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Dynamics of a single ion in a perturbed Penning trap:
Octupolar perturbation
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Imperfections in the design or implementation of Penning traps may give rise to electrostatic
perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the
point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap
perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system
has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like
continuation of families of periodic orbits and Poincatefaces of section. We find that, through the
variation of the two parameters controlling the dynamics, several periodic orbits emanate from two
fundamental periodic orbits. This process produces important chdhifescations in the phase

space structure leading to chaotic behavior.2@04 American Institute of Physics.

[DOI: 10.1063/1.1775331

In this paper we focus on the classical dynamics of a state a clear relation between classical periodic orbits and
single ion trapped in a perturbed Penning trap. The Pen-  quantum eigenfunctions. In particular, the hydrogen atom in
ning trap, which is briefly described in the Introduction, the presence of external fields is one of the most famous
is an experimental device which allows physicists to con- systems on which all those theories have been applied and
fine charged particles for a long time. Due to imperfec-  successfully corroborated by experiments. For example, sev-
tions in the design of the experimental setup, some per- eral beautiful photoabsortion experiments on highly excited
turbations can be added to the original model. In  Rydberg atoms in parallel/crossed magnetic and/or electric
particular we consider the so-called octupolar perturba-  fields showed that each oscillation in the spectra can be cor-
tion, which is composed by quartic terms. Because of the ' re|ated with a classical periodic orfif. Furthermore, peri-
axial symmetry of the problem, the system has two de- ogic orbit bifurcations are visible in the experimental data.
grees of freedom. Our objective is to perform an exhaus- | relation to molecular systems, we can cite thgdHmol-
tive numerical study of the nonlinear effects caused by gcyle, which has been extensively studied from the
the imperfections on the Penning trap. In this way, (assical’ semiclassical, and quarftgoints of view.
through the variation of the parameters controlling the Once the importance of the periodic orbits in atomic/
dynamics, we explore the evolution of the phase space pqacyar systems has been stated, in this paper we continue
structure of the system by the numerical continuation of o reliminary study of Ref. 8. In that paper the phase space
the_fammes of pgrlomc orbits and surfaces of section. The structure of a single ion trapped in a realistic perturbed Pen-
main result we fmd Is that the presence . .the pgrturba— ning trap is studied for the special case in which the trapped
tion produces important changes(b|fu.rcat|ons). in-the ion’s orbital plane rotates with constant angular velocity
phase space structure leading to chaotic behavior. equal to the Larmor frequency. Now we consider a more
general case, and also provide full details in the procedures.
I. INTRODUCTION The Penning trap is a widely used device in atomic phys-
ics for trapping charged particlés*! Because charged par-
Classical and semiclassical dynamics has proven to bgicles can be confined in a Penning trap for a long time,
very useful for interpreting the quantum dynamics of realexperiments have led, among other things, to very precise
atomic and molecular systems, even when the classical dgpectroscopic measuremeftsCoulomb crystal studies,
namics is chaotic and the quantum dynamics is strongland accurate atomic clock®. Moreover, as Cirac and
mixed! Under these conditions, it is well known that the Zoller' introduced, one of the most important applications
study of periodic orbits and phase space structure providesf jon traps today is in quantum computing. For a general
useful information that can be compared with the behavior ofeview of the state of the art of ion trapping, we refer the
the corresponding quantum system and with experinents. reader to Ref. 16.
Since the pioneering work of Gutzwilléra plethora of au- Besides the above-cited features, Penning traps proved
thors (see, e.g., Ref. 4 and references theréiave tried 10 (5 phe 4 very useful theoretical and experimental tool for
studying nonlinear collective phenomena in classical and
dElectronic mail: josepablo.salas@dg.unirioja.es guantum mechanicgsee, e.g., Ref. 17 and references
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therein. When we are dealing with a perfect Penning trap,The minus sign in Eq(l) stands for the electrode called the
the motion of the noninteracting trapped ions remains harring, while the plus sing refers to the other two electrodes
monic. However, as it was studied by several auth®rs:  called end-capplaced above and below the ring. The con-
electrostatic field perturbations may arise from imperfectionstantsp, andz, are, respectively, the inner radius of the ring
in the physical design of the electrodes as well as from miselectrode and the half distance between the two end-caps.
alignments in the experimental mounting. We can separatEinally, pé=22§. A voltage U, is applied to the end-cap
these perturbations into two groups: harmonic and anharlectrodes with respect to the ring. Hence, for a single ion of
monic perturbations. In particular, the second group is thenassm and chargey, the perfect quadrupole electrostatic
most interesting because it leads to nonlinear motion. potential is given by
Because today’s technology allows one to trap a single
ion, hence it has sense to consider the theoretical study of the
dynamics of a single trapped ion. This possibility was also
pointed out by Bergeman for a single cooled atom trapped in
a quadrupole magnetostatic tr&pAs we will see in the next where w,=4qUqy/(m I%) is a frequency andRS:pg
section, a general theoretical study of the motion of a singler 2z5. The magnetic field8=B2 introduces the cyclotron
ion in a perturbed Penning trap is an almost impossible taskrequencyw.=qB/m.
Hence, in this paper we only consider axially symmetric per- ~ The quadrupole potential acts as a trap only in one di-
turbations of the three-dimensional Penning trap, which ignension, along the axis between the end-cap; while the
also axially symmetric. In particular, we will treat tlogtu-  motion in the radiaky-plane is unstable. The presence of the
polar perturbation. magnetic field along the axis will provide the complete
As we remarked in a previous paﬁéralthough electro- trapping. In this arrangement, the ion dynamics is harmonic.
stat.ic perturbations are usuallly_undesirable, they may be e Electrostatic perturbations
perimentally added by modifying the electrostatics of the
trap. Theoretical works along this line were done by Back-  Electrostatic perturbations may arise from imperfections
hauset al?® An alternative to these kinds of perturbed traps,in the physical design of the electrodes as well as from mis-
based on a combined Penning_|offe trap' has been recen@ignments in the mOUntian.We model the electrostatic im-
suggested’ perfections by means of the multipole expansion of the elec-
The paper is organized as follows. Section Il is devotedrostatic potentiaf® This expansion, in sphericalr (9, ¢)
to the posing of the problem. A general model for the non-coordinates, takes the form
linear electrostatic imperfections is assumed. In order to |
manage a two—deg.rees-of—freed.om system,. we assume that V=E Vi, V= E a, kr'PI‘(cose)cos{k@, 3)
only axial-symmetric electrostatic perturbations take place. =0 k=0 '
Moreover, among all the axial-symmetric nonlinear terms K ) )
appearing in the model, we only consider the axial-WhereP are the Legendre polynomials with<k<I. Note
symmetric octupolar one. In Sec. Ill, from a Hamiltonian that, while for <3 the motion remains harmonic, higher
formulation, we derive the equations of motion and we esorders|=3 will introduce n_onhnearltles in the mothn_. In
tablish the relevant parameters controlling the dynamics. Bgeneral, most of the terms in E) can be made negligible
studying the effective potential energy surface of the systerrf?y means of'a careful design of the electrodes. For example,
we can understand part of the dynamics. In Sec. IV, we stud{f "€@l Penning traps, the electrodes can be assumed to be
the evolution of the fundamental families of orbits that de-Symmetrical with respect to they-plane and cylindrical
termine the phase space structure. To do that, we use tfymmetric. Hence, all the terms in E(®) with | odd and
numerical continuation of families of periodic orbits and K# 0 vanish and we can write E(3) as
Poincaresurfaces of section. Special attention is paid to two
points: the stability of the periodic orbits and their bifurca- ~ V=V,+U,>, ay
tions. Finally, in Sec. V we summarize the results. 1=2

VV2
Vixy,2) = et (22— =yP), @

r

21
Ro> P9 (cosh), (4)

where we have dropped the constant t&fgnand whereV,
is the perfect quadrupole potential. With this model, the elec-
Il. PROBLEM trostatic perturbations depend on the actual geometry of the
) ] ] 1o trap, because the coefficierds, describe how far from the
One of the most popular ion traps is tRenning trap™ ideal configuration are the electrodes. In this work, we con-

The Penning trap provides three-dimensional trapping bjder the contribution of the first term in the expansid
means of an axially symmetri¢ perfect ) quadrupole elec-  the octupolar V,

tric field plus a static magnetic field along tledirection.

The perfect quadrupole electric potential is achieved by Ug . ) s s
means of a set of three electrodes. These electrodes are infi- V4:a4§[82 —24(X°+y9) 7+ 3(x"+y9)]. )
nite hyperboloids of revolution whose equations are 0
2 52 The octupolar term is the main perturbation in a real trap
p .
—-5=*1, p?=x2+y>. (1)  where the electrodes are approximated by electrodes of

2 . . .
Po 2o spherical sectioh® Moreover, we can consider the presence
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number of the parameters by means of the following proce-
dure. First, we define the dimensionless timewt and the
dimensionless coordinatgs =p/R,, z'=2/R,. After ap-
plying these transformations to E() and after dropping
primes in variables to simplify the notation, we get the di-
mensionless Hamiltonian

1 2 2
H=5(P3+P2)+U(p,2), (10)

beingU(p,z) the effective potential

Lower End-cap P¢ P<215 1 1
_ 2\ 2 22
05 0 05 1 15 U(p,Z)——?+2—p2+§(1—25)p +§5z
PR,
1
FIG. 1. Experimental realization of the octupolar perturbed Penning trap. + —as?(87%— 240272+ 3% 11
The dashed lines correspond to the ideal quadrupole electrode configuration, 4 ( 4p P, 11)

while solid lines correspond to the octupolar perturbed electrodes for ] )
=0.1. and where we have define#=w,/w, . After this transfor-

mation, the parameters appearing in Etp) reduce tod, a,

, , and P, . Note that the octupolar term is controlled by two
of V4 not only as an undesirable perturbation, but a term wey; 1 ansionless parameters. On the one sid&bthat indi-

can intentionally introduce by means of a specific design 0faes the physical deformation of the electrodes, and on the
the electrodes different from the ideal one. Hence, we cayqr pyswhich modulates the effect of the deformation and
express the complete electrostatic poteriialV,+V, as determines the ratio between the axial and the cyclotron fre-

mvv§ a guencies, e.g., the ratio between the electrostatic and the
V= —[ 27°— (X*+y%) + —5[ 87"~ 24(x*+y?) 2? magnetic interactions.
4q Ro The Hamiltonian equations of the motion arising from
Eq. (10) are
2,2\2 .
+3(x*+y?) ]], (6) p=P,,
2
wherea=a,. Figure 1 presents a typical configuration of : _qu 1 ) > 3 )
electrodes when a octupolar contribution is added. Pp_?_ 2(1_25 )p—ad(3p”—12p7%),
o (12
I1l. EQUATIONS OF MOTION z=P,,

The Hamiltonian defining the motion of a particle of pZ:_522[1+4a(222_3p2)],
massm and electrical charge moving with velocityv under . . .
the action of electromagnetic forces is given by being the p,z)-motion decoupled from the angular motion

1 dt
1
= > (P—qA)*- $=o— St+P f— (13)
whereV and A are, respectively, the electrostatic and the ~ For the particular casa=0, system(12) recover the
magnetic vector potentials. In our case, the electrostatic pd4nperturbed motion of the trapped ion: While motion in the
tential V is from Eq.(6), and the magnetic vector potential is direction is always oscillatory, the trapping condition

B S<IN2, ie., W,/w.<1W2 (14
A== (—y,x,0) (8 . ) . .
2 applies for confined (unperturbegd motion in the p
direction??

for a magnetic fieldB= —Bz=V X A. Using cylindrical co-

ordinates p,z,4,P,,P,,P,) we get At this point, it is necesary to note that simil@uartio
1 1 1 p L 1

potentials like Eq.(6) have been widely used in celestial

1 5 o W P<2/) LU 2 2 mechanics to study the orbital dynamics of axisymmetric
H= %(PP_F P2~ ?PWL 2mp? + g(WC_ZWz)P stellar system$§223

A. Potential energy surface

m a
+ EW§ZZ+ R(8Z4—24P222+3P4)- 9 In order to know how the perturbations modify the per-
0 fect trapping, it is useful to study the shape of the effective
Because the polar angigis cyclic, thez-component of the potentialU as the parameters(,,d,a) vary.
canonical angular momentui®, is an integral. At a first For P ,=0, the centrifugal barrier does not exist, and the
glance, Eqg. (99 depends on the parameters motion takes place on a verticak€ = p,z)-plane—where
(m,w¢,w;,a,P,,Rp). However, it is possible to reduce the we use¢ instead ofp in order to consider negative values—
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IV. PHASE SPACE STRUCTURE

The phase space structure is mainly characterized by the
number of the periodic orbits living in phase space, and by
their stability. Once a periodic orbit is computed, the stability
/ of that orbit can also be computed, which sheds light on the
2|28 b character of phase space in the vicinity of the orbit. The

@2/1/5——;%\\\\\\1\? continuation of families of periodic orbits generated by
- £ variations of any of the system’s parameters, and the compu-
tation of the family orbits stability parameter helps then in
FIG. 2. (a) Equipotential curves pU(.g,z) for P,=0. (b) Equipot_ential understanding the dynamics of the problem.
g%m’gzsffn(ig?réolz;@_zo'z' All figures fora=0.1 and5=0.25. Dimen- The continuation of periodic orbits combined with the
computation of stability diagrams is an old tool widely used
in classical mechanics during the last three decades. In this
sense, among a plethora of works, we refer the reader to
that rotates with constant angular velocity1/2, e.g., Refs. 23 and 7 where two beautiful examples of the applica-
—W/2. In this rotating planelJ(¢,z) shows five critical tion of these techniques are shown.
points[see Fig. 2a)]
A minimum Py=(0,0), and four symmetrically located

-

N
)

'
-

A. Reduced problem

saddle pointd, ;3 4at Because of the cylindrical symmetry of our problem, the
study of the p,z,P,,P,) phase space depending on the pa-

1+ 462 1— 62 rameters P, d,a) will provide enough information on the
P1234—25< \/ ' \/ ) (15 behavior of the system. Any desired solution will be com-

pleted by recovering the angular motion from E3).

Hence, the effect of the octupolar perturbation is to create As is well known, the linear stability of a periodic orbit

four equivalent channels of escape through which the ion i S determined from the eigenvalues of the monodromy ma-

able to leave the trap. Remark that the saddle points até'x Since we are dealing with a Hamiltonian problem, the

equilibria with respect to the rotating frame and circular tra- |fgtehnvalues appearf Itnh reC|pr0(t:aI pa|rfs antd :; a corr:sequence
jectories with constant angular velocity1/2 in the inertial of the nvanance of the equations ot mo igh2) we have
frame of the trap. one trivial eigenvalue\g=1 with multiplicity 2. Then, the

The energies of the critical points are stability index

1+88%°—145* k=X\+1/\, (17)

=0, Es=Eis34 960623 (16)
is normally used, where the conditidnreal and/k|<2 ap-
When § increases the enerdys decreases with the limit plies for linear stability, and the critical valde= =2 means
that a new family of periodic orbits has likely bifurcated
52_2+ V1572 from the original one. Therefore, stability diagrams where
- 7 the stability index is presented versus the parameter genera-

tor of the family are commonly used.
whereEs=E;=0. Since we work with a reduced system of two degrees of

For P,#0, the ion cannot pass through the center of thefreedom, the computation of Poincaserfaces of section al-
trap, because of the centrifugal barrier. Now, the effectivdows us to illustrate the phase space structure: In the regions
potential also presents a minimuRy, located at the axip  of the phase space where the motion is regular, periodic or-
and two symmetrical saddle poirflg andP, [see Fig. 2b)].  bits are clearly identified as fixed points of the surface of
However, although the analytic expressions of these pointsection.
can be obtained analytically by means of the algebraic ex- Therefore, we proceed as follows: First, we identify the
pression of the roots of a third degree polynomial, these sovalues of the parameter$,@) for which periodic analytical
lutions are cumbersome and do not shed much light on theolutions exist in the phase space. Then, we carry out the
influence of the parametess and 6. In this way, we have numerical continuation of the families of periodic orbits—by
computed them numerically finding a similar behavior to thevarying one parameter, while the others remain constant—
caseP,=0. We also found similar behavior if approximate that give rise from those solutions. The stability diagram of
analytic solutions are used. These approximate solutions aevery periodic orbit of each family as a function of the cor-
easy to finding by a usual series expansion method. responding parameter is also computed. From this diagram,

As a general conclusion, we can cure the effect of theve can detect values of the parameter for which possible
octupolar perturbation by working with cyclotron frequency bifurcations take place. Bifurcations produce qualitative
w, much bigger than thev, frequency, e.g.0<6,. We  changes in the phase space structure. When a bifurcation is
remark that this situation corresponds to the usual experifound, the study is completed by calculating the correspond-
mental conditiong®-32 ing surfaces of section.

, = 0~0.823
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FIG. 3. (a) Poincaresurface of sectio-P; (P,=0).
(b) Quasiperiodic orbits aroung; , R,, andR;. Both
figures fors=1/\/6, a=0.2, andE=1/200.

-0.1

In searching for particular solution of E¢L2), we find
that rectilinear orbits along thg-axis (z=0) exist always.
Other particular solutions exist only fét,=0:

 Rectilinear orbits along the-axis (£=0),

« rectilinear solutions withz/é= =+ /3/5, that exist fors
=/1/6,

« circular solutions of radiug?+ z>=6E, that exist fors
=./1/6, anda=0.

1. The case P ,=0: Variations of &

The special cas® ,=0, where, again, we usginstead
of p, was first considered in the Notewe give here full

, 2 6a—v31125- 80a+ 24a?
7 35/2 ’

that fora=0.2 givess~0.786. In the mentioned surface of
section—see Fig.(@—we distinguish four important struc-
tures:

5

(19

(1) The stable(elliptic) fixed point located at0,0) which
corresponds to a rectilinear orbit along theaxis. We
name this fixed point and the corresponding periodic or-
bit as R,. The levels around this orbit correspond to
quasiperiodic trajectories with the same symmetry pat-
tern; that is to say, mainly localized along thaxis. In

details in this case, prior to consider the more general case Fig. 3(b), named a&,, is shown an example of this kind

P,#0.

of periodic orbits.

To get a picture of the phase space where these fouR) The elliptic fixed points symmetrically located at the
particular solutions exist, we compute the surface of section &axis correspond to the rectilinear orbits=+/3/5¢

for P4,=0 ands=\1/6. ForP ,=0, we define the surface of
section asP,=0 andz=0. Under these conditions, it ap-
pears as a closed region in the plageH,) bounded by the
curves

1
szia\/8E+(252—1)§2—6a52§4. (18)

It is worth noting that the oscillations on théeaxis are tan-

namedR; . The levels around these orbits correspond to
quasiperiodic  orbits  mainly localized along
z= =+ \/3/5é—see orbitR; in Fig. 3(b).

(3) The two unstabléhyperbolig fixed points of the sepa-
ratrix which divides the previous regions of motion.
These hyperbolic points—named &s—correspond to
almost circular orbits traveled in opposite directions
which become circular of radiu§6E=/3/100 for a
=0.

gent to the flux in this representation and they correspond t) Finally, and taking into account that the limit of the sur-

the curveg18).
Because we have to fix the enerfyand the octupolar
parameter, we takea=0.2 andE=1/200. Fora=0.2 the

face of section is the rectilinear orbit along texis,
the levels above the separatrix correspond to quasiperi-
odic orbits mainly localized along this axis—see ofjt

electrodes are quite deformed and this value is near to eX- in Fig. 3(b). We name this fixed point and the corre-
perimental real value® On the other side, fos=/1/6, the
energyE=1/200 is well below the energls of the escape
channels, which will be reached for

sponding periodic orbit aR;.

Note that all the trajectories in Fig(&@ are connected by

1.85

FIG. 4. (Color online. (a) Stability diagram of the fam-
ily R, of periodic oscillations on the-axis (dashed
line) and of the familyR, of periodic oscillations on the
&-axis (full line). (b) Region of § where the stable fam-

ily R; and the unstable familg exist.



768 Chaos, Vol. 14, No. 3, 2004 M. Lara and J. P. Salas

6=0.388

0201 0 01 02 T 0201 0 01 02
E’ FIG. 5. Evolution of the surfaces of sectioR=0, z
0 =0) for E=1/200,a=0.2 as a function ob.
< 0.1
0.05
P o
-0.03
0.1 Sererii
0302010 01 02 03

02 01 0 01 02

3 3

smooth lines. In this way, every trajectory seems to live orR, is highly oscillatory between the critical values2 and

an adiabatic invariant torus. In conclusion, the system isvith multiple bifurcations.

(neay integrable atE=1/200. This is the expected result After a careful look to the value®~0.423 and$é

when the energy is much smaller than the escape eri&ygy  ~0.390 given before, we see that not one, but two consecu-
Therefore, we have available four periodic solutions totjve bifurcations are produced in their vicinity where the

start the continuation procedure. We first compute the familfymilies R, and C appear. As presented in Fig(b}, these
of quasicircular periodic orbits that emanate from the circulakymilies only exist in a narrow interval of. Thus, the peri-

solution from variations of the structural parameteuntil
reaching the value=0.2 which will be considered fixed

helretgfter. The:-[ﬂ, we sttu?y the vat[léatlon.of a\l/lvfour ﬁart'cilarBoth families terminate on thé&axis: First the familyC at
solutions as the control parametérvaries. We call eac 5~0.417, and then thi, family at 5~0.429.

family with the same name as the corresponding periodic The described behavior is easily visualized by comput-

orbit: R, denotes the rectilinear periodic orbit along thein of f section for som nvenient values @
&-axis as well as its family and so on wig,, R;, andC. g surtaces of section for some convenient value g

Variations ofé. First, we compute the familieR, and ing in the |ntervaI(Q.38, 0.3. For 6=0.38—see '_:'g' @)_,

R,. The stability diagram of these families is shown in Fig. (€ surface of section presents only the stable fixed {iint
Aa). T_he Iev_els around this point corr_espond to quasiperiodic or-
Such a diagram gives the stability parameitesf each blts_ mainly localized alon_g the-axis \_/vhe.n they are ne,
family as a function of. We see that familfr,—oscillations ~ Which become progressively quasiperiodic orbits along the

on the &axis—shows a regular behaviofk{<2) for 5  &-axis as they go away from;; that is to say, as they ap-
<0.809 and new bifurcations fof~0.242, 0.423, 0.540, proach to the limit of the surface of section. Wheh
0.623, 0.708, 0.756, and 0.809. The fanfly—oscillations ~ =0.388 a pitchfork bifurcation takes place: From the stable
on thez-axis—shows stability fo5<0.690 296 and new bi- R,—Wwhich becomes unstable—born the staBleorbits—
furcations for 6~0.690, 0.561, 0.390, 0.279, 0.210, 0.164,see Fig. ®) for 6=0.395. A second pitchfork bifurcation
and 0.131. For smaller values éfthe stability behavior of takes place whe@=0.394 is reached: FromRR,, which be-

odic orbitR; bifurcates first from the-axis at6~0.385 and
immediately the periodic orbiC bifurcates até~0.394.

FIG. 6. (Color online. Left: Poincaresurface of section
(P,=0, z=0) for E=1/200, a=0.2, and 5§=0.6.
Right: U-, N-, andee-shaped orbits.
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FIG. 7. (Color onling. Families of stable|k|<2) U- and N-shaped and
unstable k>2) «-shaped periodic orbits. All families bifurcate with period
doubling fromz-axis oscillations and end aofiaxis oscillations with simple
period.

comes stable again, born the unstaBlleorbits—see Figs.
5(c) and 8d) for §=0.395 and§=0.41. At this point, the
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0 02 04 06
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FIG. 9. Poincaresurface of sectiorg-P, (P,=0) for §=0.757 andP,,
=0

phase space has the same structure as that we described in More bifurcations are produced for higher valuesdof

Fig. 3. A third pitchfork bifurcation takes place when the
unstable periodic orbit€ reach the limit of the surface of
section for6=0.417, i.e., the periodic orbR;. From this
bifurcation, only the orbiR, survives becoming unstable—
see Fig. %) for §=0.42. Afinal pitchfork bifurcation occurs
when orbitsR; reach the limit of the surface of section &t
=0.429. As we can observe in Fig(fbfor §=0.5, the sur-
face of section is made again of levels arouRyd a similar
situation to that we found before the first bifurcation oc-
curred.

According to Fig. 4, a very different behavior is found
for 6>0.429, where botlC andR; families disappear. Thus,
in Fig. 6(@) we present a surface of section #+ 0.6 where,

Thus, in Fig. 8 we show a picture of the phase spacesfor
=0.7, and several periodic trajectories. Thus, ortiits2, 3

of Fig. 8 appear at6=0.6229 as stablett, 3—and
unstable—2)—bifurcations of thez-axis oscillation with pe-
riod triple. Stablg4, 6) and unstablé5) orbits bifurcate with
four-fold period from thez-axis oscillation até6=0.6500.
Unstable and stable orbitg, 8) are eleven-fold bifurcations
of the z-axis oscillation that occur ai=0.6429. The transi-
tion to instability of the z-oscillations takes place ab
=0.6903(cf. Fig. 4. Before this value all the solutions pass
along the origin, but at this bifurcation, two almost vertical
symmetric oscillations appear—orhi®) in Fig. 8 and its
symmetric with respect to the-axis—that never pass

besides the central elliptic point, we see four elliptic fixedthrough the origin.
points and four hyperbolic points corresponding to stable and  For higher valuess>0.7 thez-axis oscillation becomes

unstable bifurcations of the axial trajectory fér=0.5610.

highly unstable and the phase space is gradually filled with

The stable orbits areJ- andN-shaped and the unstable oneschaos. Figure 9 presents the ca8e0.757 where chaos
arew-shaped traveled in opposite senses. Some examples
such orbits are depicted in Fig(t§. As appreciated in Fig. 7
both families terminate as oscillations in tleaxis with
simple period, first the unstabte-shaped at=0.6196, and
then the stabléJ- and N-shaped at=0.6232.

dbminates the portrait alternating with chains of islands. In
that figure we clearly identify the stable quasivertical oscil-
lations até~=*0.4, and the two-fold stable orbits that sur-
round them. These orbits appearsat 0.7518 as bifurcations
of the quasivertical oscillations.

FIG. 8. (Color onling. Above: Poincareurface of sec-
tion ¢-P, (P,=0) for P,=0, 6=0.7. Below: Several
stable(1, 4, 8, 9 and unstablé2, 5) periodic orbits.
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FIG. 10. Orbits of the families that start as four-fold periedorbits and end as three-fold peri&} orbits.

The three-fold periodic solution@rbits 1, 2, and 3 of

the systems shows regular behavior and the phase space

Fig. 8 are also found by visual inspection of Fig. 9 at, for structure is determined by the presence of the tatable
instance(0.176, 0.084 But most of the other periodic solu- linear orbitsR, andR,. From this configuration, we com-
tions have changed their stability character to instability angute the families of periodic orbits for variations Bf; .
ValuesP,#0 prevent the orbits from passing through
A final comment is in order. Some orbits could be diffi- the origin, in such a way that, whilR, orbits remain as
cult to identify from visual inspection of the surfaces of sec-oscillations on the-axis, vertical oscillationd, are forced
tion, even when they are stable. That is the case presented i abandon the-axis and are no longer rectilinear. HenBg,
Fig. 10, where two stable solutions—with stability index  orbits are transformed tB-shaped trajectories that we call

cannot be recognized in the figure.

=1.999 992 close to the limit value=2—are presenteda(
=0.2, 6=0.5, E=0.005). Also, the bifurcations of the cor-

D, orbits—see Fig. 1(b).
Figure 11a) presents the evolution of the stability index

responding families are not appreciated i_n the sta_bility.diak of the periodic orbit|R, andD, as P, varies. As we can
grams, where only simple period and period doubling bifur-opserve, orbits R, are stable into the intervalsP,
cations can be appreciated. Each periodic orbit of Fig. 10-10,0.02314 and P,<[0.05598,0.1535[ For valuesP,,
belongs to a family of periodic orbits that appears as a four-~ . 15357 the instability grows high. We note that these os-

fold period bifurcation of the family oR, orbits, and it ex-
ists only betweens=0.468, where it bifurcates from R,
orbit, and6=0.506, where it terminates asRa orbit. These
kind of bifurcations with multiple period appear evident in
the stability curves of the families of multiple-period peri-
odic orbits, but its computation is time consumiigOn the
contrary, it is known that for eigenvaluashat aremth roots

of the unity

| [
A=cC0S 2 — +i Sin 27—,
m m

wherei is the imaginary unit antl and m are integer num-
bers, new families of periodic orbits may bifurcate from the o\ families of periodic orbits appear.
original one. The resulting bifurcated orbit will be-fold

periodic (see, for instance, Ref. 11

2. Variations of P,

In order to study the influence of the parame®gyin the

P,#0.

cillations on thep-axis are periodic also with halved period
because negative values pfare not possible in the case

Stable oscillationdD, bifurcated from thez-axis start
with almost vertical orbits and exist fé?,<0.0734 66—see
Fig. 11(a). At this point the family comes back over itself
with unstable orbits, until ending on they-plane for P,
=0.05598.

Other trajectories appear as bifurcations of the family of
R, orbits. Besides the value=2 corresponding to the ter-

mination of the unstable branch ob, orbits at P,
=0.055 98, we find other values 8%, for which [k|=2 and

Thus, fdét,

=0.02314k=2, and a new family bifurcates from the family

of R, orbits. We name this family as the, family and its
orbits asC, orbits. In Fig. 12a) we present the evolution of
its stability indexk. This new family starts withC-shaped

orbits very close tdR, orbits. For increasing values &,

dynamics of the reduced system, we start from the configuthey apart from thep-axis until reaching a maximum value

ration given byP ,=0, 6= 1/2 andE= 1/200—see Fig. §):

®
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z~0.522 for P,~0.113, and then they transform to

FIG. 11. (Color online. (a) Families of periodic orbits
R, and D, for variations of P, (E=1/2005=0.5)
emanating, respectively, from the oscillations on the
xy-plane(solid line) and from thez-axis (dashed ling

(b) Three orbits periodic in thepz-plane for P,
=0.06. Two of them are stable and the otli¢ashed
line) is unstable.
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5 @ A “ )

6 02 FIG. 12. (Color onling. (a) Families
I of periodic orbitsR,, and C, for varia-
Zo tions of P, (E=1/2005=0.5). Note
02 that the familyC, (dashed ling bifur-
cates from the familyR, (solid line).
Y 0.4 (b) Two stable X-periodic orbits for

= = P,=0.121.

002 004 006 008 0.1 012 0.14 02 04 0.6 0.8
A p

3.-shaped orbits—see Fig. 2. There is a maximum value in the right side of the figureg(~0.6); again, this bifurcation
P,=0.13221 where the family comes back over itself untilcannot be obtained from the stability diagram of Fig. 12.
ending atP ,=0.115 00, again aR, orbit but with two-fold Chaos disappears fd?,~0.07, apparently in coinci-
period. Finally, we can appreciate that the stability charactedence with the maximum instability of the, family, and
of this family is oscillatory, passing several times from sta-only regular motion is appreciated in the surface of section
bility to instability with possible bifurcations. number IV, where we also appreciate the hyperbolic fixed
The dynamical changes produced in the families of pepoint (p~0.3) corresponding to &, orbit of the unstable
riodic orbits can be understood in terms of bifurcations of thebranch. The two branches db, orbits collapse atP,
fixed points appearing in the sequence of surfaces of section 0.0734 66 and the corresponding elliptic and hyperbolic
presented in Fig. 13. These surfaces of section, defined dixed points disappear in an saddle-node bifurcatgee sur-
P,=0 andz=0, are in the planeg,P,). Note that againR, face of section V. A new bifurcation of theC, family takes
orbits are tangent to the flux in this projection. place forP ,=0.07582, that is the pitchfork bifurcation that
For P,=0.05 (see surface of section | of Fig. 1de-  appears in the right side of surface of sectionp/0.66).
sides the two stable fixed points—tfe (located at the right Chaos appears again close to this last value, and it gradually
side and D, (located at the left sideorbits—some chaos fills the surface of section for increasing valuesRyf (see
appears in a region that closely surrounds the unstRple picture VI).
orbit. Also, we see the five-fold period bifurcation of tBe Finally, one should note that, at a difference from the
family that is produced &P ,=0.048, and, as we stated be- parameters or &, P, is an internal parameter that depends
fore, that is not evident from the stability diagram of Fig. 12. on the initial conditions of the ion.
A period doubling bifurcationK= —2) of theC, family
is produced aP ,=0.055 33—see Fig. 13), and the corre- 5 C | wuti
sponding bifurcation is appreciated in the surface of section” omplete solution
II. Chains of islands in the border of the region of chaotic Obviously, the R, orbits are periodic in three-
motion can be appreciated in pictures Il and Ill. Also in dimensional space. But the other orbits previously analyzed
picture lll, a three-fold period bifurcation can be appreciatedare only periodic in thepz-plane, where
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FIG. 13. Poincarsurfaces of sectiop— P, (P,=0,z>0) for E=1/200, §=0.5 and, from left to right and from top to bottoi,,=0.05, 0.056, 0.065, 0.07,
0.076, and 0.08.
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p(T)=p(0), z(T)=2(0), particular, we introduce a quartic axially symmetric octupo-

lar electrostatic perturbation that may be caused by imperfec-
tions in the experimental design. The advantage of managing
this perturbation is that, despite its nonlinear nature, the sys-
tem has only two degrees of freedom, which allows us to
combine the numerical continuation of families of periodic

where, in generalg(T) # ¢(0) conform Eq.(13), and they
are not periodic in three-dimensional space. However whe
the differenceA ¢= ¢(T) — ¢ is commensurate to72the
orbits are also periodic in they-plane and, consequently, in
three-dimensional space. Therefore, we will find periodic so

lutions of the complete system by computing the ragio orbits with qucgresurfaces_of section. )
— A ¢l(27) for all the orbits of each family, which rational '€ Hamiltonian governing the dynamics of the system
valuesm/n, with m and n integers, will point to periodic 'S stated and, after a convenient selection of units, the prob-

orbits in three-dimensional space afteperiods. Several ex- €M is seen to depend on the paramegerB, , andé. While

amples follow. the parametea is related to the construction process'of the
trap, the paramete8, and 5 can be externally established
1. Family R ¢ (P 4=0) for a certain experimental process. Following the line of pre-

vious studies on quartic potenti&i?®in our study we keep
constant the parametar while varying alternatively the two
remaining, being the influence d?, in the Penning trap
dynamics one of the main contributions of the paper.

Figure 14a) presents a diagram with the evolution of
the commensurability conditiog along the family ofR,
orbits for variations ofs. Rational values of| correspond to
values of the parameter generator of the faméyin this X - : .
case, for which the orbits are periodic in thg-plane. For The numerical study has been divided in three main

instance in Fig. 1é) we present a three-dimensional peri- parts. I_n the first pa.rF, by_ fixing ;=0 and varyings, we )
odic orbit found forq=3 and 5=0.484. Many other orbits determined the stability diagrams for the fundamental fami-

periodic in thexy-plane could be obtained from other differ- lies of periodic orbits. These diagrams indicate the presence

ent ratiosq. of several bifurcations which are visualized by means of sur-
faces of section. In the second one, we carried out a similar
2. Solutions for P ;#0 study but now by fixingé=1/2 and varyingP,. In these

. . oo . parts, the general effect of increasing the corresponding pa-
In the same way, three-dimensional periodic orbits car,meter is a pumping process through which periodic orbits
be computgd frpm any of the other farmlles. Examples A% manate from two fundamental rectilinear periodic orbits:
presented in Fig. 15:'One Stabl%f’ orbit for P,=0.076 the vertical oscillatiorR, and thep oscillationR,,. This pro-
(left), and an unstabléright) D, orbit for P,=0.0634. cess produces important chandbgurcations in the phase
space structure. Finally, in the last part a gallery of exact
periodic solutions in the three-dimensional space are shown.
In this paper we perform a systematic study of the peri-  We noted in the Introduction the crucial importance of
odic orbits and the evolution of the phase space structure gferiodic orbits in the understanding of the photoabsortion
a single ion trapped in a realistic perturbed Penning trap. Ispectra on highly excited Rydberg atoms in external fields. In

V. SUMMARY AND CONCLUSIONS
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Yy o FIG. 15. (Color onling. Two orbits of familiesR,, (left
pane) andD, (right pane] which are three-dimensional
92 periodic orbits for different values d?,, .
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