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Imperfections in the design or implementation of Penning traps may give rise to electrostatic
perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the
point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap
perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system
has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like
continuation of families of periodic orbits and Poincare´ surfaces of section. We find that, through the
variation of the two parameters controlling the dynamics, several periodic orbits emanate from two
fundamental periodic orbits. This process produces important changes~bifurcations! in the phase
space structure leading to chaotic behavior. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1775331#

In this paper we focus on the classical dynamics of a
single ion trapped in a perturbed Penning trap. The Pen-
ning trap, which is briefly described in the Introduction,
is an experimental device which allows physicists to con-
fine charged particles for a long time. Due to imperfec-
tions in the design of the experimental setup, some per-
turbations can be added to the original model. In
particular we consider the so-called octupolar perturba-
tion, which is composed by quartic terms. Because of the
axial symmetry of the problem, the system has two de-
grees of freedom. Our objective is to perform an exhaus-
tive numerical study of the nonlinear effects caused by
the imperfections on the Penning trap. In this way,
through the variation of the parameters controlling the
dynamics, we explore the evolution of the phase space
structure of the system by the numerical continuation of
the families of periodic orbits and surfaces of section. The
main result we find is that the presence of the perturba-
tion produces important changes „bifurcations… in the
phase space structure leading to chaotic behavior.

I. INTRODUCTION

Classical and semiclassical dynamics has proven to be
very useful for interpreting the quantum dynamics of real
atomic and molecular systems, even when the classical dy-
namics is chaotic and the quantum dynamics is strongly
mixed.1 Under these conditions, it is well known that the
study of periodic orbits and phase space structure provides
useful information that can be compared with the behavior of
the corresponding quantum system and with experiments.1,2

Since the pioneering work of Gutzwiller,3 a plethora of au-
thors ~see, e.g., Ref. 4 and references therein! have tried to

state a clear relation between classical periodic orbits and
quantum eigenfunctions. In particular, the hydrogen atom in
the presence of external fields is one of the most famous
systems on which all those theories have been applied and
successfully corroborated by experiments. For example, sev-
eral beautiful photoabsortion experiments on highly excited
Rydberg atoms in parallel/crossed magnetic and/or electric
fields showed that each oscillation in the spectra can be cor-
related with a classical periodic orbit.5,6 Furthermore, peri-
odic orbit bifurcations are visible in the experimental data.6

In relation to molecular systems, we can cite the H2O mol-
ecule, which has been extensively studied from the
classical,7 semiclassical, and quantal2 points of view.

Once the importance of the periodic orbits in atomic/
molecular systems has been stated, in this paper we continue
the preliminary study of Ref. 8. In that paper the phase space
structure of a single ion trapped in a realistic perturbed Pen-
ning trap is studied for the special case in which the trapped
ion’s orbital plane rotates with constant angular velocity
equal to the Larmor frequency. Now we consider a more
general case, and also provide full details in the procedures.

The Penning trap is a widely used device in atomic phys-
ics for trapping charged particles.9–11 Because charged par-
ticles can be confined in a Penning trap for a long time,
experiments have led, among other things, to very precise
spectroscopic measurements,12 Coulomb crystal studies,13

and accurate atomic clocks.14 Moreover, as Cirac and
Zoller15 introduced, one of the most important applications
of ion traps today is in quantum computing. For a general
review of the state of the art of ion trapping, we refer the
reader to Ref. 16.

Besides the above-cited features, Penning traps proved
to be a very useful theoretical and experimental tool for
studying nonlinear collective phenomena in classical and
quantum mechanics~see, e.g., Ref. 17 and referencesa!Electronic mail: josepablo.salas@dq.unirioja.es
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therein!. When we are dealing with a perfect Penning trap,
the motion of the noninteracting trapped ions remains har-
monic. However, as it was studied by several authors,18–21

electrostatic field perturbations may arise from imperfections
in the physical design of the electrodes as well as from mis-
alignments in the experimental mounting. We can separate
these perturbations into two groups: harmonic and anhar-
monic perturbations. In particular, the second group is the
most interesting because it leads to nonlinear motion.

Because today’s technology allows one to trap a single
ion, hence it has sense to consider the theoretical study of the
dynamics of a single trapped ion. This possibility was also
pointed out by Bergeman for a single cooled atom trapped in
a quadrupole magnetostatic trap.24 As we will see in the next
section, a general theoretical study of the motion of a single
ion in a perturbed Penning trap is an almost impossible task.
Hence, in this paper we only consider axially symmetric per-
turbations of the three-dimensional Penning trap, which is
also axially symmetric. In particular, we will treat theoctu-
polar perturbation.

As we remarked in a previous paper,25 although electro-
static perturbations are usually undesirable, they may be ex-
perimentally added by modifying the electrostatics of the
trap. Theoretical works along this line were done by Back-
hauset al.26 An alternative to these kinds of perturbed traps,
based on a combined Penning–Ioffe trap, has been recently
suggested.27

The paper is organized as follows. Section II is devoted
to the posing of the problem. A general model for the non-
linear electrostatic imperfections is assumed. In order to
manage a two-degrees-of-freedom system, we assume that
only axial-symmetric electrostatic perturbations take place.
Moreover, among all the axial-symmetric nonlinear terms
appearing in the model, we only consider the axial-
symmetric octupolar one. In Sec. III, from a Hamiltonian
formulation, we derive the equations of motion and we es-
tablish the relevant parameters controlling the dynamics. By
studying the effective potential energy surface of the system,
we can understand part of the dynamics. In Sec. IV, we study
the evolution of the fundamental families of orbits that de-
termine the phase space structure. To do that, we use the
numerical continuation of families of periodic orbits and
Poincare´ surfaces of section. Special attention is paid to two
points: the stability of the periodic orbits and their bifurca-
tions. Finally, in Sec. V we summarize the results.

II. PROBLEM

One of the most popular ion traps is thePenning trap.9,19

The Penning trap provides three-dimensional trapping by
means of an axially symmetric~‘‘ perfect’’ ! quadrupole elec-
tric field plus a static magnetic field along thez direction.
The perfect quadrupole electric potential is achieved by
means of a set of three electrodes. These electrodes are infi-
nite hyperboloids of revolution whose equations are

r2

r0
2 2

z2

z0
2 561, r25x21y2. ~1!

The minus sign in Eq.~1! stands for the electrode called the
ring, while the plus sing refers to the other two electrodes
called end-capplaced above and below the ring. The con-
stantsr0 andz0 are, respectively, the inner radius of the ring
electrode and the half distance between the two end-caps.
Finally, r0

252z0
2. A voltage U0 is applied to the end-cap

electrodes with respect to the ring. Hence, for a single ion of
massm and chargeq, the perfect quadrupole electrostatic
potential is given by

V~x,y,z!5
mwz

2

4q
~2z22x22y2!, ~2!

where wz5A4qU0 /(mR0
2) is a frequency andR0

25r0
2

12z0
2. The magnetic fieldB5Bẑ introduces the cyclotron

frequencywc5qB/m.
The quadrupole potential acts as a trap only in one di-

mension, along thez axis between the end-cap; while the
motion in the radialxy-plane is unstable. The presence of the
magnetic field along thez axis will provide the complete
trapping. In this arrangement, the ion dynamics is harmonic.

A. Electrostatic perturbations

Electrostatic perturbations may arise from imperfections
in the physical design of the electrodes as well as from mis-
alignments in the mounting.19 We model the electrostatic im-
perfections by means of the multipole expansion of the elec-
trostatic potential.28 This expansion, in spherical (r ,u,f)
coordinates, takes the form

V5(
l>0

Vl , Vl5 (
k50

l

al ,kr
lP l

k~cosu!cos~kf!, ~3!

whereP l
k are the Legendre polynomials with 0<k< l . Note

that, while for l ,3 the motion remains harmonic, higher
orders l>3 will introduce nonlinearities in the motion. In
general, most of the terms in Eq.~3! can be made negligible
by means of a careful design of the electrodes. For example,
in real Penning traps, the electrodes can be assumed to be
symmetrical with respect to thexy-plane and cylindrical
symmetric. Hence, all the terms in Eq.~3! with l odd and
kÞ0 vanish and we can write Eq.~3! as

V5V21U0(
l>2

a2l S r

R0
D 2l

P 2l
0 ~cosu!, ~4!

where we have dropped the constant termV0 and whereV2

is the perfect quadrupole potential. With this model, the elec-
trostatic perturbations depend on the actual geometry of the
trap, because the coefficientsa2l describe how far from the
ideal configuration are the electrodes. In this work, we con-
sider the contribution of the first term in the expansion~4!:
the octupolar V4

V45a4

U0

R0
4 @8z4224~x21y2!z213~x21y2!2#. ~5!

The octupolar term is the main perturbation in a real trap
where the electrodes are approximated by electrodes of
spherical section.18 Moreover, we can consider the presence
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of V4 not only as an undesirable perturbation, but a term we
can intentionally introduce by means of a specific design of
the electrodes different from the ideal one. Hence, we can
express the complete electrostatic potentialV5V21V4 as

V5
mwz

2

4q H 2z22~x21y2!1
a

R0
2 @8z4224~x21y2!z2

13~x21y2!2#J , ~6!

where a5a4 . Figure 1 presents a typical configuration of
electrodes when a octupolar contribution is added.

III. EQUATIONS OF MOTION

The Hamiltonian defining the motion of a particle of
massm and electrical chargeq moving with velocityv under
the action of electromagnetic forces is given by

H5
1

2
~P2qA!22qV, ~7!

where V and A are, respectively, the electrostatic and the
magnetic vector potentials. In our case, the electrostatic po-
tentialV is from Eq.~6!, and the magnetic vector potential is

A5
B

2
~2y,x,0! ~8!

for a magnetic fieldB52Bẑ5¹3A. Using cylindrical co-
ordinates (r,z,f,Pr ,Pz ,Pf) we get

H5
1

2m
~Pr

21Pz
2!2

wc

2
Pf1

Pf
2

2mr2 1
m

8
~wc

222wz
2!r2

1
m

2
wz

2z21
a

4R0
2 ~8z4224r2z213r4!. ~9!

Because the polar anglef is cyclic, thez-component of the
canonical angular momentumPf is an integral. At a first
glance, Eq. ~9! depends on the parameters
(m,wc ,wz ,a,Pf ,R0). However, it is possible to reduce the

number of the parameters by means of the following proce-
dure. First, we define the dimensionless timet5wct and the
dimensionless coordinatesr85r/R0 , z85z/R0 . After ap-
plying these transformations to Eq.~9! and after dropping
primes in variables to simplify the notation, we get the di-
mensionless Hamiltonian

H5
1

2
~Pr

21Pz
2!1U~r,z!, ~10!

beingU(r,z) the effective potential

U~r,z!52
Pf

2
1

Pf
2

2r2 1
1

8
~122d2!r21

1

2
d2z2

1
1

4
ad2~8z4224r2z213r4!, ~11!

and where we have definedd5wz /wc . After this transfor-
mation, the parameters appearing in Eq.~10! reduce tod, a,
and Pf . Note that the octupolar term is controlled by two
dimensionless parameters. On the one side bya, that indi-
cates the physical deformation of the electrodes, and on the
other byd which modulates the effect of the deformation and
determines the ratio between the axial and the cyclotron fre-
quencies, e.g., the ratio between the electrostatic and the
magnetic interactions.

The Hamiltonian equations of the motion arising from
Eq. ~10! are

ṙ5Pr ,

Ṗr5
Pf

2

r3 2
1

4
~122d2!r2ad2~3r3212rz2!,

~12!
ż5Pz ,

Ṗz52d2z@114a~2z223r2!#,

being the (r,z)-motion decoupled from the angular motion

f5f02
1

2
t1PfE dt

r~ t !2 . ~13!

For the particular casea50, system~12! recover the
unperturbed motion of the trapped ion: While motion in thez
direction is always oscillatory, the trapping condition

d,1/&, i.e., wz /wc,1/& ~14!

applies for confined ~unperturbed! motion in the r
direction.21

At this point, it is necesary to note that similar~quartic!
potentials like Eq.~6! have been widely used in celestial
mechanics to study the orbital dynamics of axisymmetric
stellar systems.22,23

A. Potential energy surface

In order to know how the perturbations modify the per-
fect trapping, it is useful to study the shape of the effective
potentialU as the parameters (Pf ,d,a) vary.

For Pf50, the centrifugal barrier does not exist, and the
motion takes place on a vertical (j56r,z)-plane—where
we usej instead ofr in order to consider negative values—

FIG. 1. Experimental realization of the octupolar perturbed Penning trap.
The dashed lines correspond to the ideal quadrupole electrode configuration,
while solid lines correspond to the octupolar perturbed electrodes fora
50.1.

765Chaos, Vol. 14, No. 3, 2004 Dynamics of an ion in a perturbed trap



that rotates with constant angular velocity21/2, e.g.,
2wc/2. In this rotating plane,U(j,z) shows five critical
points @see Fig. 2~a!#

A minimum P05(0,0), and four symmetrically located
saddle pointsP1,2,3,4at

P1,2,3,45
1

2d
S 6A114d2

15a
,6A12d2

10a
D . ~15!

Hence, the effect of the octupolar perturbation is to create
four equivalent channels of escape through which the ion is
able to leave the trap. Remark that the saddle points are
equilibria with respect to the rotating frame and circular tra-
jectories with constant angular velocity21/2 in the inertial
frame of the trap.

The energies of the critical points are

E050, ES5E1,2,3,45
118d2214d4

960d2a
. ~16!

Whend increases the energyES decreases with the limit

d25
21A15/2

7
, ⇒ d'0.823

whereES5E050.
For PfÞ0, the ion cannot pass through the center of the

trap, because of the centrifugal barrier. Now, the effective
potential also presents a minimumP0 located at the axisr
and two symmetrical saddle pointsP1 andP2 @see Fig. 2~b!#.
However, although the analytic expressions of these points
can be obtained analytically by means of the algebraic ex-
pression of the roots of a third degree polynomial, these so-
lutions are cumbersome and do not shed much light on the
influence of the parametersa and d. In this way, we have
computed them numerically finding a similar behavior to the
casePf50. We also found similar behavior if approximate
analytic solutions are used. These approximate solutions are
easy to finding by a usual series expansion method.

As a general conclusion, we can cure the effect of the
octupolar perturbation by working with cyclotron frequency
wc much bigger than thewz frequency, e.g.,d!d l . We
remark that this situation corresponds to the usual experi-
mental conditions.29–32

IV. PHASE SPACE STRUCTURE

The phase space structure is mainly characterized by the
number of the periodic orbits living in phase space, and by
their stability. Once a periodic orbit is computed, the stability
of that orbit can also be computed, which sheds light on the
character of phase space in the vicinity of the orbit. The
continuation of families of periodic orbits generated by
variations of any of the system’s parameters, and the compu-
tation of the family orbits stability parameter helps then in
understanding the dynamics of the problem.

The continuation of periodic orbits combined with the
computation of stability diagrams is an old tool widely used
in classical mechanics during the last three decades. In this
sense, among a plethora of works, we refer the reader to
Refs. 23 and 7 where two beautiful examples of the applica-
tion of these techniques are shown.

A. Reduced problem

Because of the cylindrical symmetry of our problem, the
study of the (r,z,Pr ,Pz) phase space depending on the pa-
rameters (Pf ,d,a) will provide enough information on the
behavior of the system. Any desired solution will be com-
pleted by recovering the angular motion from Eq.~13!.

As is well known, the linear stability of a periodic orbit
is determined from the eigenvalues of the monodromy ma-
trix. Since we are dealing with a Hamiltonian problem, the
eigenvalues appear in reciprocal pairs, and as a consequence
of the invariance of the equations of motion~12! we have
one trivial eigenvaluel051 with multiplicity 2. Then, the
stability index

k5l11/l, ~17!

is normally used, where the conditionk real anduku,2 ap-
plies for linear stability, and the critical valuek562 means
that a new family of periodic orbits has likely bifurcated
from the original one. Therefore, stability diagrams where
the stability index is presented versus the parameter genera-
tor of the family are commonly used.

Since we work with a reduced system of two degrees of
freedom, the computation of Poincare´ surfaces of section al-
lows us to illustrate the phase space structure: In the regions
of the phase space where the motion is regular, periodic or-
bits are clearly identified as fixed points of the surface of
section.

Therefore, we proceed as follows: First, we identify the
values of the parameters (d,a) for which periodic analytical
solutions exist in the phase space. Then, we carry out the
numerical continuation of the families of periodic orbits—by
varying one parameter, while the others remain constant—
that give rise from those solutions. The stability diagram of
every periodic orbit of each family as a function of the cor-
responding parameter is also computed. From this diagram,
we can detect values of the parameter for which possible
bifurcations take place. Bifurcations produce qualitative
changes in the phase space structure. When a bifurcation is
found, the study is completed by calculating the correspond-
ing surfaces of section.

FIG. 2. ~a! Equipotential curves ofU(j,z) for Pf50. ~b! Equipotential
curves ofU(r,z) for Pf50.2. All figures fora50.1 andd50.25. Dimen-
sionless units are used.
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In searching for particular solution of Eq.~12!, we find
that rectilinear orbits along ther-axis (z50) exist always.
Other particular solutions exist only forPf50:

• Rectilinear orbits along thez-axis (j50),
• rectilinear solutions withz/j56A3/5, that exist ford

5A1/6,
• circular solutions of radiusj21z256E, that exist ford

5A1/6, anda50.

1. The case P fÄ0: Variations of d

The special casePf50, where, again, we usej instead
of r, was first considered in the Note.8 We give here full
details in this case, prior to consider the more general case
PfÞ0.

To get a picture of the phase space where these four
particular solutions exist, we compute the surface of section
for Pf50 andd5A1/6. ForPf50, we define the surface of
section asPz50 and z>0. Under these conditions, it ap-
pears as a closed region in the plane (j,Pj) bounded by the
curves

Pj56
1

2
A8E1~2d221!j226ad2j4. ~18!

It is worth noting that the oscillations on thej-axis are tan-
gent to the flux in this representation and they correspond to
the curves~18!.

Because we have to fix the energyE and the octupolar
parametera, we takea50.2 andE51/200. Fora50.2 the
electrodes are quite deformed and this value is near to ex-
perimental real values.18 On the other side, ford5A1/6, the
energyE51/200 is well below the energyES of the escape
channels, which will be reached for

d25
2

7
2

6a2)A125280a124a2

35&
, ~19!

that for a50.2 givesd'0.786. In the mentioned surface of
section—see Fig. 3~a!—we distinguish four important struc-
tures:

~1! The stable~elliptic! fixed point located at~0,0! which
corresponds to a rectilinear orbit along thez-axis. We
name this fixed point and the corresponding periodic or-
bit as Rz . The levels around this orbit correspond to
quasiperiodic trajectories with the same symmetry pat-
tern; that is to say, mainly localized along thez-axis. In
Fig. 3~b!, named asRz , is shown an example of this kind
of periodic orbits.

~2! The elliptic fixed points symmetrically located at the
j-axis correspond to the rectilinear orbitsz5A3/5j
namedRi . The levels around these orbits correspond to
quasiperiodic orbits mainly localized along
z56A3/5j—see orbitRi in Fig. 3~b!.

~3! The two unstable~hyperbolic! fixed points of the sepa-
ratrix which divides the previous regions of motion.
These hyperbolic points—named asC—correspond to
almost circular orbits traveled in opposite directions
which become circular of radiusA6E5A3/100 for a
50.

~4! Finally, and taking into account that the limit of the sur-
face of section is the rectilinear orbit along thej-axis,
the levels above the separatrix correspond to quasiperi-
odic orbits mainly localized along this axis—see orbitRj

in Fig. 3~b!. We name this fixed point and the corre-
sponding periodic orbit asRj .

Note that all the trajectories in Fig. 3~a! are connected by

FIG. 3. ~a! Poincare´ surface of sectionj-Pj (Pz50).
~b! Quasiperiodic orbits aroundRi , Rz , andRj . Both
figures ford51/A6, a50.2, andE51/200.

FIG. 4. ~Color online!. ~a! Stability diagram of the fam-
ily Rz of periodic oscillations on thez-axis ~dashed
line! and of the familyRj of periodic oscillations on the
j-axis ~full line!. ~b! Region ofd where the stable fam-
ily Ri and the unstable familyC exist.
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smooth lines. In this way, every trajectory seems to live on
an adiabatic invariant torus. In conclusion, the system is
~near! integrable atE51/200. This is the expected result
when the energy is much smaller than the escape energyES .

Therefore, we have available four periodic solutions to
start the continuation procedure. We first compute the family
of quasicircular periodic orbits that emanate from the circular
solution from variations of the structural parametera until
reaching the valuea50.2 which will be considered fixed
hereafter. Then, we study the variation of all four particular
solutions as the control parameterd varies. We call each
family with the same name as the corresponding periodic
orbit: Rj denotes the rectilinear periodic orbit along the
j-axis as well as its family and so on withRz , Ri , andC.

Variations ofd. First, we compute the familiesRj and
Rz . The stability diagram of these families is shown in Fig.
4~a!.

Such a diagram gives the stability parameterk of each
family as a function ofd. We see that familyRj—oscillations
on the j-axis—shows a regular behavior (uku,2) for d
,0.809 and new bifurcations ford'0.242, 0.423, 0.540,
0.623, 0.708, 0.756, and 0.809. The familyRz—oscillations
on thez-axis—shows stability ford,0.690 296 and new bi-
furcations ford'0.690, 0.561, 0.390, 0.279, 0.210, 0.164,
and 0.131. For smaller values ofd the stability behavior of

Rz is highly oscillatory between the critical values62 and
with multiple bifurcations.

After a careful look to the valuesd'0.423 andd
'0.390 given before, we see that not one, but two consecu-
tive bifurcations are produced in their vicinity where the
families Ri and C appear. As presented in Fig. 4~b!, these
families only exist in a narrow interval ofd. Thus, the peri-
odic orbitRi bifurcates first from thez-axis atd'0.385 and
immediately the periodic orbitC bifurcates atd'0.394.
Both families terminate on thej-axis: First the familyC at
d'0.417, and then theRi family at d'0.429.

The described behavior is easily visualized by comput-
ing surfaces of section for some convenient values ofd rang-
ing in the interval~0.38, 0.5!. For d50.38—see Fig. 5~a!—
the surface of section presents only the stable fixed pointRz .
The levels around this point correspond to quasiperiodic or-
bits mainly localized along thez-axis when they are nearRz ,
which become progressively quasiperiodic orbits along the
j-axis as they go away fromRz ; that is to say, as they ap-
proach to the limit of the surface of section. Whend
50.388 a pitchfork bifurcation takes place: From the stable
Rz—which becomes unstable—born the stableRi orbits—
see Fig. 5~b! for d50.395. A second pitchfork bifurcation
takes place whend50.394 is reached: FromRz , which be-

FIG. 5. Evolution of the surfaces of section (Pz50, z
>0) for E51/200, a50.2 as a function ofd.

FIG. 6. ~Color online!. Left: Poincare´ surface of section
(Pz50, z>0) for E51/200, a50.2, and d50.6.
Right: ø-, ù-, and`-shaped orbits.
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comes stable again, born the unstableC orbits—see Figs.
5~c! and 5~d! for d50.395 andd50.41. At this point, the
phase space has the same structure as that we described in
Fig. 3. A third pitchfork bifurcation takes place when the
unstable periodic orbitsC reach the limit of the surface of
section ford50.417, i.e., the periodic orbitRj . From this
bifurcation, only the orbitRj survives becoming unstable—
see Fig. 5~e! for d50.42. A final pitchfork bifurcation occurs
when orbitsRi reach the limit of the surface of section atd
50.429. As we can observe in Fig. 5~f! for d50.5, the sur-
face of section is made again of levels aroundRz ; a similar
situation to that we found before the first bifurcation oc-
curred.

According to Fig. 4, a very different behavior is found
for d.0.429, where bothC andRi families disappear. Thus,
in Fig. 6~a! we present a surface of section ford50.6 where,
besides the central elliptic point, we see four elliptic fixed
points and four hyperbolic points corresponding to stable and
unstable bifurcations of the axial trajectory ford50.5610.
The stable orbits areø- andù-shaped and the unstable ones
are`-shaped traveled in opposite senses. Some examples of
such orbits are depicted in Fig. 6~b!. As appreciated in Fig. 7
both families terminate as oscillations in thej-axis with
simple period, first the unstablè-shaped atd50.6196, and
then the stableø- andù-shaped atd50.6232.

More bifurcations are produced for higher values ofd.
Thus, in Fig. 8 we show a picture of the phase space ford
50.7, and several periodic trajectories. Thus, orbits~1, 2, 3!
of Fig. 8 appear atd50.6229 as stable—~1, 3!—and
unstable—~2!—bifurcations of thez-axis oscillation with pe-
riod triple. Stable~4, 6! and unstable~5! orbits bifurcate with
four-fold period from thez-axis oscillation atd50.6500.
Unstable and stable orbits~7, 8! are eleven-fold bifurcations
of the z-axis oscillation that occur atd50.6429. The transi-
tion to instability of the z-oscillations takes place atd
50.6903~cf. Fig. 4!. Before this value all the solutions pass
along the origin, but at this bifurcation, two almost vertical
symmetric oscillations appear—orbit~9! in Fig. 8 and its
symmetric with respect to thez-axis—that never pass
through the origin.

For higher valuesd.0.7 thez-axis oscillation becomes
highly unstable and the phase space is gradually filled with
chaos. Figure 9 presents the cased50.757 where chaos
dominates the portrait alternating with chains of islands. In
that figure we clearly identify the stable quasivertical oscil-
lations atj'60.4, and the two-fold stable orbits that sur-
round them. These orbits appear atd50.7518 as bifurcations
of the quasivertical oscillations.

FIG. 7. ~Color online!. Families of stable (uku,2) ø- and ù-shaped and
unstable (k.2) `-shaped periodic orbits. All families bifurcate with period
doubling fromz-axis oscillations and end onj-axis oscillations with simple
period.

FIG. 8. ~Color online!. Above: Poincare´ surface of sec-
tion j-Pj (Pz50) for Pf50, d50.7. Below: Several
stable~1, 4, 8, 9! and unstable~2, 5! periodic orbits.

FIG. 9. Poincare´ surface of sectionj-Pj (Pz50) for d50.757 andPf

50
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The three-fold periodic solutions~orbits 1, 2, and 3 of
Fig. 8! are also found by visual inspection of Fig. 9 at, for
instance,~0.176, 0.084!. But most of the other periodic solu-
tions have changed their stability character to instability and
cannot be recognized in the figure.

A final comment is in order. Some orbits could be diffi-
cult to identify from visual inspection of the surfaces of sec-
tion, even when they are stable. That is the case presented in
Fig. 10, where two stable solutions—with stability indexk
51.999 992 close to the limit valuek52—are presented (a
50.2, d50.5, E50.005). Also, the bifurcations of the cor-
responding families are not appreciated in the stability dia-
grams, where only simple period and period doubling bifur-
cations can be appreciated. Each periodic orbit of Fig. 10
belongs to a family of periodic orbits that appears as a four-
fold period bifurcation of the family ofRz orbits, and it ex-
ists only betweend50.468, where it bifurcates from aRz

orbit, andd50.506, where it terminates as aRj orbit. These
kind of bifurcations with multiple period appear evident in
the stability curves of the families of multiple-period peri-
odic orbits, but its computation is time consuming.10 On the
contrary, it is known that for eigenvaluesl that aremth roots
of the unity

l5cos 2p
l

m
1 i sin 2p

l

m
,

wherei is the imaginary unit andl andm are integer num-
bers, new families of periodic orbits may bifurcate from the
original one. The resulting bifurcated orbit will bem-fold
periodic ~see, for instance, Ref. 11!.

2. Variations of P f

In order to study the influence of the parameterPf in the
dynamics of the reduced system, we start from the configu-
ration given byPf50, d51/2 andE51/200—see Fig. 5~f!:

the systems shows regular behavior and the phase space
structure is determined by the presence of the two~stable!
linear orbitsRz and Rr . From this configuration, we com-
pute the families of periodic orbits for variations ofPf .

Values PfÞ0 prevent the orbits from passing through
the origin, in such a way that, whileRr orbits remain as
oscillations on ther-axis, vertical oscillationsRz are forced
to abandon thez-axis and are no longer rectilinear. Hence,Rz

orbits are transformed toD-shaped trajectories that we call
Dz orbits—see Fig. 11~b!.

Figure 11~a! presents the evolution of the stability index
k of the periodic orbitsRr andDz as Pf varies. As we can
observe, orbits Rr are stable into the intervalsPf

P@0,0.02314# and PfP@0.05598,0.15357#. For valuesPf

.0.15357 the instability grows high. We note that these os-
cillations on ther-axis are periodic also with halved period
because negative values ofr are not possible in the case
PfÞ0.

Stable oscillationsDz bifurcated from thez-axis start
with almost vertical orbits and exist forPf,0.0734 66—see
Fig. 11~a!. At this point the family comes back over itself
with unstable orbits, until ending on thexy-plane for Pf

50.055 98.
Other trajectories appear as bifurcations of the family of

Rr orbits. Besides the valuek52 corresponding to the ter-
mination of the unstable branch ofDz orbits at Pf

50.055 98, we find other values ofPf for which uku52 and
new families of periodic orbits appear. Thus, forPf

50.02314k52, and a new family bifurcates from the family
of Rr orbits. We name this family as theCz family and its
orbits asCz orbits. In Fig. 12~a! we present the evolution of
its stability indexk. This new family starts withC-shaped
orbits very close toRr orbits. For increasing values ofPf

they apart from ther-axis until reaching a maximum value
z'0.522 for Pf'0.113, and then they transform to

FIG. 10. Orbits of the families that start as four-fold periodRz orbits and end as three-fold periodRj orbits.

FIG. 11. ~Color online!. ~a! Families of periodic orbits
Rr and Dz for variations of Pf (E51/200,d50.5)
emanating, respectively, from the oscillations on the
xy-plane~solid line! and from thez-axis ~dashed line!.
~b! Three orbits periodic in therz-plane for Pf

50.06. Two of them are stable and the other~dashed
line! is unstable.
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S-shaped orbits—see Fig. 12~b!. There is a maximum value
Pf50.132 21 where the family comes back over itself until
ending atPf50.115 00, again asRr orbit but with two-fold
period. Finally, we can appreciate that the stability character
of this family is oscillatory, passing several times from sta-
bility to instability with possible bifurcations.

The dynamical changes produced in the families of pe-
riodic orbits can be understood in terms of bifurcations of the
fixed points appearing in the sequence of surfaces of section
presented in Fig. 13. These surfaces of section, defined as
Pz50 andz>0, are in the plane (r,Pr). Note that again,Rr

orbits are tangent to the flux in this projection.
For Pf50.05 ~see surface of section I of Fig. 13!, be-

sides the two stable fixed points—theCz ~located at the right
side! and Dz ~located at the left side! orbits—some chaos
appears in a region that closely surrounds the unstableRr

orbit. Also, we see the five-fold period bifurcation of theCz

family that is produced atPf50.048, and, as we stated be-
fore, that is not evident from the stability diagram of Fig. 12.

A period doubling bifurcation (k522) of theCz family
is produced atPf50.055 33—see Fig. 12~a!, and the corre-
sponding bifurcation is appreciated in the surface of section
II. Chains of islands in the border of the region of chaotic
motion can be appreciated in pictures II and III. Also in
picture III, a three-fold period bifurcation can be appreciated

in the right side of the figure (r'0.6); again, this bifurcation
cannot be obtained from the stability diagram of Fig. 12.

Chaos disappears forPf'0.07, apparently in coinci-
dence with the maximum instability of theDz family, and
only regular motion is appreciated in the surface of section
number IV, where we also appreciate the hyperbolic fixed
point (r'0.3) corresponding to aDz orbit of the unstable
branch. The two branches ofDz orbits collapse atPf

50.0734 66 and the corresponding elliptic and hyperbolic
fixed points disappear in an saddle-node bifurcation~see sur-
face of section V!. A new bifurcation of theCz family takes
place forPf50.075 82, that is the pitchfork bifurcation that
appears in the right side of surface of section V (r'0.66).
Chaos appears again close to this last value, and it gradually
fills the surface of section for increasing values ofPf ~see
picture VI!.

Finally, one should note that, at a difference from the
parametersa or d, Pf is an internal parameter that depends
on the initial conditions of the ion.

B. Complete solution

Obviously, the Rz orbits are periodic in three-
dimensional space. But the other orbits previously analyzed
are only periodic in therz-plane, where

FIG. 12. ~Color online!. ~a! Families
of periodic orbitsRr andCz for varia-
tions of Pf (E51/200,d50.5). Note
that the familyCz ~dashed line! bifur-
cates from the familyRr ~solid line!.
~b! Two stable S-periodic orbits for
Pf50.121.

FIG. 13. Poincare´ surfaces of sectionr2Pr (Pz50,z.0) for E51/200,d50.5 and, from left to right and from top to bottom,Pf50.05, 0.056, 0.065, 0.07,
0.076, and 0.08.
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r~T!5r~0!, z~T!5z~0!,

where, in general,f(T)Þf(0) conform Eq.~13!, and they
are not periodic in three-dimensional space. However when
the differenceDf5f(T)2f0 is commensurate to 2p the
orbits are also periodic in thexy-plane and, consequently, in
three-dimensional space. Therefore, we will find periodic so-
lutions of the complete system by computing the ratioq
5Df/(2p) for all the orbits of each family, which rational
valuesm/n, with m and n integers, will point to periodic
orbits in three-dimensional space aftern periods. Several ex-
amples follow.

1. Family R j „PfÄ0…

Figure 14~a! presents a diagram with the evolution of
the commensurability conditionq along the family ofRj

orbits for variations ofd. Rational values ofq correspond to
values of the parameter generator of the family,d in this
case, for which the orbits are periodic in thexy-plane. For
instance in Fig. 14~b! we present a three-dimensional peri-
odic orbit found forq53 andd50.484. Many other orbits
periodic in thexy-plane could be obtained from other differ-
ent ratiosq.

2. Solutions for P fÅ0

In the same way, three-dimensional periodic orbits can
be computed from any of the other families. Examples are
presented in Fig. 15: One stableRr orbit for Pf50.076
~left!, and an unstable~right! Dz orbit for Pf50.0634.

V. SUMMARY AND CONCLUSIONS

In this paper we perform a systematic study of the peri-
odic orbits and the evolution of the phase space structure of
a single ion trapped in a realistic perturbed Penning trap. In

particular, we introduce a quartic axially symmetric octupo-
lar electrostatic perturbation that may be caused by imperfec-
tions in the experimental design. The advantage of managing
this perturbation is that, despite its nonlinear nature, the sys-
tem has only two degrees of freedom, which allows us to
combine the numerical continuation of families of periodic
orbits with Poincare´ surfaces of section.

The Hamiltonian governing the dynamics of the system
is stated and, after a convenient selection of units, the prob-
lem is seen to depend on the parametersa, Pf , andd. While
the parametera is related to the construction process of the
trap, the parametersPf andd can be externally established
for a certain experimental process. Following the line of pre-
vious studies on quartic potentials,22,23 in our study we keep
constant the parametera, while varying alternatively the two
remaining, being the influence ofPf in the Penning trap
dynamics one of the main contributions of the paper.

The numerical study has been divided in three main
parts. In the first part, by fixingPf50 and varyingd, we
determined the stability diagrams for the fundamental fami-
lies of periodic orbits. These diagrams indicate the presence
of several bifurcations which are visualized by means of sur-
faces of section. In the second one, we carried out a similar
study but now by fixingd51/2 and varyingPf . In these
parts, the general effect of increasing the corresponding pa-
rameter is a pumping process through which periodic orbits
emanate from two fundamental rectilinear periodic orbits:
the vertical oscillationRz and ther oscillationRr . This pro-
cess produces important changes~bifurcations! in the phase
space structure. Finally, in the last part a gallery of exact
periodic solutions in the three-dimensional space are shown.

We noted in the Introduction the crucial importance of
periodic orbits in the understanding of the photoabsortion
spectra on highly excited Rydberg atoms in external fields. In

FIG. 14. ~Color online!. ~a! Evolution of the commen-
surability conditionq of the Rj family as a function of
d. ~b! Three-dimensional periodic orbitRj found for q
53 andd50.484.

FIG. 15. ~Color online!. Two orbits of familiesRr ~left
panel! andDz ~right panel! which are three-dimensional
periodic orbits for different values ofPf .
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these systems, periodic orbits give important information
about the absorption spectrum because each periodic orbit
produces an oscillation in the spectrum and a peak in its
Fourier transform. In this sense, the perturbed Penning trap
presented in this paper could become an experimental oppor-
tunity to study the role played by periodic orbits in atomic
systems. The experimental realization would consist of a
Penning trap with electrodes having the appropriate octupo-
lar deformation, which is controlled by the geometrical pa-
rametera ~see Fig. 1!. As the perturbed trap is implemented,
we can tune the external parameterd ~e.g., the strength of the
external fields! to explore different phase space configura-
tions. Moreover, the spectra should reflect not only the pres-
ence of periodic orbits but also the possible bifurcations be-
tween them because when a bifurcation takes place, the
corresponding peak in the Fourier transformed spectrum be-
comes very large and then splits into two.6
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