis of the fully
reduced Hamiltonian, discussing the existence of its relative equilibria and the occurrence of
the bifurcation lines and establishing the corresponding non-linear stability of the equilibria.
Finally, we extract the consequences on the dynamics of the original system, finding families
of invariant 3-tori and quasiperiodic orbits confined in them, some of which may be closed
after using some geometric arguments.

The paper has seven sections. In Sect. 2 the equations of motion are given while Sect. 3
is devoted to the normalisations of the Hamiltonian. The reduction process is described in
Sect. 4. The fully-reduced system is analysed in Sect. 5. The flow of the original system is
reconstructed in Sect. 6 where the existence of the KAM tori of the original Hamiltonian as
well as some periodic orbits is proved. In Sect. 7, we draw the main features of the paper.

2 Hamiltonian of the problem

We choose two sets of variables well suited to perform the normalisation of our original
Hamiltonian, the so-called polar-nodal and Delaunay variables. For an explanation of both
sets of canonical variables, see Deprit (1982). We start by fixing an inertial frame, say 0 x y z,
centered at the centre of mass of the planet.

Polar-nodal variables, also known as Hill or Whittaker variables, is the set (r, ϑ, ν, R,

�, N ), where r is the radial distance from the centre of the planet to the satellite and its con-
jugate momentum R denotes the radial velocity. The action � is the magnitude of the angular
momentum vector, G, and its conjugate angle is the argument of the latitude ϑ ∈ [0, 2π).
The argument of the node, ν, is the angle conjugate to the action N , which represents the
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222 J. F. Palacián

projection of G onto the z-axis. The inclination of the instantaneous orbital plane with respect
to the x y-plane (the so-called equatorial plane) is given by the angle 0 < I < π such that
N = � cos (I ). We define c = cos (I ) and s = sin (I ).

On the other hand Delaunay variables, (�, g, h, L , G, H), represent a set of action-angle
variables for the Kepler problem, see Deprit (1981,1982) for details. The action L is related
with the semimajor axis of the orbit, a, by the identity L2 = µ a where µ is the gravita-
tional parameter of the planet. Thence, if H0 stands for the Hamiltonian of the two-body
problem, H0 = −µ2/(2 L2). The action G is equal to �, whereas H ≡ N . The angle �

stands for the mean anomaly. The angle g is the argument of pericentre and h ≡ ν. The
eccentricity of the trajectory is designated by e and in terms Delaunay actions it is expressed
as e = √

1 − G2/L2.
If the planet is assumed to rotate with a uniform angular speed ω one can always choose a

three-dimensional reference frame attached to the planet, 0 x ′ y′ z′, such that its z′-component
corresponds to the axis of rotation, thus z ≡ z′ (Palacián 2002a,b). The Hamiltonian of the
problem is time-independent provided that ω is constant. Thus, it may be put as the sum
H = T + V − ω N , where T and V represent, respectively, the kinetic and the potential
energies while −ω N accounts for the Coriolis term caused by the fact that H is expressed
in a rotating frame. Written in polar-nodal variables T is given through:

T = 1

2

(
R2 + �2

r2

)

whereas

V = −µ

r

[
1 +

(α

r

)2
V2 +

(α

r

)3
V3 +

(α

r

)4
V4 + . . .

]
,

α being the mean equatorial radius of the planet. Besides, each Vi is a finite Fourier series in
the angles ϑ and ν whose coefficients depend on Ci j , Si j (0 ≤ j ≤ i) and on c and s.

Now we drop the coefficients of order higher than two, retaining the most influent terms.
Thence, the potential reduces to:

V2 = 1

4
(3s2 − 2)C20 − 3

4
s2C20 cos (2 ϑ)

−3

4
(c − 1)s [S21 cos (ν − 2 ϑ) − C21 sin (ν − 2 ϑ)]

+3

2
cs [S21 cos (ν) − C21 sin (ν)]

−3

4
(c + 1)s [S21 cos (ν + 2 ϑ) − C21 sin (ν + 2 ϑ)]

+3

4
(c − 1)2 [C22 cos (2 ν − 2 ϑ) + S22 sin (2 ν − 2 ϑ)]

+3

2
s2 [C22 cos (2 ν) + S22 sin (2 ν)]

+3

4
(c + 1)2 [C22 cos (2 ν + 2 ϑ) + S22 sin (2 ν + 2 ϑ)] , (1)

see for example how it is derived in Kaula (1966) and Serrano (2003).
We emphasize that we have not considered the influence of higher-zonal harmonics as

C30 or C40 because we have preferred to focus on the perturbation due to all the second-
order coefficients and, in this sense, how the presence of the tesseral harmonics influences
the dynamics of the main problem. A continuation of the present work could include these
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Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field 223

zonal coefficients in the gravity fields of the planet. The goal of the following paragraphs
is to normalise and reduce the (autonomous) three-degree-of-freedom system defined by H
into a new system of one degree of freedom.

3 Normalisations

We need to pass from H to a new Hamiltonian K using Lie transformations. We arrange the
initial Hamiltonian as:

H = H0 + H1 + 1

2
H2 + 1

6
H3, (2)

where H0 corresponds to the Hamiltonian of the two-body problem, that is,

H0 = T − µ

r
= − µ2

2 L2 .

Besides, H1 = −ω N , H2 contains the terms factored by C20 while H3 have the terms
related with the tesseral coefficients C21, C22, S21, S22. Higher-order terms are taken equal
to zero. By doing so, one assumes that |Hi+1| � |Hi | for i ∈ {0, . . . , 4}. If n represents the
mean motion of the satellite, i.e., n = µ2/L3, the latter is satisfied whenever the quotient
ω/n remains small (that is, it is of the size of a small parameter) and the tesseral harmonics
are much smaller than C20, see the details in Palacián (2002a). This is the typical situation
of a satellite orbiting at low altitude and such that the corresponding planet’s oblateness
coefficient prevails over the rest of the zonal and tesseral coefficients in the gravity field.

Next we identify K0 ≡ H0 and apply three Lie transformations with the task of obtaining:

K = K0 + K1 + 1

2
K2 + 1

6
K3 + 1

24
K4 + 1

120
K5.

The mean anomaly is removed through two successive Lie transformations, whereas the
argument of the node is removed from the equations by means of another Lie transformation.

(i) Following Deprit (1981), we apply the technique called the elimination of the paral-
lax. This transformation is not a normalisation procedure in the sense that no angle is
averaged in the process. Nevertheless, it is useful to apply it in order to alleviate the
number of terms in the resulting Hamiltonian and is strongly recommended when a
normalisation process needs to be carried out to high order, as has been repeatedly by
Deprit and his coworkers (Deprit 1981; Coffey et al. 1986, 1994; Deprit and Miller
1988). The elimination of the parallax is performed in closed form.
The homological equation that needs to be resolved at each order i (1 ≤ i ≤ 5) is
written in terms of polar-nodal co-ordinates as follows:

�

r2

∂ Pi

∂ ϑ
+ Ai = H̄i , (3)

for the unknowns Ai (the new Hamiltonian) and Pi (the generating function). In the
equation, each H̄i is known in terms of H̄ j and of P j (for 1 ≤ j ≤ i − 1). Indeed, the
simple form acquired by the homological equation is due to the fact that H̄i is arranged
adequately to depend explicitly on sines and cosines of ϑ and possibly on r only through
powers of (α/r)2 but not on R, see the details in Deprit (1981). Then one takes Ai as
the average of H̄i over the argument of the latitude and solve Eq. (3) is solved in Pi by
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calculating a quadrature with respect to ϑ . Thus, P is a periodic function in ϑ and ν,
equivalently a periodic function in the three Delaunay angles.

A different approach to the elimination of the parallax is the so-called elimination
of the latitude (Deprit and Ferrer 1987; Coppola and Palacián 1994). The aim of this
transformation is the elimination of the terms depending on ϑ with the aim of prepar-
ing the transformed Hamiltonian for the subsequent transformation. After applying this
transformation, one obtains a different intermediate Hamiltonian, but after removing
the terms depending on � (following the procedure explained in (ii)) the resulting final
Hamiltonian is the same.

(ii) Next the mean anomaly is eliminated through a Delaunay normalisation (Deprit 1982).
This time, the homological equation solved at each order i (1 ≤ i ≤ 5) can be written
in terms of Delaunay co ordinates as:

µ2

L3

∂ Qi

∂ �
+ Bi = Āi , (4)

for the unknowns Bi , i.e., the transformed Hamiltonian, and Qi (the generating func-
tion). The terms Āi are known at each order as functions of Ā j and of Q j (1 ≤ j ≤ i−1).
After taking Bi as the average of Āi with respect to �, Eq. (4) is solved in Qi by calcu-
lating the corresponding primitive in �.

The removal of � avoiding Taylor and Fourier expansions has been possible thanks
to the introduction of the polylogarithmic function of orders two and three in the gen-
erating function of the procedure for i = 4 and i = 5. Specifically, the polylogarithm
of z ∈ �C of order n is defined as:

Lin(z) =
∞∑

k=1

zk

kn
.

Besides, some other combinations involving logarithmic terms (Osácar and Palacián
1994; Palacián 2002b) are used to preserve the closure of the expressions, making the
transformation valid for any type of elliptic motions. This step is essential to construct
our theory and should not be underestimate. Moreover, Q is a periodic function in the
three angles �, g and h.

We stress that the polylogarithms come out as the solutions of some of the quadratures
needed for obtaining Qi in closed form. More precisely, the intermediate Hamiltonian
Ā4 depends on the angle called the equation of the centre, e.g., the subtraction of
the true and the mean anomalies, and the quadrature corresponding to the equation of
the centre is obtained in closed form by means of the dilogarithmic function (i.e., the
polylogarithm of order two).

Alternatively we could have used the methodology of Cushman and van de Meer
(van der Meer and Cushman 1986; Cushman 1992) to carry out the normalisation
over � through regularisation techniques and identification to the geodesic flow on
the sphere S4. However, it is doubtful to obtain closed-form expressions of the gen-
erating functions associated with the average over � by means of the Moser or of the
Kustaanheimo–Stiefel transformation.

(iii) The third Lie transformation corresponds to the elimination of the argument of the node.
it is removed from the equations via a standard average, also without introducing series
expansions. First, as B0 = −µ2/(2 L2) is a formal integral, Hamiltonian Bi can be
arranged so that −ω H appears at zero order while the different perturbations appear at
orders ranging from one to four. So, for 1 ≤ i ≤ 4, the homological equation becomes
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now:

− ω
∂ Ri

∂ h
+ Ki = B̄i , (5)

for the unknowns Ki (i.e., the transformed Hamiltonian) and the generating function
Ri . Now, each B̄i is known in terms of B̄ j and of R j (1 ≤ j ≤ i − 1). Then, one
chooses Ki as the average of B̄i with respect to the argument of the node while Ri

is determined solving the resulting quadrature of (5). The function R is periodic in g
and h.

We do not write down the explicit expressions of the generating functions nor of
the intermediate Hamiltonians as they are rather big formulæ. However they have been
generated using Mathematica5.2 and are available upon request. We stress that all
the generating functions are 2 π -periodic functions in the angular co-ordinates.

After truncating higher-order terms, the resulting Hamiltonian is independent of �

and h, hence L and H are integrals of motion for it. Thus, K defines a system of one
degree of freedom. The reason for pushing the calculations to fifth order is that we need
K5 to capture the influence of C21, C22, S21 and S22. In particular the Hamiltonians Ki

are given by:

K0 = − µ2

2 L2 ,

K1 = −ω H,

K2 = −α2 µ4 C20 (G2 − 3 H2)

2 L3 G5
,

K3 = 0, (6)

K4 = −9 α4 µ6 C2
20

16 L5 G11

[
35 L2 H4 + 36 L G H4 + 5 (2 L2 + H2) G2 H2

− 24 L G3 H2 − (5 L2 + 18 H2) G4 + 4 L G5 + 5 G6

+ 2 (G4 − 16 G2 H2 + 15 H4) (L2 − G2) cos (2 g)
]
,

K5 = 135 α4 µ8 H

ω L6 G10

[ (
C2

21 + S2
21

) (
G2 − 2 H2) + 2

(
C2

22 + S2
22

) (−G2 + H2)
]
.

We use the same names for the three-times transformed variables as the original ones in
order to avoid cumbersome notation; however, the passage from H to K needs three Lie
transformations and therefore three changes of variables which are constructed using the
three generating functions. We remark that the reason why the tesseral harmonics appear for
the first time is due to the initial arrangement made to H, and in particular to the choice of
the small parameter and the form of H1.

The reader should notice the absence of the third and fourth powers of C20 what would
be compatible with C2

22 and S2
22. The reason is that the terms factored by C3

20 would appear
for the first time at order six once elimination of the parallax is performed. Hence, some of
them would remain after the successive application of the Delaunay normalisation and the
elimination of the node. However, we have stopped the computations at order five because it
is in this order when the occurrence of the tesseral coefficients take place.
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4 Reductions

Our aim is to use the continuous and discrete symmetries of K in order to obtain the simplest
possible expression for this normal form Hamiltonian. If we put K in Cartesian co-ordinates,
say (x, y, z, Px , Py, Pz) (writing L , G and H explicitly in terms of Cartesian elements and
transforming cos (g) and sin (g) conveniently through the introduction of the argument of the
latitude and the true anomaly; see Palacián (2002a)), it is easy to prove that two independent
symmetries of K are given by:

R1 : (x, y, z, Px , Py, Pz) → (x,−y,−z,−Px , Py, Pz),

R2 : (x, y, z, Px , Py, Pz) → (x,−y, z,−Px , Py,−Pz).
(7)

We stress that R1 and R2 are not inherited from H, so these are only discrete symmetries of
the (truncated) normal form Hamiltonian.

Inspired by Cushman and his collaborators (Cushman and Sadovskií 2000; Efstathiou
et al. 2004), we define a couple of variables, σ1 and σ2, to reflect the occurrence of these
symmetries. The relationship between the Delaunay and the new variables was derived in
Iñarrea et al. (2004) (see also Iñarrea et al. 2006). It is as follows:

σ1 = (L − |H |)2 + (1 − L2/G2) (G2 − H2) sin2 (g),

σ2 = G,
(8)

so σ2 represents the modulus of the angular momentum vector whereas σ1 depends upon G
and g. On the other hand we get:

cos (g) = ±
√

4 σ 4
2 − 4 σ1 σ 2

2 − 2 L |H | (σ1 + 2 σ 2
2 ) + L2 H2

4 σ 4
2 − 4 (L2 + H2) σ 2

2 − 2 L |H | (L2 + H2 − 2 σ 2
2 ) + 5 L2 H2

whereas for the sine we get:

sin (g) = ±
√

−4 (L2 + H2 − σ1) σ 2
2 − 2 L |H | (L2 + H2 − σ1 − 4 σ 2

2 ) + 4 L2 H2

4 σ 4
2 − 4 (L2 + H2) σ 2

2 − 2 L |H | (L2 + H2 − 2 σ 2
2 ) + 5 L2 H2

.

These new co-ordinates generate the fully-reduced phase space, UL ,H , which depend on the
integrals L and H . For |H | > 0, UL ,H is given by:

UL ,H =
{
(σ1, σ2) ∈ R2 | (σ 2

2 − L |H |)2

σ 2
2

≤ σ1 ≤ (L − |H |)2, |H | ≤ σ2 ≤ L
}
,

whereas for H = 0, UL ,0 is defined through:

UL ,0 =
{
(σ1, σ2) ∈ R2 | σ 2

2 ≤ σ1 ≤ L2, 0 ≤ σ2 ≤ L
}
.

The space UL ,H has two singular points: ((L − |H |)2, H |) and ((L − |H |)2, L) while UL ,0

has three singularities: (L2, 0), (L2, L) and (0, 0). The singularities of UL ,H and (L2, 0),
(L2, L) are spurious as they have been introduced by reducing out the discrete symmetries
R1 and R2. In Fig. 1, we have depicted the fully reduced phase spaces.

Applying the changes above to K, dropping the terms K0 and K1 which are integrals and
simplifying a bit, the resulting Hamiltonian is defined on UL ,H (for 0 ≤ |H | ≤ L) and it
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σ 1

σ2

σ 1

σ2

Fig. 1 On the left, phase space for |H |>0. The co-ordinates of the extreme points of UL ,H are
((L−|H |)2, |H |) (equatorial motions, the green point) and ((L − |H |)2, L) (circular motions, the yellow
point). The space reaches its lowest point at (0,

√
L |H |). On the right, phase space for H = 0. The

co-ordinates of the extreme points of UL ,0 are (L2, 0) (polar rectilinear motions, the green point), (L2, L)

(polar circular motions, the yellow point) and (0, 0) (the non-spurious singular point of UL ,0). The segment
with extremes (0, 0) and (L2, 0) corresponds to rectilinear motions

yields:

S = 1

128 ω L6 σ 11
2

{
− 32 ω C20 L3 σ 6

2 (σ 2
2 − 3 H2) − 3 ω C2

20 L
[
3 σ 6

2 + 4 L σ 5
2

− (7 L2 − 10 H2 − 8 L |H | − 4 σ1) σ 4
2 − 24 L H2 σ 3

2

+ H2 (38 L2 + 35 H2 − 120 L |H | − 60 σ1) σ 2
2 + 36 L H4 σ2

+ 65 L2 H4
]

− 144 (C2
21 + S2

21) H σ2 (σ 2
2 − 2 H2)

+ 288 (C2
22 + S2

22) H σ2 (σ 2
2 − H2)

}
. (9)

Note that S is not defined at the segment σ2 = 0 (then 0 ≤ σ2 ≤ L2). Thus, to avoid
collisions we suppose from now on that σ2 ≥ σ20 > 0 for a fixed value of the magnitude of
the angular momentum vector. Note that this value must be chosen so that the satellite does
not collapse with the planet, and this happens for a (1 − e) < 1. Hence, as a = L2/µ and

e =
√

1 − σ 2
2 /L2, we choose σ20 = √

2µ − µ2/L2.
In the above Hamiltonian we have scaled time and distance conveniently, by setting

µ = α = 1 in order to simplify the forthcoming expressions. Thence, L > 1 but it never
exceeds the value of, say 2, in order to preserve the feature of low altitude orbits. Besides,
the coefficients Ci j and Si j are usually quantities smaller than 10−2 in absolute value and ω

is also small (about 0.0588321 . . . for the Earth in the units where µ = α = 1).

5 Analysis of the reduced system

5.1 Relative equilibria

The flow defined by S is analysed in UL ,H and in UL ,0. Equilibria are determined by the
extrema of (9) on UL ,H and on UL ,0 when H = 0.

First of all we examine the possibility of locating extrema in the interior of the phase
space. These points should be obtained as the roots of the system formed by equating to
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zero the partial derivatives of S with respect to σ1 and σ2. In particular, from (9) we readily
obtain:

∂ S
∂ σ1

= −3 C2
20 (σ 2

2 − 15 H2)

32 L5 σ 9
2

,

which only vanishes at σ2 = √
15 |H |. Notice that we have to discard H = 0 because

then σ2 = 0 and σ2 cannot be zero. Now, the partial derivative replaced at σ2 = √
15 |H |

yields ∂2 S
∂ σ2 ∂σ1

(σ1,
√

15 |H |) = −C2
20/(270000 L5 H8), which is strictly negative in the inte-

rior of UL ,H . Besides, ∂ S
∂ σ2

is negative for σ2 = √
15 |H | and for σ1 evaluated at (σ 2

2 −
L |H |)2/σ 2

2 = (L − 15 |H |)2/15 provided that |C20| is much bigger than the tesseral coeffi-
cients; thus ∂ S

∂ σ2
(σ1,

√
15 |H |) is a strictly negative function. Thence we conclude that there

are no stationary points in the interior of UL ,H and, consequently, all possible extrema are
located on the boundary.

We commence with the points where the two curves delimiting the boundary of UL ,H

meet. Their co-ordinates are:

E1 ≡
(
(L − |H |)2 , |H |

)
, E2 ≡

(
(L − |H |)2 , L

)
,

which correspond to the class of equatorial and circular “orbits", respectively. The point E2

exists for all 0 ≤ |H | ≤ L and for the rest of parameters while E1 occurs excepting for
H = 0 because in this case the equatorial motions would be also rectilinear, a situation
which has been excluded previously as neither H nor K (and S) are defined for rectilinear
orbits.

To determine the rest of the equilibria, two cases must be considered:

(a) The equilibria located on the rectilinear part of the boundary given by the curve σ1 =
(L − |H |)2, under the restriction |H | ≤ σ2 ≤ L .

(b) Those equilibria located on the curved part of the boundary defined by σ1 σ 2
2 =

(σ 2
2 − L |H |)2 and |H | ≤ σ2 ≤ L .

For both cases we use the Lagrange multipliers technique in order to discuss the pos-
sible relative extrema of S on the boundary of UL ,H and UL ,0. We get the following
results.

5.1.1 Case (a).

If σ1 = (L − |H |)2 then (9) turns into a single-valued real function. Hence, its extrema are
reached either at σ2 = |H |, σ2 = L or at those points satisfying:

d S((L − |H |)2, σ2)

d σ2
= 3 P1(σ2)

128 ω L6 σ 12
2

= 0, (10)

where
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P1(σ2) = 32 ω C20 L3 σ 8
2 − 5 ω C20 L (32 L2 H2 − 3 C20) σ 6

2

+ 24 ω C2
20 L2 σ 5

2 − 7 ω C2
20 L (3 L2 − 14 H2) σ 4

2

− 192 H
[
ω C2

20 L2 H + 2 (C2
21 − 2 C2

22 + S2
21 − 2 S2

22)
]
σ 3

2

− 9 ω C2
20 L H2 (22 L2 + 25 H2) σ 2

2

+ 120 H3
[
3 ω C2

20 L2 H + 8 (C2
21 − C2

22 + S2
21 − S2

22)
]
σ2

+ 715 ω C2
20 L3 H4.

As ((L−|H |)2, |H |) and ((L−|H |)2, L) are equilibria of S, it suffices to analyse the possible
roots of P1 when σ2 belongs to [|H |, L]. Then, changes in the number of roots may occur
either when P1 has multiple roots in (|H |, L) or when σ reaches the extremes |H | and L .

As P1 is a polynomial of degree eight in σ2 depending on eight parameters, the discussion
of the possible roots is a very complicated matter. However, we can restrict ourselves to the
cases of interest, that is, when the zonal and tesseral coefficients are small quantities. This is
achieved by introducing a small parameter ε < 0 and redefining new coefficients through:

C20 = ε,

C21 = ε3 c21, C22 = ε2 c22, S21 = ε3 s21, S22 = ε2 s22. (11)

This rescaling of parameters is compatible with the relative values of all parameters involved
in P1 and with the scaling of Hamiltonian H, see Serrano (2003). We also assume that
C20 < 0 (ε < 0) which means that the polar radius of the planet is smaller than the equa-
torial one, a feature shared by the gravity fields of most of the planets and natural satellites.
In the case of the Earth C20 = −0.1082630 × 10−2 whereas C21 = 0.1342634 × 10−8,
S21 = −0.3137117 × 10−8, C22 = 0.1574742 × 10−5 and S22 = −0.9023759 × 10−6,
see Segerman and Coffey (2000), Serrano (2003). These values are in accordance with the
scaling (11). The quotient ω/n may reach the value 0.1664024 . . . for L ≡ 2, so in this case
|ε| is about 434 times smaller than ω/n while if L ≡ 1, |ε| is about 54 smaller than ω/n.

After inserting the “new harmonics” in P1 we discuss the possible multiple roots of P1,
calculating the resultant between P1 and d P1/d σ2 with respect to σ2. Thus, we obtained a
(huge) polynomial relation relating the parameters ci j , si j , ε, L , H and ω which does not
vanish whenever 0 < −ε � 1 excepting for H = 0, a situation which will be discussed
later. Besides, we calculate P1(|H |), arriving at a polynomial which cannot be zero for any
combination of all the parameters provided that 0 < −ε � 1. Then, we discard possible
bifurcations arising from equatorial motions in the upper boundary of UL ,H .

Next, we explore the possibility of bifurcations coming from circular orbits. Thus we
evaluate P1 in L , replacing at the same time the zonal and tesseral coefficients using (11).
We introduce �1 as P1(L) where:

�1 = 2 L ε
{
−96 H

[
− (c2

21 + s2
21) (2 L2 − 5 H2) ε5 + (c2

22 + s2
22) (4 L2 − 5 H2) ε3

]

+ω L2 (9 L4 − 146 L2 H2 + 425 H4) ε + 16 ω L8 (L2 − 5 H2)
}
. (12)

We want to solve �1 = 0 for H . We can achieve it by means of the Newton–Raphson algo-
rithm, putting H in terms of the rest of parameters. Starting with H0 = L/

√
5 and using three
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iterations of the Newton–Raphson procedure we expand the result in terms of ε, getting:

H∗ = L√
5

− ε

10
√

5 L3
− 7 ε2

200
√

5 L7
+

(
7

800
√

5 L5
+ 9 c2

22

5 ω
+ 9 s2

22

5 ω

)
ε3

L6 + O(ε4),

(13)

which corresponds to one of the two branches of �1 = 0. Using H0 = −L/
√

5, we get the
other branch as:

H∗ = − L√
5

+ ε

10
√

5 L3
+ 7 ε2

200
√

5 L7
+

(

− 7

800
√

5 L5
+ 9 c2

22

5 ω
+ 9 s2

22

5 ω

)
ε3

L6 + O(ε4),

(14)

When ε = 0 we recover the values of H corresponding to the critical inclination value of H ,
while dropping powers of ε bigger than two we arrive at the expressions obtained by Coffey
et al. (1986) and by Cushman (1988). Thus, the presence of the tesseral coefficients refines
the curves obtained for the main problem (i.e., the Hamiltonian model in which the tesseral
coefficients are taken zero). We stress that the influence of the terms c21 and s21 in H∗ and
H∗ appears at ε5. Given other initial conditions H0 ∈ [−L , L] no acceptable values of H
are obtained in the sense that the series in ε do not converge.

Now the sequence of valid roots of P1 for σ2 ∈ [|H |, L] can be obtained after solv-
ing P1 = 0 for σ2, using the Newton–Raphson procedure and giving initial values for σ2.
In particular, we arrive at the following description.

• If H ∈ [−L , H∗], P1 has no acceptable root, therefore there is no equilibrium point coming
from P1.

• If H ∈ (H∗, 0), there is one equilibrium, say

E3 =
(
(L − |H |)2 , σ2∗

)
,

such that σ2∗ is computed recursively by means of the Newton–Raphson procedure, start-
ing with σ20 = −√

5 H and using three iterations. After expanding the result in powers
of ε up to ε3, we obtain:

σ2∗ = −√
5 H − (L2 − 4 H2) ε

10
√

5 L2 H3
+ (L2 − 4 H2) (14

√
5 L2 − 30 L H − 25

√
5 H2) ε2

25000 L4 H7

+ 1

25000000 ω L6 H11

[
ω (L2 − 4 H2) (353

√
5 L4 + 1680 L3 H

− 2665
√

5 L2 H2 − 3000 L H3 + 1650
√

5 H4)

− 9000000 (c2
22 + s2

22) L3 H8
]
ε3 + O(ε4). (15)

The presence of c21 and s21 occurs at ε5. As we are considering H ∈ (H∗, 0) it might
be close to zero. Then the value of σ2∗ would have no sense for small H . To get a lower
bound for H we balance in (15) the powers of H in the denominators with the powers of
ε in the numerators. We get the bound H̄ = −|ε|3/11. If H ∈ (H∗, H̄ ] then (15) is still a
power series in ε with positive powers of ε. If H is closer to zero then the above expression
of σ2∗ gets invalid and then another Newton–Raphson procedure should be implemented
taking into account the smallness of H .
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• If H = 0, there is no equilibrium point from P1.
• If H ∈ (0, H∗), there is one equilibrium,

E3 =
(
(L − |H |)2 , σ2

∗),

where σ2
∗ is obtained recursively starting with σ20 = √

5 H . The first terms of σ2
∗ are:

σ ∗
2 = √

5 H + (L2 − 4 H2) ε

10
√

5 L2 H3
− (L2 − 4 H2) (14

√
5 L2 + 30 L H − 25

√
5 H2) ε2

25000 L4 H7

− 1

25000000 ω L6 H11

[
ω (L2 − 4 H2) (353

√
5 L4 − 1680 L3 H

− 2665
√

5 L2 H2 + 3000 L H3 + 1650
√

5 H4)

+ 9000000 (c2
22 + s2

22) L3 H8
]
ε3 + O(ε4). (16)

As before, the occurrence of c21 and s21 is at degree five in ε. Similarly as in the case
H ∈ (H∗, 0), the value of σ2

∗ would have no sense for small H . Balacing in (16) the
powers of H in the denominators with the powers of ε in the numerators we obtain the
bound H̄ = |ε|3/11. If H is closer to zero then the above expression of σ2

∗ gets invalid and
the Newton–Raphson procedure should be applied taking into account that H is smaller
than |ε|3/11.

• If H ∈ [H∗, L], there is no stationary point coming from P1.

5.1.2 Case (b)

When σ1 σ 2
2 = (σ 2

2 −L |H |)2 then (9) is again a single-valued real function. Thus, its extrema
are reached either at σ2 = |H |, σ2 = L or at those points such that:

d S((L − |H |)2, σ2)

d σ2
= 3 P2(σ2)

128 ω L6 σ 12
2

= 0, (17)

where

P2(σ2) = 32 ω C20 L3 σ 8
2 − 5 ω C20 L (32 L2 H2 − 7 C20) σ 6

2

+ 24 ω C2
20 L2 σ 5

2 − 7 ω C2
20 L (7 L2 + 50 H2) σ 4

2

− 192 H
[
ω C2

20 L2 H + 2 (C2
21 − 2 C2

22 + S2
21 − 2 S2

22)
]
σ 3

2

+ 63 ω C2
20 L H2 (6 L2 + 5 H2) σ 2

2

+ 120 H3
[
3 ω C2

20 L2 H + 8 (C2
21 − C2

22 + S2
21 − S2

22)
]
σ2

+ 55 ω C2
20 L3 H4.

As circular and equatorial trajectories are already equilibria, we focus on the analysis the
possible roots of P2 for σ2 ∈ [|H |, L]. Changes in the number of roots can occur if P2 has
multiple roots in (|H |, L) or when σ reaches the extremes |H | or L .

Polynomial P2 has degree eight in σ2 and as P1, it depends on eight parameters, so we
introduce the new “harmonics" ci j , si j and the discussion of the roots of P2 becomes simpler.
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We start by computing the resultant of P2 and d P2/d σ2 with respect to σ2, obtaining
a polynomial relating the parameters ci j , si j , ε, L , H , ω, which cannot vanish whenever
0 < −ε � 1 excepting for H = 0, a particular case that will be treated later. Similarly,
we calculate P2(|H |), arriving at a polynomial which cannot be zero for any combination of
the parameters if ε is restricted to be a small parameter. So we discard possible bifurcations
arising from equatorial motions in the lower boundary of UL ,H .

Next, we evaluate P2 in L , replacing at the same time the zonal and tesseral coefficients
using (11). We introduce �2 as P2(L). It yields:

�2 = 2 L ε
{

96 H
[

− (c2
21 + s2

21) (2 L2 − 5 H2) ε5 + (c2
22 + s2

22) (4 L2 − 5 H2) ε3
]

+ω L2 (5 L4 − 82 L2 H2 + 365 H4) ε + 16 ω L8 (L2 − 5 H2)
}
. (18)

Our aim is to get an explicitly approximation of H in terms of the other parameters from
the resolution of �2 = 0. We can achieve it by means of the Newton–Raphson algorithm.
Starting with H0 = L/

√
5 and using three iterations of the Newton–Raphson procedure, we

expand the resulting expression in terms of ε, getting one branch of �2 = 0:

H& = L√
5

+ ε

10
√

5 L3
+ 3 ε2

40
√

5 L7
+

(
299

4000
√

5 L5
+ 9 c2

22

5 ω
+ 9 s2

22

5 ω

)
ε3

L6 + O(ε4),

(19)

and using H0 = −L/
√

5 we obtain the other valid branch of �2 = 0:

H& = − L√
5

− ε

10
√

5 L3
− 3 ε2

40
√

5 L7
+

(

− 299

4000
√

5 L5
+ 9 c2

22

5 ω
+ 9 s2

22

5 ω

)
ε3

L6 + O(ε4).

(20)

The influence of the terms c21 and s21 in H∗ and H∗ appears for the first time through terms
factored by ε5. When ε = 0 we recover again the values of H corresponding to the critical
inclination. Furthermore, if we drop the powers of ε bigger than two we get the expressions
of Coffey et al. (1986) and Cushman (1988). For other initial conditions of H0 ∈ [−L , L]
the corresponding series in ε do not converge.

The sequence of valid roots of P2 for σ2 ∈ [|H |, L] is obtained after solving the equation
P2 = 0 for σ2 using the Newton–Raphson procedure with different initial values for σ2.
We arrive at:

• If H ∈ [−L , H&], there is no equilibrium point related with P2.
• If H ∈ (H&, 0) there is one equilibrium,

E4 =
( (σ2

2
& − L |H |)2

σ2
2
&

, σ2&

)
,
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where σ2& is calculated using the Newton–Raphson algorithm with three steps, starting
with σ20 = −√

5 H . The result, expanded in powers of ε, is given by:

σ2& = −√
5 H + (9 L2−35 H2)ε

100
√

5 L2 H3
+ (9 L2−35 H2)(29

√
5 L2+12 L H−63

√
5 H2) ε2

100000 L4 H7

+ 1

500000000 ω L6 H11 ×
[
ω (9 L2 − 35 H2) (29701

√
5 L4 + 17400 L3 H

− 131930
√

5L2 H2−37800 L H3+128625
√

5 H4)

− 180000000 (c2
22+s2

22)L3 H8
]
ε3+O(ε4). (21)

The presence of c21 and s21 occurs at ε5. Since H ∈ (H&, 0), it can be close to zero,
therefore the value of σ2& would have no sense for small H and we need a lower bound
for H . Thus we balance in (21) the powers of H in the denominators with the powers of
ε in the numerators, getting the bound H̄ = −|ε|3/11. If H ∈ (H&, H̄ ] then (15) is still
a power series in ε with positive powers of ε. If H ∈ (H̄ , 0) then the above expression
of σ2& gets invalid and then another Newton–Raphson procedure should be implemented
assuming that H is also a small parameter.

• If H = 0 there is no equilibrium point coming from P2.
• If H ∈ (0, H&), there is one equilibrium,

E4 =
( (σ2

&2 − L |H |)2

σ2
&2 , σ2

&
)
.

The value of σ2
& is obtained recursively from σ20 = √

5 H by means of the Newton–
Raphson algorithm through three steps. The result, after expansion in powers of ε, is given
through terms factored by ε3:

σ&
2 = √

5 H − (9 L2 − 35 H2) ε

100
√

5 L2 H3
− (9 L2−35 H2) (29

√
5 L2 − 12 L H−63

√
5 H2) ε2

100000 L4 H7

+ 1

500000000 ω L6 H11

[
ω (9 L2 − 35 H2) (−29701

√
5 L4 + 17400 L3 H

+ 131930
√

5 L2 H2 − 37800 L H3 − 128625
√

5 H4)

− 180000000 (c2
22 + s2

22) L3 H8
]
ε3 + O(ε4). (22)

The appearance of c21 and s21 starts at degree five in ε. As in the case H ∈ (H&, 0), the
value of σ2

& would have no sense for small H . Balacing in (22) the powers of H in the
denominators with the powers of ε in the numerators we obtain the bound H̄ = |ε|3/11. If
H is closer to zero then the above expression of σ2

& gets invalid and the Newton–Raphson
procedure should be applied taking into account that H is smaller than |ε|3/11.

• If H ∈ [H&, L] there is no stationary point related to P2.

We stress that according to (13) and (19), the branch of �2 = 0 corresponding to positive
values of H is located over the line L = √

5 H whereas the branch of �1 = 0 for H > 0
is placed below L = √

5 H . On the other hand, by inspection of (14) and (20), we conclude
that the branch of �2 = 0 for H < 0 is below the line L = −√

5 H while the corresponding
branch of �1 = 0 goes over the line L = −√

5 H . However �1 = 0 never touches �2 = 0
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provided that 0 < −ε � 1 and the other values of ci j , si j , L , H and ω remain in interval of
physical significance. Thus, we conclude that the chain of inequalities

−L < H∗ < −L/
√

5 < H& < 0 < H& < L/
√

5 < H∗ < L

holds along our study.
We observe that for the four roots of σ2, that is, for σ2∗, σ2

∗, σ2& and σ2
& we calculate

the eccentricities
√

1 − σ 2
2 /L2 and the corresponding inclinations given by cos (I ) = H/σ2,

obtaining in all cases expressions of the form

e =
√|L2 − 5 H2|

L
+ O(ε), | cos (I )| = 1√

5
+ O(ε)

which means that the orbits related to the relative equilibria E3 and E4 have inclinations
close to the critical inclination, i.e., arccos(1/

√
5), and eccentricities which tend to zero as

soon as H approaches either H∗, H∗, H& or H&.
In summary, we can conclude the following:

• the relative equilibrum E1 corresponding to equatorial orbits appears for H ∈ [−L , L] \
{0};

• the relative equilibrium E2 corresponding to circular orbits is present for all H ∈ [−L , L];
• if H ∈ [−L , H∗] or H ∈ [H∗, L], there are no more equilibria;
• if H ∈ (H∗, H∗) \ {0}, the point E3 is an equilibrium;
• if H ∈ (H&, H&) \ {0}, the point E4 is an equilibrium.

5.2 Non-linear stability

In order to analyse the stability of the relative equilibria it is convenient to make a change of
co-ordinates so that the resulting Hamiltonian may be written in a phase space well suited to
apply the techniques of non-linear analysis based on Morse functions and index theory. Thus,
we use a set of three co-ordinates {π1, π2, π3} which define the two-dimensional space:

XL ,H =
{
(π1, π2, π3) ∈ R3 | π2

2 + π2
3 = [(L + π1)

2 − H2] [(L − π1)
2 − H2]

}
, (23)

where 0 ≤ |H | ≤ L and L > 0. Note that π2 and π3 lie in the interval [H2 − L2, L2 − H2]
whereas π1 is in [|H | − L , L − |H |]. The explicit relationship between the πi ’s and the
Delaunay elements g and G is:

G2 = 1

2
(L2 + H2 − π2

1 + π3),

cos (g) = −π2√
(L2 − H2)2 − (π2

1 − π3)2
,

sin (g) = π1

√
2 (L2 + H2 − π2

1 + π3)

(L2 − H2)2 − (π2
1 − π3)2

.

Cushman (1983) proved that {π1, π2, π3} are the appropriate variables that should be used
for the reduction process of a Keplerian Hamiltonian for which L and H are integrals of
motion and that XL ,H is its corresponding phase space. Moreover, in Cushman (1983,1992)
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it is proven that whether 0 < |H | < L ,XL ,H is diffeomorphic to a two-sphere S2 and there-
fore the reduction is regular in that region of the phase space. However, when H = 0 then
XL ,0 is a topological two sphere with two singular points at the vertices (±L , 0, 0). Finally,
when|H | = L the phase space X±L ,L gets reduced to a point.

The relationship between the πi ’s and the σi ’s is given through:

σ1 = (L − |H |)2 − π2
1 , σ2 =

√
L2 + H2 − π2

1 + π3√
2

(24)

and

π1 = ±
√

(L − |H |)2 − σ1, π3 = −σ1 + 2 σ 2
2 − 2 L |H |. (25)

From (25) and the constraint of (23), it is readily deduced that a single point in the interior
of UL ,0 or of UL ,H is in correspondence with four points in the space XL ,0 or in XL ,H ,
respectively. Besides, a single point in the regular part of the boundaries of either UL ,0 or
UL ,H is related to two points of XL ,0 or of XL ,H . In addition, to each of the two singular
points of the boundary of UL ,H , it corresponds one point of XL ,H . Finally, the points of UL ,0

with co-ordinates (L2, 0) and (L2, L) are related, respectively, with the points (0, 0,−L2)

and (0, 0, L2) on XL ,0 whereas the point whose co-ordinate is (0, 0) in UL ,0 corresponds to
the singular points (±L , 0, 0) of XL ,0. Thus the number of equilibria of S remains the same
in UL ,H if only equatorial and circular orbits are present while each equilibrium point in the
regular part of the boundary of UL ,H is doubled when considering the reduced Hamiltonian
in XL ,H , as we shall see later on.

Next, Hamiltonian S written in terms of the new co-ordinates yields:

� = 1

1024 ω L6 π11
4

×
{

− 16 ω C20 L3 (π2
1 − π3 − L2 − H2)3 (π2

1 − π3 − L2 + 5 H2)

+ 24 ω C2
20 L

[
− 65 L2 H4 − 36 L H4 π4 − H2 (60 π2

1 − 22 L2 − 25 H2) π2
4

+ 24 L H2 π3
4 + (4 π2

1 + 3 L2 − 14 H2) π4
4 − 4 L π5

4 − 3 π6
4

]

− 576 (C2
21 + S2

21) H (π2
1 − π3 − L2 + 3 H2) π4

+ 1152 (C2
22 + S2

22) H (π2
1 − π3 − L2 + H2) π4

}
, (26)

where we have introduced π4 =
√

(L2 + H2 − π2
1 + π3)/2.

We remark that XL ,H is the reduced phase space corresponding to Hamiltonian (6) if one
considers only the continuous integrals introduced through the Lie transformations but not
the discrete symmetries of the problem. However, we have preferred to apply all possible
symmetries of the normalised problem at once, simplifying it as much as possible in order
to study its dynamics and make use of the expression of the Hamiltonian in the πi ’s only in
the discussion concerning the stability of the system.

For the non-linear stability analysis we use the Lagrange multipliers technique. First, we
define F as follows:

F(π1, π2, π3) = �(π1, π2, π3) + λ
{
π2

2 + π2
3 − [(L + π1)

2 − H2] [(L − π1)
2 − H2]

}
.

Then we calculate the Hessian matrix associated to F and evaluate it at each critical point.
Note that each critical point of F is equivalent to an equilibrium of �. We consider an arbi-
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trary vector (h1, h2, h3) in the tangent space to XL ,H at the critical point, i.e., at a point
(π0

1 , π0
2 , π0

3 ) satisfying h1 π0
1 + h2 π0

2 + h3 π0
3 = 0. Next, we calculate the bilinear form

associated to the Hessian matrix applied on a tangent vector at the critical point. This bilin-
ear form yields α1 h2

1 + α2 h2
2 + α3 h2

3, where one of the coefficients is zero and the other
two are non-null. The signs of the non-null coefficients determines the linear stability of the
critical points. Moreover, the non-linear stability follows immediately from Morse Lemma
(Abraham and Marsden 1978, Verhulst 1996) in case of non-degeneracy, that is, if two of the
three αi ’s do not vanish at the same time.

We begin by analysing the circular equilibrium, which in UL ,H is given through E2 whereas
in XL ,H it is located at (0, 0, L2 − H2). We also calculate the appropriate value of λ so that
(0, 0, L2 − H2) becomes a critical point of F . After some algebra, the computation of the
bilinear form yields:

β(h1, h2) = − 3 �2

128 ω L17 (L2 − H2)
h2

1 − 3 �1

512 ω L19 (L2 − H2)
h2

2, (27)

which is well defined if |H | < L . The cases L = H and L = −H are excluded since the
corresponding phase space reduces to a unique point, consequently circular and equatorial
motions coincide at this point, so L = |H | are bifurcation lines.

Thus, supposing that the coefficients of h1 and h2 do not vanish at the same time, we
might conclude that the equilibrium related to circular orbits is stable (centre) in the sense
of Lyapunov if these coefficients have the same sign. (The Lyapunov stability of the relative
equilibria in the reduced system is translated into the orbital stability of the corresponding
periodic and quasiperiodic orbits in the original truncated Hamiltonian.) If the coefficients
have opposite signs the conclusion is that the point accounting for circular motions is a saddle
and hence, linearly and non-linearly unstable.

If H ∈ (−L , H∗) then �1, �2 > 0 whenever 0 < −ε � 1, and so the bilinear form (27)
is given by α1 h2

1 +α2 h2
2 with α1, α2 < 0, thus (0, 0, L2 − H2) is a non-linearly stable point

(elliptic). When H ∈ (H∗, H&), �1 changes sign while �2 remains positive, so the bilinear
form α1 h2

1+α2 h2
2 is such that α1 < 0 < α2 and (0, 0, L2− H2) is an unstable point (saddle).

Next, when H belongs to (H&, H&), �2 becomes negative whereas �1 remains negative,
therefore the circular equilibrium is of elliptic character (non-linear centre) since α1, α2 > 0.
If H ∈ (H&, H∗), �1 is still negative but �2 becomes positive, hence (0, 0, L2 − H2) is
unstable (a saddle). If H is in (H∗, L), �2 is positive and �1 becomes also positive, thus the
circular point is again a non-linear centre.

The critical cases, H ∈ {H∗, H&, H&, H∗}, deserve a special treatment. We follow the
approach of Cushman (1988).

As �1 = 0 and �2 = 0 do not intersect each other, the two coefficients of (27) cannot be
zero at the same time. After writing π3 in terms of π1 and π2 (we use the positive value of π3

but we might use its negative counterpart, arriving at the same expressions), we calculate a
Taylor series expansion of � up to powers of degree four in π1 and π2, around (0, 0) (i.e., the
projection corresponding to the stationary point (0, 0, L2 − H2)). This 4-jet can be written as:

�4−jet(π1, π2) = a0 π2
1 + a1 π2

2 + a2 π4
1 + a3 π2

1 π2
2 + a4 π4

2 , (28)

where the coefficients ai depend upon the parameters of the problem. In particular:

a0 = − 3 �2

256 ω L17 (L2 − H2)
, a1 = − 3 �1

1024 ω L19 (L2 − H2)
.

Whenever H = H& or H = H&, a0 vanishes but a1 �= 0, while if H = H∗ or H = H∗,
a1 = 0 and a0 �= 0.
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When H ∈ {H&, H&}, we introduce ρ1 and ρ2 such that:

ρ1 = π1, ρ2 = π2

√
1 + a3

a1
π2

1 + a4

a1
π2

2

and choose its inverse change as:

π1 = ρ1, π2 =

√√
√
√− a1

2 a4
− a3

2 a4
ρ2

1 +
√

(a1 + a3 ρ2
1 )2 + 4 a1 a4 ρ2

2

2 a4

then (28) is rewritten in terms of the ρi ’s obtaining �4−jet(ρ1, ρ2) = a2 ρ4
1 + a1 ρ2

2 .

Replacing H by H& or by H& and expanding �4−jet in series of ε up to powers of degree
three, we arrive at:

�4−jet(ρ1, ρ2) =
[
−3 ε (431 ε2 + 640 ε L4 − 400 L8)

4096 L18 +O(ε4)

]
ρ4

1

+
[

3 ε2 (3 ε + 10 L4)

640 L18 + O(ε4)

]
ρ2

2 .

The coefficient of ρ4
1 is negative and that of ρ2

2 is positive, provided that 0 < −ε � 1
and L > 0. Hence, because of the different signs of ρ4

1 and ρ2
2 , the equilibrium point is a

non-linear saddle and we may conclude that (0, 0, L2 − H2) (and subsequently E2) corre-
sponds to an unstable point in the degenerate cases where H is either H& or H&. It agrees
with Cushman’s result for the degenerate cases of circular orbits (Cushman 1988) when H is
a root of �2 = 0; thus the effect of adding the tesseral coefficients does not alter the stability
character.

For the cases H ∈ {H∗, H∗} we make a local change of co-ordinates introducing ρ1 and
ρ2 as follows:

ρ1 = π1

√
1 + a4

a1
π2

1 + a3

a1
π2

2 , ρ2 = π2,

and its inverse change defined through:

π1 =

√√
√
√− a1

2 a4
− a3

2 a4
ρ2

2 +
√

4 a1 a4 ρ2
1 + (a1 + a3 ρ2

2 )2

2 a4
, π2 = ρ2,

then (28) is rewritten in terms of the ρi ’s as �4−jet(ρ1, ρ2) = a1 ρ2
1 + a2 ρ4

2 .

Substituting H by H∗ or by H∗ and expanding �4−jet in series of ε up to powers of degree
three, we get:

�4−jet(ρ1, ρ2) =
[

3 ε2 (3 ε − 10 L4)

160 L16 + O(ε4)

]
ρ2

1

+
[

3 ε (189 ε2 + 240 ε L4 + 400 L8)

65536 L22 + O(ε4)

]
ρ4

2 .

It is readily deduced that the coefficients of ρ2
1 and ρ4

2 are both negative, provided that
0 < −ε � 1. Thus, because of the equal signs of ρ2

1 and ρ4
2 the stationary point behaves

like a non-linear centre, hence (0, 0, L2 − H2) (and E2) corresponds to a non-linearly stable
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point in the degenerate cases where H ∈ {H∗, H∗}, a result which is in agreement with
Cushman’s treatment of the degenerate points for the main problem Cushman (1988) when
H is one of the two valid roots of �1 = 0. As before, the inclusion of the tesseral harmonics
does not change the stability of these degenerate situations.

We study now the non-linear stability of the equatorial equilibrium, which in UL ,H is
given through E1 whereas in XL ,H it is located at (0, 0, H2 − L2). We exclude the situations
L = |H | as they correspond to bifurcation lines and then the phase space gets reduced to a
point where circular and equatorial motions coincide. We also discard the line H = 0 because
for equatorial orbits, G = |H | and H = 0 means that G = 0, so the trajectories are rectilinear
and the satellite collapses with the planet. Then, we restrict ourselves to 0 < |H | < L .

Proceeding as in the circular case, we compute the bilinear form, getting an expression of
the type A1 h2

1 + A2 h2
2, where A1 and A2 are functions which depend on all parameters of

the problem. Expanding them in power series of ε up to ε3, one gets:

A1 = 3 ε [3 ε (2 L |H | + H2) − 2 L H4 |H |]
2 L4 H8 (L2 − H2)

+ O(ε4),

A2 = 3 ε [ε (31 L2 |H | + 12 L H2 − 7 H2 |H |) − 8 L2 H4 |H |]
32 L5 H10 (L2 − H2)

+ O(ε4).

(29)

Thence, if 0 < −ε � 1 and 0 < |H | < L , A1 and A2 are positive quantities which implies
that (0, 0, H2 − L2) (and therefore E1) is non-linearly stable (centre), after application of
Morse Lemma to the Morse function A1 h2

1 + A2 h2
2 plus higher order terms in h1 and h2.

It is time of analysing the non-linear stability of E3 and E4. Starting with E3, we take first
the case H ∈ (H∗, 0), therefore σ2 is given through (15). The two corresponding points of
E3 in XL ,H are given by the co-ordinates (0,±π̄2, π̄3) where π̄3 is obtained from (25) after
replacing σ2 by (15) and π̄2 is calculated using the constraint of (23). Note that π̄2 and π̄3

belong to [H2 − L2, L2 − H2]. The computation of the bilinear form is similar to that of the
circular and equatorial motions, but we need to replace the asymptotic expression of (15).
We get a rather big expression since it depends on π̄2, π̄3 and all the parameters involved the
problem. After expanding it in powers of ε up to degree two we arrive at:

β(h1, h2) =
[
− 3 ε2 |H |

1000
√

5 L5 H8
+O(ε3)

]
h2

1+
[

3 ε |H |
4000

√
5 L3 H8

+ O(ε2)

]
h2

3. (30)

This formula is valid for (0, π̄2, π̄3) and for (0,−π̄2, π̄3). The sign of the term factored
by h2

1 is negative and the one corresponding to h2
3 is also negative. Both conditions imply

that (0,±π̄2, π̄3) and E3 are non-linear stable points (non-linear centres).
If H ∈ (0, H∗) we follow similar steps to the previous paragraph, but replacing σ2 by its

formula (16). We arrive at the same expression (30) for the bilinear form. Thus, (0,±π̄2, π̄3)

and E3 are non-linear stable points.
Now we study E4 with H in (H&, 0) or in (0, H&). The value of σ2 is given by (21)

or by (22) depending if H is negative or positive. The two points in XL ,H related with E4

have co-ordinates (±π̄1, 0, π̄3) where π̄3 is obtained from (25) after replacing σ2 by (21)
for H ∈ (H&, 0) and by (22) if H ∈ (0, H&). The co-ordinate π̄1 is calculated using
the constraint of (23). We compute the bilinear form using either formula (21) or for-
mula (22). We obtain a quite cumbersome expression because it is a function of π̄1, π̄3

and all the parameters of the problem. After expanding it in powers of ε up to degree two, it
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results in:

β(h1, h2) =
[

3 ε2

20000
√

5 L5 H8 |H | + O(ε3)

]
h2

2

+
[

6 ε (L2 − 5 H2)√
5 L3 (L2 − 25 H2)2 H2 |H | + O(ε2)

]
h2

3. (31)

This expansion is valid for positive and negative values of H . Note that the factor L2 −
25 H2 cannot vanish for H in (H&, 0)∪ (0, H&). Moreover, L2 − 5 H2 is very close to zero
but it is a positive quantity as H& < L/

√
5 and H& > −L/

√
5. Thus, the coefficient of h2

2 is
positive whereas that of h2

3 is negative for all admissible values of H . Both conditions imply
that (±π̄1, 0, π̄3) and E4 are unstable points (non-linear saddles).

5.3 Bifurcation lines

Once the non-linear stability of the stationary points has been established with detail, the
sequence of bifurcation lines becomes clear.

Starting with H = −L , the phase spaces UL ,H and XL ,H become a point. So, a unique
equilibrium, corresponding to circular and equatorial motions, is present in the equations,
that is, E1 and E2 coincide. When one moves H increasing its value, −L < H ≤ H∗ < 0,
then both E1 and E2 exist and are Lyapunov stable equilibria. Thus, �3 ≡ H = −L is the
first bifurcation line.

When H = H∗, it corresponds with the branch of �1 = 0 near H = −L/
√

5, then the
point (0, 0, L2 − H2) (and E2) becomes degenerate but is still non-linearly stable. However,
once H passes the value H∗, then (0, 0, L2− H2) bifurcates into three points: (0, 0, L2− H2)

and the two equilibria of � corresponding to E3, the points (0,±π̄2, π̄3). Besides E2 changes
its stability and becomes unstable whereas (0,±π̄2, π̄3) (and E3) are stable. On the other
hand, E1 (and (0, 0, H2 − L2)) remains stable. So, if H ∈ (H∗, H&), � has four relative
equilibria. We may conclude that the line H = H& is a pitchfork bifurcation of circular
trajectories.

If one keeps on increasing H , reaching its next critical value corresponding with the
branch of �2 = 0 near H = −L/

√
5, that is H = H&, then (0, 0, L2 − H2) (and E2)

becomes degenerate but still non-linearly unstable. However, once H passes the value
H&, (0, 0, L2 − H2) bifurcates into three points, namely (0, 0, L2 − H2) and the two
points of � corresponding to E4: (±π̄1, 0, π̄3). Moreover E2 changes its stability again
and becomes stable while (±π̄1, 0, π̄3) (and E4) are unstable. The points (0,±π̄2, π̄3)

(and E3) and E1 remain all stable. Thus, when H ∈ (H&, 0), � has six relative equi-
libria. We deduce that the line H = H& is also a pitchfork bifurcation of the circular
equilibrium.

In the straight line H = 0, then (0, 0, L2 − H2) is the only equilibrium and it keeps
its stability, that is, it remains as a non-linear centre. On this occasion, (0, 0, H2 − L2) is
discarded because � becomes singular at G = |H | = 0. Hence, �4 ≡ H = 0 is a new
bifurcation line.

Once H becomes positive the sequence of bifurcations reverts although the system is not
symmetric with respect to H = 0. If H > 0 (but still H < H&) the other five equilibria
appear keeping the same stability character as in (H&, 0).

In the line H = H&, i.e., the branch of �2 = 0 near H = L/
√

5, then (0, 0, L2 − H2) is
degenerate and together with (±π̄1, 0, π̄3) collide into (0, 0, L2 − H2). Then (0, 0, L2 − H2)

(and E2) becomes unstable whereas the rest of equilibria, i.e., the points (0, 0, H2 − L2),
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Fig. 2 Bifurcation diagram
corresponding to
XL ,H (0 ≤ |H | ≤ L), with the
number of relative equilibria in
each region encircled. The action
L varies from 1 to 2 so that
collisions with the planet are
avoided. Dashed lines correspond
to the critical inclination values
for the main problem of the
artificial satellite, i.e., they are the
lines L = √

5 |H |. We stress that
the curves �1∗, �1

∗, �2& , and
�2

& are not straight lines
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(0,±π̄2, π̄3) (and E3) exist with the same stability behaviour. Hence, H = H& is a curve
representing a pitchfork bifurcation of the circular equilibrium. The other three equilibria
remain untouched with the same stability for all H ∈ (H&, H∗).

Increasing H , it reaches the value H∗ (corresponding with the branch of �1 = 0 near
H = L/

√
5) then (0, 0, L2 − H2) together with (0,±π̄2, π̄3) collide into (0, 0, L2 − H2).

Besides (0, 0, L2 − H2) (and E2) becomes stable whereas the other point E1 keeps on being
stable. Hence, H = H∗ is a pitchfork bifurcation of the circular equilibrium. Now, if H
increases a bit and leaves H∗, the two equilibria of � are (0, 0, L2− H2) and (0, 0, H2−L2).

Finally, when H = L , the phase spaces UL ,H and XL ,H become a point, that is, (0, 0, L2−
H2) and (0, 0, H2 − L2) are the same (also E1 and E2 coincide). So, �5 ≡ H = L is the
last bifurcation line.

We remark that the equatorial and circular orbits (i.e., the ones corresponding with the
lines |H | = L) could be studied in the reduced phase space SL ×SL and there the two relative
equilibria are always stable points, see for instance (Iñarrea et al. 2004, 2006).

We have depicted in Fig. 2 the bifurcation lines as well as the number of relative equilibria
in each region. We have identified the lines �1∗ with the curve H = H∗, �1

∗ with the curve
H = H∗, �2& with H = H& and �2

& with H = H&. The Euler characteristic of XL ,H

(sum of the indexes of the relative equilibria) is 2 whether |H | < L . This feature is verified
excepting the case H = 0 because when H = 0 we have excluded the part of the phase space
corresponding to rectilinear motions.

No saddle-connection bifurcation takes place in the Hamiltonian equations as the only pos-
sibility to have two saddles is when (0,±π̄2, π̄3) exist in (H&, 0) ∪ (0, H&), but then both
points coincide as a unique equilibrium of the system associated with S, thus no heteroclinic
connection can occur.

Summing up, the stability of the relative equilibria goes as follows:

• the relative equilibrum E1 is always stable in H ∈ [−L , L] \ {0}, the same holds for
(0, 0, H2 − L2) in XL ,H ;

• the relative equilibrium E2 is stable when H ∈ [−L , H∗], unstable for H ∈ (H∗, H&], sta-
ble when H ∈ (H&, H&), unstable for H ∈ [H&, H∗) and finally stable for H ∈ [H∗, L],
the same holds for (0, 0, L2 − H2) in XL ,H ;

• the equilibrium E3 is stable for all values of H where it exists, that is, for H ∈ (H∗, H∗)\
{0}, in XL ,H the points (0,±π̄2, π̄3) are both stable;

• the equilibrium E4 is unstable for all values of H where it exists, that is, for H ∈
(H&, H&) \ {0}, in XL ,H the points (±π̄1, 0, π̄3) are both unstable.

123



Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field 241

6 Implications for the original system

6.1 Flow of the initial Hamiltonian

Our next purpose is to approximate the invariant sets of the initial system H from the crit-
ical points of the reduced one (either S or �). We know (see Palacián 2003) that for the
case of toroidal symmetries—as the ones related to the appearance of the integrals L and
H—we can generically continue a certain invariant p-torus of � to a family of invariant
(p + m − s)-tori corresponding to a truncation of the initial Hamiltonian (2); here m desig-
nates the number of degrees of freedom of the original system and s the number of degrees
of freedom of the reduced one (i.e., the reduced system expressed in the orbit space). This
truncation of the initial Hamiltonian (2) is obtained by inverting back K through the direct
changes of co-ordinates associated with the three Lie transformations. We name the resulting
Hamiltonian H̄. It is verified that H − H̄ = O(εn+1), so H̄ means an O(εn)-approximation
of the initial Hamiltonian.

For our particular case p = 0 (the only invariants determined in the fully-reduced
Hamiltonian are stationary points), m = 3 and s = 1. Thus (regular) critical points of
� (i.e, of S) correspond to invariant 2-tori of H, which are densely filled up with quasiperi-
odic orbits. Once we have an equilibrium of �, we can determine a family of approximate
invariant 2-tori of the truncatation of the original Hamiltonian, parameterised by L and H .

The procedure is as follows. Since S has been obtained after three Lie transformations and
a reduction process, in order to pass to the Hamiltonian K, we should attach either a family of
invariant 2-tori (with parameters L and H ) to any point of XL ,H if |H | > 0 or either a family
of periodic orbits (parameterised by L) to the singular points (±L , 0, 0) of XL ,0. However
we notice that the points (±L , 0, 0) must be discarded as all our normal form Hamiltonians
(perturbations of the two-body system) are singular for rectilinear orbits. We also need to
exclude those critical points whose linearisation has null eigenvalues. If |H | < G < L , the
invariant 2-tori are defined by the angles � and h. In case of equatorial (G = |H |) or circular
motions (G = L) it is still possible to define other action and angle variables and perform
the reconstruction of the invariant tori similarly, as we will see later on.

Notice that we obtain true invariant 2-tori of K, since K does not contain the tail of the
Lie transformations. These families of tori are related with approximate families of invariant
tori of H, depending on the parameters L and H but also on the external parameters. This is
equivalent to saying that the Hamiltonian H̄ has true invariant 2-tori and quasiperiodic orbits
with the same type of stability that that corresponding to the relative equilibria obtained in
Sect. 5. These 2-tori bifurcate according to the bifurcation lines analysed in Sect. 5. Moreover,
the 2-tori of H̄ coming from the relative equilibria of elliptic type are surrounded by 3-tori
corresponding with the periodic orbits around the centres of XL ,H . Thence, these 3-tori are
true tori of H̄ and approximated tori of H.

An equilibrium on the fully reduced phase space, whose linearisation has no null eigen-
value, must be in correspondence with one, two or four families of invariant 2-tori in R6,
depending on where these points are placed in the fully-reduced phase space. For those equi-
libria of UL ,H or of UL ,0 where the linearisation yields null eigenvalues, a specific analysis
should be performed. This situation occurs here only for the pitchfork bifurcations as the
bifurcations happening at H ∈ {−L , 0, L} does not carry out stationary points whose lin-
earisations have null eigenvalues (in that sense, the lines H = 0 and L = |H | are not real
bifurcation lines). For a detailed analysis and reconstruction of the flow we address to Ferrer
(2002). Note that in our case, the (circular) degenerate equilibria are of parabolic type, and
particular, they are stable if H ∈ {H∗, H∗} and unstable if H ∈ {H&, H&}.
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We might even compute the explicit formulæ of the approximations of the invariant 2-tori
using the direct changes of the Lie transformations constructed through the three generating
functions, R, Q and P , inserting thereafter the co ordinates of Ei in these changes. One must
use first the change related with the elimination of h, then the one related with the Delaunay
normalisation and finally the change accounting for the elimination of the parallax. On the
one hand, we have detected families of quasiperiodic orbits of equatorial and circular type.
However, on the other hand, Delaunay co-ordinates are not defined for these orbits. Thus, we
need to resort to a different collection of action and angle co-ordinates well defined for all
kind of inclinations or for all eccentricities e ∈ [0, 1). Although it is only needed for circular
and equatorial motions, we can use these new variables for all type of trajectories.

Thus, we introduce Henrard’s co-ordinates, (Henrard 1974):

q1 = 1
2 (� + g − h), q2 = 1

2 (� + g + h), q3 = �,

p1 = G − H, p2 = G + H, p3 = L − G,
(32)

which are valid for small eccentricities and inclinations close to zero (G ≈ H ) or to π

(G ≈ −H ), provided that all the formulæ satisfy the d’Alembert characteristic, which is true
for all Hamiltonians involved in the paper.

Now we construct the changes corresponding to the three Lie transformations using (32).
Hence, an invariant torus related with a specific stationary point Ei (or any of the possible
six equilibria in XL ,H with 0 ≤ |H | ≤ L) is defined through the angles q1 and q3. Note
that G and g are functions of the parameters L and H and consequently we have obtained a
(two-parameter) family of invariant 2-tori for a given critical point of XL ,H . In this case, a
fifth-order process has been enough to study the qualitative dynamics of the original problem.
Nevertheless, provided that the global error after truncation be maintained small enough, the
higher the order we reach with the Lie transformations, the more accurate the invariant tori
of H̄ are.

6.2 Persistence of invariant 3-tori in H

Now we analyse when the invariant 3-tori of H̄ persists under perturbation and are therefore
present for the Hamiltonian H.

Our aim now is to demonstrate the existence (and persistence) of true invariant 3-tori of
Hamiltonian (2) associated with the non-degenerate elliptic relative equilibria of XL ,H . For
that we use a slight modification of the theory established for the isoenergetic version of
the KAM theorem, the reason being that our normal form Hamiltonian K has all its main
frequencies given by ∂K0/∂L , ∂K1/∂ H and ∂K2/∂G at different orders of perturbations.

The theorem is due to Britta Sommer (2003) who stated a generalisation of Arnold’s
theorem (Arnold 1988) for the case of a Hamiltonian having three different time-scales. She
applied the theory for a special case of the spatial circular restricted three-body problem but
we can adapt it to our Hamiltonians. Her result can be stated as follows.

Consider an analytic family of real analytic Hamiltonian systems

D = d(J ) + ε fε(J, φ, ε)

where d is defined by

d(J1, J2, J3) = J1 + β d1(J1, J2) + β2 d2(J1, J2, J3;β),

the pair (J ;φ) ∈ D × T are action-angle variables of d such that J = (J1, J2, J3), φ =
(φ1, φ2, φ3). The given set D is supposed to be an open, bounded and connected subset of

123



Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field 243

R3. For small and positive β define ε = k βl for some constants k > 0 and l > 3. Assume
that d is real analytic in auniform, complex neighbourhood of D × T and that the following
holds

∣
∣
∣
∣

∂2d1

∂(J1, J2)

∣
∣
∣
∣ > 0,

∣
∣
∣
∣
∣
∂2d2

∂ J 2
3

∣
∣
∣
∣
∣
> 0.

Then there exist positive constants δ, κ and χ with χ = β2 κ and βl−3 ≤ δ κ2 such that
for all frequency vectors � = (∂d/∂ J1, ∂d/∂ J2, ∂d/∂ J3) the 3-tori (T;�) of the unper-
turbed system d(J ) survive for any fixed τ > 2 as slightly deformed Lagrangian tori for the
Hamiltonian defined through D. They depend on � in a smooth manner and fill D × T3 up
to a set of measure O(κ).

In order to apply Sommer’s theorem to our Hamiltonian (6) we have to seek the actions
Ji ’s and the parameter β. It is clear that we have to set J1 ≡ −µ2/(2L2). Moreover, as the
small parameter is of the size of ω/n, we can rewrite K1 as β µ2 H/L3 where β = ω/n
(recall that n = µ2/L3). Now, putting L in terms of J1 we get d1 = −2

√
2 β J1

√−J1 J2/µ

where we have identified H with J2 and we have taken d1 = K1/β. Thus, we compute the
determinant of the Hessian of d1 with respect to J1 and J2 arriving at:

det

⎛

⎜
⎜
⎜
⎝

∂2d1

∂ J 2
1

∂2d1

∂ J1 ∂ J2

∂2d1

∂ J2 ∂ J1

∂2d1

∂ J 2
2

⎞

⎟
⎟
⎟
⎠

= 18 J1

µ2 ,

which never vanishes as J1 remains bounded below zero. Next, we identify J3 with G and
express K2 in terms of the Ji ’s and β. (Notice that with the choices of the Ji ’s we can take
φ2 = h, φ3 = g and φ1 an appropriate function of � so that φ1 becomes the angle conjugated
to J1, for instance, φ1 = (L3/µ2) �; hence, (J ;φ) is a set of action-angle coordinates.) We
define d2 = K2/(2 β2) where we first put K2 in terms of the actions Ji ’s:

K2 = 8
√

2 α2 C20
√−J1 J 4

1 (J 2
3 − 3 J 2

2 )

µω2 J 5
3

.

Thus, we compute the second derivative of d2 with respect to J3 obtaining:

∂2d2

∂ J 2
3

= −24
√

2 α2 C20
√−J1 J 4

1 (−15 J 2
2 + 2 J 2

3 )

µω2 J 7
3

. (33)

The above expression vanishes at J3 = √
15/2 |J2|, that is when G = √

15/2 |H |. However,
excluding the equatorial and the circular motions the relative equilibria satisfy that G is close
to

√
5 |H | so, for these elliptic points we can assure that the partial derivative ∂2d2/∂ J 2

3 does
not vanish. Besides, for equatorial trajectories G = |H | hence ∂2d2/∂ J 2

3 cannot be zero.
Thus, it remains to check if G can get the value

√
15/2 |H | for circular trajectories. For this

kind of orbits, G = L , and then the partial derivative (33) is zero when L = √
15/2 |H |.

Thence, this KAM theorem cannot be applied for the circular type of relative equilibria when
L = √

15/2 |H | and in these lines of the parametric plane the circular orbits are always
centres. We notice that the lines L = √

15/2 |H | are inside the region H ∈ (H&, H&).
Now we set k = 1, l = 4 and then ε = β4. Thus conditions of Sommer’s theorem hold

(excepting for circular orbits when L = √
15/2 |H |) and we may conclude that the major-

ity of the unperturbed 3-tori of Hamiltonian K will persist to the whole system H defined
by (2). More precisely, this majority is in the sense that the persistent 3-tori form a set whose
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complement has a measure O(κ) and since β ≤ δκ2 we can take κ of the order of
√

β.
Generically, the true tori can be refined using either analytical or numerical continuation
techniques. Finally, the bifurcations of relative equilibria studied in Sect. 5 are translated into
bifurcations of families of invariant 2-tori or quasiperiodic orbits.

We remark that our Hamiltonian model is free of resonances. The reason is that as the
quotient ω/n is a small quantity and the resonances between the mean anomaly and the
argument of the node would appear when one takes into account the harmonics Ci j , Si j with
i n − j ω ≈ 0 (leading to small denominators), but with the range of validity of the param-
eters this situation cannot happen, thus the KAM tori cannot be destroyed due to possible
resonances.

6.3 Periodic orbits

We show how some of the quasiperiodic orbits of the original system confined in the invariant
3-tori of Sect. 6.2 can be turned into periodic orbits under certain assumptions. The reader
might have a look to the method we use to establish the existence of periodic orbits in the
framework of the restricted three-body problems, see Palacián et al. (2006). The true invari-
ant 3-tori shrink down to two-parameter families of elliptic invariant 2-tori as soon as the
periodic orbits surrounding the non-degenerate elliptic relative equilibria of XL ,H get closer
to these equilibria (see a similar example in Ferrer et al. 2002). The idea is to compute the
main frequencies of the 2-tori surrounded by the KAM 3-tori with the aim of obtaining a
rational quotient between the two frequencies.

The quasiperiodic orbits fill up the invariant 2-tori which are determined by the angles q1

and q3. If we are able to find a rational relation between the two main frequencies defining
a family of tori (where p1 and p3 vary while the rest of parameters are fixed), we will get a
family of periodic orbits confined into these tori. Thus, we look for a relation between the
angles q1 and q3 so that a quasiperiodic orbit of Hamiltonian H be periodic. The easiest
relation we can look for is a linear one.

A linear relation between the angles q1 and q3 is: q3 = q0
3 + s (q1 − q0

1 ) for some initial
conditions q0

1 and q0
3 on the invariant torus. The determination of the slope s is made through

the quotient:

s = d q3

d q1
= d q3/d t

d q1/d t
,

where we need to go back to the averaged Hamiltonian (6). Next, as we know that

d �

d t
= ∂ K

∂ L
,

d g

d t
= ∂ K

∂ G
,

d h

d t
= ∂ K

∂ H
,

we arrive at:

d q3

d t
= ∂ K

∂ L
and

d q1

d t
= 1

2

(
∂ K
∂ L

+ ∂ K
∂ G

− ∂ K
∂ H

)
.

Now, cos (g), sin (g) and G are written in terms of the σi ’s and finally, the co-ordinates of the
equilibrium are substituted into the resulting expressions. In this way we compute the possi-
ble slopes s for the critical points of elliptic character corresponding to XL ,H (0 ≤ |H | ≤ L),
s being a function of the parameters L , H , and the rest of external parameters.

For example, for circular and equatorial orbits we obtain, respectively, the slopes sc

and se as:

sc = nsc

dsc
, se = nse

dse

123



Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field 245

where:

nsc = ω C20 L2
[
16 L6 (L2 − 3 H2) + C20 (13 L4 − 78 L2 H2 + 137 H4)

]

− 144 (C2
21 + S2

21) H (L2 − 2 H2) + 288 (C2
22 + S2

22) H (L2 − H2),

dsc = 2 ω C20 L2
[
8 L6 (L2 − L H − 4 H2)

+ C20 (5 L4 − 8 L3 H − 48 L2 H2 + 38 L H3 + 133 H4)
]

− 12 (C2
21 + S2

21) (L3 + 14 L2 H − 6 L H2 − 32 H3)

+ 24 (C2
22 + S2

22) (L + H) (L2 + 13 L H − 16 H2),

and

nse = 2 ω C20 L H
[
8 L2 H4 |H | − 8 C20 (15 L2 |H | + 8 L H2 − 5 H2 |H |)

]

− 72 (C2
21 + S2

21) H2,

dse = ω C20 L
{

8 L2 H4 (2 L H + L |H | + H |H |)

− C20

[
L H (55 L2 + 12 L H + H2)

+ (20 L3 + 39 L2 H − 2 L H2 − 5 H3) |H |
]}

− 6 (C2
21 + S2

21) (5 L H + 12 L |H | + 6 H2)

+ 24 (C2
22 + S2

22) L (H + |H |).
For the remaining equilibria one proceeds in a similar manner, using the asymptotic values
of σ2 (i.e., σ ∗

2 , σ2∗, σ2
& or σ2&) in the corresponding expressions of the partial derivatives

of K with respect to L , G and H .
Then, q3 − q0

3 = s (q1 − q0
1 ) for some initial conditions q0

1 and q0
3 on the corresponding

invariant torus.
Given a concrete system, i.e., after fixing the values of the external parameters are fixed,

we impose that s ∈ �Q, which means that a constraint between L and H ought to be satisfied.
Hence, with this choice of q3 as a linear function of q1, the trajectory is determined by q1,
it is closed and its period depends on s. Thus, related to the invariant 2-torus associated to a
relative equilibrium of XL ,H , one can find an infinite (but discrete) number of periodic orbits
of the Hamiltonian H.

Finally, we note that we have computed families of quasiperiodic orbits having any eccen-
tricity e ∈ [0, 1) and any inclination I ∈ [0, π ] by means of the co-ordinates (32). However
the associated periodic orbits will exist only in the case of non-degenerate centres in XL ,H

(0 ≤ |H | ≤ L).

6.4 Summary of the invariant objects

The main consequences drawn along this section are:

• We have established the existence of invariant 2-tori and quasiperiodic orbits of an O(β5)-
approximation of Hamiltonian (2). These invariant objects inherite the non-linear stability
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character of the (non-degenerate) relative critical points of XL ,H (0 ≤ |H | ≤ L), so bifur-
cations of these equilibria turn into bifurcations of 2-tori.

• There exist true 3-tori of the Hamiltonian (2) around the approximate 2-tori mentioned
above. These persistent 3-tori form a set whose complement has a measure O(κ) where
κ is of the order of

√
β. This is equivalent to saying that the majority of the invariant

3-tori of K (or of the truncation of H) persist in (2). The 3-tori shrink down into families
of 2-tori, exactly the tori which get reduced to the relative equilibria when applying the
reduction process.

• Some of the quasiperiodic orbits that fill the true 2-tori (obtained from the 3-tori) of the
Hamiltonian (2) can be closed to get families of true periodic orbits of (2). This can be
achieved selecting the main frequencies of the 2-tori in a way that their quotient is forced
to be a rational number.

7 Concluding remarks

The dynamics of a satellite orbiting a planet at low altitude under the influence of the grav-
itation field is studied. We have focused on the case where the main force acting over the
particle is the purely Keplerian term. Moreover, the satellite is supposed to be orbiting the
planet at low altitudes and the oblateness coefficient of the planet must be significantly bigger
than the rest of the zonal and tesseral coefficients. For instance, this is typical situation for
the geodetic satellites around the Earth.

The features of our study can be summarized as follows:

(i) We have made a rigorous analysis of the problem, establishing the existence of true
invariant 3-tori and quasiperiodic orbits. As well, a complete analysis about the rel-
ative equilibria and their non-linear stability has been performed. The occurrence
and type of stability of the equilibria depend on two internal parameters (the formal
integrals L and H ), and six external parameters. Besides we have determined ana-
lytically the bifurcation lines, i.e., the relations satisfied by the parameters so that a
change in the number of equilibria and stability happens. In this respect our analysis is
new.

(ii) The analysis has been possible through a severe simplification of the original
Hamiltonian. However, many of the dynamical features of the initial Hamiltonian have
been preserved through the simplifications. First of all, we have been able to pass from
the original Hamiltonian of three degrees of freedom to a Hamiltonian of one degree of
freedom, by means of three Lie transformations. These transformations are rather tech-
nical but we have drawn their main features. It is indeed the first time these operations
are executed in closed form, making the subsequent analysis valid for all eccentricities
in the elliptic domain. Then, we have applied reduction theory to give the averaged
Hamiltonian its simplest possible form and in its appropriate phase space. It has been
achieved because we have taken into account all the continuous and discrete symmetries
of Hamiltonian K.

(iii) We have enlarged the studies done in (Coffey et al. 1986, 1994; Cushman, 1983, 1988;
Chang and Marsden 2003), finding a similar picture of the bifurcation diagram. How-
ever that we have included rigorously the influence of the tesserals. We stress that the
analogy between the flows of the reduced systems corresponding to the main and to
the tesseral problems of the artificial satellite is not a feature that should be expected a
priori and cannot be achieved by a simple inspection of the equations of motion of the
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main problem. Moreover, the different relative equilibria and bifurcation lines discussed
along this paper are a refinement of the equilibria and bifurcations of the main problem.
The expressions have been obtained after a careful analysis of the fifth-order normal
form Hamiltonian (we recall that the small parameter is of the order of the quotient
between the frequency of the planet—i.e., its angular speed—and the mean motion of
the satellite).

(iv) We have proved the existence of invariant KAM 3-tori of the original Hamiltonian re-
lated with the elliptic relative equilibria of the fully reduced Hamiltonian. This has been
possible thanks to a special KAM theorem of Sommer (2003), which uses a general-
isation of the isoenergetic conditions for proving the persistence of the invariant 3-tori.
We have excluded the tori related to the circular orbits when L = √

15/2 |H | as there
the hypotheses of Sommer’s theorem do not hold. These true tori can be approximated
in the sense that we may compute their analytic expressions accurately up to order five
in the small parameter β using the changes of co-ordinates provided by the different
Lie transformations.

(v) Some true periodic orbits of the original Hamiltonian have been approximated to fifth
order using the main frequencies of the 2-tori surrounded by the true 3-tori around
the non-linear centres. These periodic orbits cross the equatorial plane of the planet’s
orbit. More concretely there are three types of families of periodic orbits of the orig-
inal problem: (i) families with inclination close to 0 or to π having any eccentricity
e ∈ [0, 1) (assuming that the satellite does not collide with the planet); (ii) circular
or almost circular periodic orbit having any inclination; and (iii) families of periodic
orbits whose inclination is very near the critical inclination of the main problem of the
artificial satellite and whose eccentricity has any value in the elliptic domain but which
goes to zero as soon as H approaches H∗, H∗, H& or H&. The orbital stability of these
families corresponds to the non-linear stability of the relative equilibria associated with
them which has been established in Sect. 5.2.

Besides, the periodic orbits can be either continued numerically using standard
methods (Lara 2003; Lara and Elipe 2002) or analytically approximated pushing the
normalisation to higher orders combined with an approach based on Poincaré–Lindstedt
perturbation method (Viswanath 2001).

The techniques and tools used here may be of interest for many other systems modelled by
the two-body problem to which one attaches a small perturbation, a typical situation in many
problems of celestial and classical mechanics. Our approach is not standard because nor-
malisation of the initial system requires very sophisticated routines for perturbed Keplerian
systems we have developed. Besides, the non-linear analysis of the relative equilibria has
been possible after applying Lagrange multiplier techniques and computing Morse functions
using a symbolic manipulator.

The analysis of the tesseral problem may be utilized by the mission analysts of the space
agencies, in order to use some of the periodic and quasiperiodic orbits when designing a
specific mission of a satellite around a planet, comet or asteroid.
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