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Abstract. For each integer n > 1 and a multiplicative system
S of non zero integers, we give a distinct closed model category
structure to the category of pointed spaces Top? and we prove
that the corresponding localized category Ho(Top(S,n)

? ) , obtained
by inverting the weak equivalences, is equivalent to the standard
homotopy category of uniquely (S, n)-divisible, (n − 1)-connected
spaces. A space X is said to be uniquely (S, n)-divisible if for k ≥ n
the homotopy group πkX is uniquely S-divisible. This equivalence
of categories is given by an (S, n)-colocalization functor that car-
ries a pointed space X to a space X(S,n) . There is also a natural
map X(S,n) −→ X which is (finally) universal among all the maps
Z −→ X with Z a uniquely (S, n)-divisible, (n − 1)-connected
space. The structure of closed model category given by Quillen to
Top? is based on maps which induce isomorphisms on all homo-
topy group functors πk and for any choice of base point. For each
pair (S, n), the closed model category structure given here take
as weak equivalences those maps that for the given base point in-
duce isomorphisms on the homotopy groups functors πk(Z[S−1];−)
with coefficients in Z[S−1] for k ≥ n . We note that the category
Ho(Top(Z−{0},2)

? ) is the homotopy category of rational 1-connected
spaces.
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1. Introduction

D. Quillen [13] introduced the notion of closed model category and
proved that the categories of spaces and of simplicial sets have the
structure of a closed model category. Moreover, Quillen [14] used this
structure to construct localization functors for 1-connected spaces and
to find algebraic models for rational homotopy theory. In this paper, we
use this categorical structure to construct colocalizacion functors and
to study the homotopy category of uniquely S-divisible spaces. These
colocalization functors are just given by the cofibrant approximations
of an object in the closed model structures developed in this work.

For each n > 1 , we take as weak (S, n)-equivalences those maps
of Top? which induce isomorphisms on the homotopy group functors
πk(Z[S−1];−) for k ≥ n , where S is a multiplicative system of non zero
integers and πk(Z[S−1];−) denotes the k-th homotopy group functor
with coefficients in Z[S−1] . The abelian group Z[S−1] is the subgroup
(subring) of the rationals Q of all fractions of the form a

b
with b ∈ S .

The class of weak (S, n)-equivalences is completed with classes of (S, n)-
fibrations and (S, n)-cofibrations and using these classes we are able to
prove the the following important result:

Theorem 3.1 For each n > 1, the category Top? together with
the families of (S, n)-fibrations, (S, n)-cofibrations and weak (S, n)-
equivalences, has the structure of a closed model category.

In this paper we have given some algebraic characterizations of the
spaces which up to weak equivalence are (S, n)-cofibrant spaces. Recall
that an abelian group H is said to be a uniquely S-divisible group if
for any h ∈ H and s ∈ S there is a unique x ∈ H such that sx = h.
A space is said to be uniquely (S, n)-divisible if the homotopy groups
πkX are uniquely S-divisible for k ≥ n . In the last section of this
paper, we have proved the following interesting result:

Theorem 4.1 Let X be a pointed space, then the following state-
ments are equivalent

(i) X is weakly equivalent to an (S, n)-cofibrant space,
(ii) for every abelian group B right-orthogonal to Z[S−1] the re-

duced singular cohomology groups H̃q(X; B) are trivial and X
is an (n− 1)-connected space,

(iii) for every s ∈ S the reduced singular homology groups H̃q(X;Z/s)
are trivial and X is an (n− 1)-connected space.

(iv) the reduced singular homology groups of X are uniquely S-
divisible groups and X is an (n− 1)-connected space,

(v) X is a uniquely (S, n)-divisible, (n− 1)-connected space.

As a consequence of this characterization of (S, n)-cofibrant spaces
we also have obtained the following important equivalence of categories:
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Theorem 4.2 The localized category Ho(Top(S,n)
? ) is equivalent to

the homotopy category of uniquely (S, n)-divisible, (n − 1)-connected
spaces.

In particular for S = Z−{0} and n = 2, one has the rational category
of 1-connected spaces.

An interesting functor induced by this closed model category is the
cofibrant approximation. Given a pointed space Y if we take the
(S, n)-cofibrant approximation, then the corresponding canonical map
Y (S,n) −→ Y is finally universal among all the maps Z −→ Y with
Z a uniquely (S, n)-divisible, (n − 1)-connected space. This property
is dual to the universal property of the Quillen-Sullivan localization
X −→ X ⊗ Z[S−1] . Moreover, in the localized category of (n − 1)-
connected spaces the Quillen-Sullivan localization functor is left adjoint
to the (S, n)-colocalization functor introduced in this paper.

2. Preliminaries on closed model categories

We begin by recalling the definition of a closed model category
(CMC) given by Quillen [14]. Foe more properties of closed model
categories we refer the reader to [9] , [5] , [6] and [11].

Definition 2.1. A closed model category C is a category endowed with
three distinguished families of maps called cofibrations, fibrations and
weak equivalences satisfying the axioms CM1–CM5 below:
CM1. C is closed under finite projective and inductive limits.
CM2. If f and g are maps such that gf is defined then if two of these
f, g and gf are weak equivalences then so is the third.

Recall that the maps in C form the objects of a category Maps(C)
having commutative squares for morphisms. We say that a map f in
C is a retract of g if there are morphisms ϕ : f −→ g and ψ : g −→ f
in Maps(C) such that ψϕ = idf .

A map which is a weak equivalence and a fibration is said to be a
trivial fibration and, similarly, a map which is a weak equivalence and
a cofibration is said to be a trivial cofibration.
CM3. If f is a retract of g and g is a fibration, cofibration or weak
equivalence then so is f .
CM4. (Lifting.) Given a solid arrow diagram

A //

i
��

X

p

��
B //

>>

Y

the dotted arrow exists in either of the following situations:

(i) i is a cofibration and p is a trivial fibration,
(ii) i is a trivial cofibration and p is a fibration.

CM5. (Factorization.) Any map f may be factored in two ways:
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(i) f = pi where i is a cofibration and p is a trivial fibration,
(ii) f = qj where j is a trivial cofibration and q is a fibration.

We say that a map i : A −→ B in a category has the left lifting
property (LLP) with respect to another map p : X −→ Y and p is said
to have the right lifting property (RLP) with respect to i if the dotted
arrow exists in any diagram of the form above.

The initial object of C is denoted by ∅ and the final object by ?.
An object X of C is said to be fibrant if the morphism X −→ ? is a
fibration and it is said cofibrant if ∅ −→ X is a cofibration.

In the category Top of spaces, a map is said to be a Serre fibration
if it has the right lifting property with respect to the maps

Ik → Ik+1 , (t1, · · · , tk)→ (t1, · · · , tk, 0)
({0} = I0 → I1 = I , maps 0 into 0) for k ≥ 0 , where I denotes the
closed unit interval.

In this paper we will consider the closed model category Top? of
pointed topological spaces with the following structure: Given a map
f : X −→ Y in Top?, f is said to be a fibration if it is a Serre fibration
in the non pointed category Top ; f is a weak equivalence if f induces
isomorphisms πq(f) for q ≥ 0 and for any choice of base point and f
is a cofibration if it has the LLP with respect to all trivial fibrations.
For this structure we refer the reader to Quillen [13]. We also recall
that Top? has also a compatible simplicial structure. If K is a finite
simplicial object and X is a pointed space then X ⊗K is defined to be

X ⊗K = X × |K|+/(X × ? ∪ ?× |K|+)

where |K|+ is the disjoint union of |K| and the one point space ? .
In particular we have the standard pointed cylinder

X ⊗ I = X ⊗∆[1] .

Let Ho(Top?) denote localized categories obtained by formal inver-
sion of of weak equivalences defined above.

In the category of pointed topological spaces and continuous maps,
Top? , we consider a family F = {Mλ|λ ∈ Λ} of spaces which are sus-
pensions of CW -complexes (Mλ = ΣNλ where Nλ is a CW -complex).
In this section we give a CMC structure in the category of pointed
spaces that will be used in next sections to prove the main theorems
of this paper. This structure is inspired in the CMC structure given
in [7] and for the case of one space it has been developed in [4] . We
have included the more significative facts that permit to prove that the
category of pointed spaces admits this CMC structure. In order to see
the difference with the CMC structures given in [11] we have included
a characterization of the family of fibrations in Theorem 2.1 . Notice
that the family of fibrations of our CMC structure is larger that the
class of Serre fibrations.



CMC FOR UNIQUELY S-DIVISIBLE SPACES 5

We consider the following classes of maps:

Definition 2.2. Let f : X −→ Y be a map in Top? ,

(i) f is a weak F-equivalence if the induced map

[ΣkMλ, f ] : [ΣkMλ, X] −→ [ΣkMλ, Y ]

is an isomorphism for each k ≥ 0 and λ ∈ Λ , where [−,−]
denotes the standard set of pointed homotopy classes.

(ii) f is an F-fibration if it has the RLP in the category of pointed
spaces with respect to the family T (F) of inclusions

(CΣkNλ × 0) ∪ (ΣkNλ ⊗ I) −→ CΣkNλ ⊗ I

for every k ≥ 0 and λ ∈ Λ .
A map which is both an F-fibration and a weak F-equivalence

is said to be a trivial F-fibration.
(iii) f is an F-cofibration if it has the LLP with respect to any trivial
F-fibration.

A map which is both an F-cofibration and a weak F-equivalence
is said to be a trivial F-cofibration.

A pointed space X is said to be F-fibrant if the map X −→ ?
is an F-fibration, and X is said to be F-cofibrant if the map
? −→ X is an F-cofibration.

Remark 2.1. Let C be the path-component of the given base point of
X . Note that the inclusion C −→ X is always a weak F-equivalence.
It as also clear that all objects in Top? are F-fibrant.

Theorem 2.1. Suppose that F has at least a non trivial CW -complex,
and for a map f : X −→ Y in Top?, denote by f0 : X0 −→ Y0 the
induced map on the path-components of the given base points. Then f
is an F-fibration if and only if f0 is a Serre fibration.

Proof. Since the maps of the family T (F) are between 0-connected
spaces, one has that in the category of pointed spaces a map f has the
RLP with respect to T (F) if and only if f0 has the RLP with respect to
T (F) . Suppose that f0 is a Serre fibration, because the maps of T (F)
are trivial cofibrations, it follows that f0 has the right lifting property
with respect to T (F) , and therefore f is an F -fibration. Conversely,
for simplicity write by ik : Uk → Vk a map of the family T (F) which
is a cofibration between contractible CW -complexes. Take 0 ∈ Ik as a
base point and write I ∨ Ik for the pointed sum. Since the family has
at least a non trivial CW -complex, for a large integer K it is possible
to embed I∨Ik in UK and to extend to an embedding I∨Ik+1 → VK in
such a way that the embeddings are both cofibrations and the point 1
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of I has been identified to the base point of VK . Lifting in the diagram

I ∨ Ik

��

// I ∨ Ik

��
UK

// ∗

gives a retraction r : UK → I ∨ Ik . If we consider the induced map
r + id : UK ∪(I∨Ik) (I ∨ Ik+1) −→ I ∨ Ik+1 we can lift in the diagram

UK ∪(I∨Ik) (I ∨ Ik+1)

��

// I ∨ Ik+1

��
VK // ∗

to obtain that (I ∨ Ik, 1) → (I ∨ Ik+1, 1) is a retract of the map
(UK , ∗)→ (VK , ∗).

Now assume that f has the RLP with respect to UK → VK in the
pointed setting, then f0 has the same lifting property. Therefore f0

has the RLP with respect to I ∨ Ik → I ∨ Ik+1 in the pointed setting.
Since the domain of f0 is 0-connected, it follows that f0 ha the RLP
with respect Ik → Ik+1 in the non pointed setting. This implies that
f0 is a Serre fibration. �

We have the following characterization of the class of trivial F -
fibrations:

Proposition 2.1. For a map f : X −→ Y in Top?, the following state-
ments are equivalent:

(i) f is a trivial F-fibration,
(ii) f has the RLP with respect to the family C(F) of inclusions

? −→ Mλ , λ ∈ Λ ,

ΣkMλ −→ CΣkMλ , k ≥ 0 , λ ∈ Λ .

Proof. Let F be the homotopy fibre of f in Top? . Suppose that f has
the RLP with respect to the maps of C(F) . This fact implies that
[Mλ, X] −→ [Mλ, Y ] is surjective and [ΣkMλ, F ] ∼= 0 for k ≥ 0 and
λ ∈ Λ . Therefore we have that f is a weak F -equivalence.

In order to prove that f is an F -fibration, for k ≥ 0 and λ ∈ Λ ,
consider a commutative diagram of the form

(CΣkNλ ⊗ 0) ∪ (ΣkNλ ⊗ I)

��

u // X

f

��
CΣkNλ ⊗ I v

// Y
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Define ū : (ΣkNλ ⊗ I) ∪ (CΣkNλ ⊗ 1) −→ X , v̄ : CΣkNλ ⊗ I −→ Y
by the formulas ū[x, t] = u[x, 1−t] , v̄[x, t] = v[x, 1−t] . Since ū[x, 0] =
u[x, 1] and v̄[x, 0] = v[x, 1] , the following diagram is commutative

(CΣkNλ ⊗ 0) ∪ (ΣkNλ ⊗ I) ∪ (ΣkNλ ⊗ I) ∪ (CΣkNλ ⊗ 1)

��

u+ū
//X

f

��
(CΣkNλ ⊗ I) ∪ (CΣkNλ ⊗ I)

v+v̄
//Y

However, one has that

ΣkMλ
∼= (CΣkNλ ⊗ 0) ∪ (ΣkNλ ⊗ I) ∪ (ΣkNλ ⊗ I) ∪ (CΣkNλ ⊗ 1)

CΣkMλ
∼= (CΣkNλ ⊗ I) ∪ (CΣkNλ ⊗ I)

Therefore we can apply that f has the RLP with respect to C(F) to
obtain a lifting h : (CΣkNλ⊗ I)∪ (CΣkNλ⊗ I) −→ X for the diagram
above. Now the restriction of h to the first copy h/(CΣkNλ⊗ I) is the
desired lifting. Hence one concludes that f is an F -fibration.

The part (i) implies (ii), does not have difficulty.
�

Using the characterization of trivial (S, n)-fibrations by the RLP
with respect to a family of maps, one can prove following result.

Theorem 2.2. The category Top? together with the classes of F-fibrations,
F-cofibrations and weak F-equivalences, has the structure of a closed
model category.

Proof. At this point we assume that all the axioms have been verified
(the proofs are easy) with the exception of axioms CM5 and CM4(ii).

To prove the factorization axiom CM5, it is very useful the following
generalization of the argument of the small object, see [2] , [8] and
[11] . This generalization had also been considered by Joyal [12] to
give a closed model structure to the category of simplicial objects in a
Grothendieck Topos.

Let f : X −→ Y be a map in Top?, we have to prove that f can be
factored in two ways:
(i) f = pi, where i is an F -cofibration and p is a trivial F -fibration,
(ii) f = qj, where j is a weak F -equivalence having the LLP with
respect to all F -fibrations and q is an F -fibration.

For instance, in order to obtain the first factorization, we choose a
limit ordinal γ whose cardinality is greater than the cardinal of the set
of cells of Mλ for every λ ∈ Λ .

First we can consider all maps of the form v : Mλ −→ Y , λ ∈ Λ to
construct the space X0 = X

∨
(
∨
v Mλ(v)) and the map p0 : X0 −→ Y

defined by the sum of f and all the maps v . This map p0 : X0 −→ Y
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has the RLP with respect to the maps ? −→ Mλ . Now we construct
the following γ-sequence, for any ordinal β ≤ γ

X0 → X1 → X2 → · · · → Xβ → · · ·
and compatible maps pβ : Xβ −→ Y . For β = 0 , we have the map
p0 : X0 −→ Y . Given an ordinal β , suppose that we have pα : Xα −→
X for any α < β . Now we consider two cases:

First case: β is the successor ordinal of α , then we take all commu-
tative diagrams D of the form

ΣkMλ

��

uD // Xα

pα

��
CΣkMλ

vD
// Y

where k ≥ 0 and λ ∈ Λ . Define jβ : Xα −→ Xβ , by the pushout∨
D ΣkMλ

//

��

Xα

jβ

��∨
D CΣkMλ

// Xβ

and define pβ : Xβ −→ Y by the sum of pα and all the vD .
Second case: β is a limit ordinal. In this case we take

Xβ = Colimα<βX
α

pβ = Colimα<βp
α

By transfinite induction we obtain an F -cofibration i : X −→ Xγ

and a trivial F -fibration p : Xγ −→ Y .
The other factorization f = qj is similarly obtained. In this case, we

also have that j has the LLP with respect to all F -fibrations.
Next we verify Axiom CM4(ii). Suppose that i is a trivial F -

fibration, by CM5, i can be factored as i = qj where j : A −→ W is
a weak F -equivalence having the LLP with respect to all F -fibrations
and q : W −→ B is an F -fibration. Since CM2 is verified, q is a trivial
F -fibration. Then, there is a lifting r : B −→ W for the commutative
diagram

A

i
��

j
// W

q

��
B

id
// B

So, the map i is a retract of j. Therefore i also has the LLP with
respect to all F -fibrations.

�
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Remark 2.2. We note that the factorizations above are functorial.
This will be interesting when we consider left-derived and right-derived
functors. This also implies that we have functorial cylinders and co-
cylinders.

Remark 2.3. P.S. Hirschhorn a [11] and E. Dror-Farjoun [8] have
been working with cellularization functors associated to a cofibration
u : A −→ B. P.S. Hirschhorn proves that there is a closed model struc-
ture on Top? taking as fibrations the usual Serre fibrations of Top? ,
as weak equivalences they consider u-cellular equivalences and the u-
cellular cofibrations are defined by the LLP with respect to all the maps
which are both fibrations and u-cellular equivalences. Taking as cofi-
bration u the inclusion ? −→

∨
λ∈Λ Mλ if we consider the closed model

structure given by P.S. Hirschhorn, we have that the class of weak F-
equivalences is exactly the class of u-cellular equivalences. However,
one has that the class of F-fibrations is larger than the class of fibra-
tions. For example, because 0→ I is not a Serre fibration we have that
?+0→ ?+I is an F-fibration which is not a Serre fibration. Therefore
the CMC structure given in this work is different to the CMC structure
given in [11] . However, it is interesting to note that both structures
have the same class of cofibrant spaces.

3. Some closed model categories associated to Z[S−1]

In this paper we consider a multiplicative system S of non zero in-
tegers and a fixed n > 1 . In order to introduce a model structure as-
sociated with (S, n) we recall briefly the definition of homotopy groups
with coefficients. For a more complete description and properties we
refer the reader to Hilton [10] . For k ≥ 1 , we have the canonical space
M(Z[S−1]; k) which is usually called the Moore space with coefficient
group Z[S−1] and degree k . For a pointed space X , consider the set
of pointed homotopy classes πk(Z[S−1]; X) = [M(Z[S−1], k), X] . This
hom-set admits the structure of a group for k ≥ 2 which abelian for
k ≥ 3 . It is said that πk(Z[S−1]; X) is the k-th homotopy group of X
with coefficients in Z[S−1] . In this paper, for q ≥ 2 we shall frequently
use the following exact sequence

0→ Ext(Z[S−1], πq+1X)→ πq(Z[S−1]; X)→ Hom(Z[S−1], πqX)→ 0.

In the category of pointed topological spaces and continuous maps,
Top? , for a set S of non-zero integers and n > 1 , we consider the
following families of maps:

Definition 3.1. Let f : X −→ Y be a map in Top? ,

(i) f is a weak (S, n)-equivalence if the induced map

πl(Z[S−1]; f) : πl(Z[S−1]; X) −→ πl(Z[S−1]; Y )

is an isomorphism for each l ≥ n .
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(ii) f is an (S, n)-fibration if it has the RLP with respect to the
family T (S, n) of inclusions

(CΣkM(Z[S−1]; n−1)×0)∪(ΣkM(Z[S−1]; n−1)⊗I) −→ CΣkM(Z[S−1]; n−1)⊗I

for every k ≥ 0 .
A map which is both an (S, n)-fibration and a weak (S, n)-

equivalence is said to be a trivial (S, n)-fibration.
(iii) f is an (S, n)-cofibration if it has the LLP with respect to any

trivial (S, n)-fibration.

A map which is both an (S, n)-cofibration and a weak (S, n)-equivalence
is said to be a trivial (S, n)-cofibration.

A pointed space X is said to be (S, n)-fibrant if the map X −→ ?
is an (S, n)-fibration, and X is said to be (S, n)-cofibrant if the map
? −→ X is an (S, n)-cofibration.

We note that the homotopy group πq(Z[S−1]; X) only depends on
the path component C of the given base point of X . Therefore the
inclusion C −→ X is always a weak (S, n)-equivalence. It as also clear
that all objects in Top? are (S, n)-fibrant.

If we take the familyF = {M(Z[S−1]; n)} , which only has the Moore
space obtained by the suspension of M(Z[S−1]; n−1) , the classes of F -
fibrations, F -cofibrations and weak F -equivalences given in Definition
2.2 are exactly the classes of Definition 3.1 . Then the following result
is a consequence of Theorem 2.2 .

Theorem 3.1. For each n > 1, the category Top? together with the
families of (S, n)-fibrations, (S, n)-cofibrations and weak (S, n)-equivalences,
has the structure of a closed model category.

We denote by Top(S,n)
? the closed model category Top? with the

distinguished families of (S, n)-fibrations, (S, n)-cofibrations and weak
(S, n)-equivalences and by Ho(Top(S,n)

? ) the category of fractions ob-

tained from Top(S,n)
? by formal inversion of the family of weak (S, n)-

equivalences.
In a closed model category a map between objects which are cofi-

brant and fibrant is a homotopy equivalence if and only if it is a weak
equivalence. Then one has:

Theorem 3.2. (Whitehead theorem) Let f : X −→ Y be a map in
Top? and suppose that X and Y are (S, n)-cofibrant, then f is a pointed
homotopy equivalence if and only if πk(Z[S−1]; f) is an isomorphism for
every k ≥ n .

Definition 3.2. The (S, n)-cofibrant space obtained through the fac-
torization of ? −→ Y as the composite of an (S, n)-cofibration and a
trivial (S, n)-fibration, will be called the (S, n)-colocalization of Y and



CMC FOR UNIQUELY S-DIVISIBLE SPACES 11

it will be denoted by Y (S,n) . The trivial (S, n)-fibration Y (S,n) → Y will
be called the (S, n)-colocalization map of Y .

Definition 3.3. An abelian group A is said to be left-orthogonal to
B and B is said to be right-orthogonal to A if Hom(A, B) ∼= 0 and
Ext(A, B) ∼= 0 . Given classes A and B , if for every A of A and
every B of B , A is left-orthogonal to B , the class A is said to be
left-orthogonal to B and B is said to be right-orthogonal to A . We
denote by Aort the class of abelian groups which are right-orthogonal to
A and by ortB the class abelian groups which are left-orthogonal to B .
An abelian group which is right-orthogonal to Z[S−1] will be also called
an Ext-S-complete abelian group. A space X is said to be Ext-(S, n)-
complete if for for k ≥ n , πkX is Ext-S-complete.

Theorem 3.3. Let X be an (S, n)-cofibrant space, and Y (S,n) −→ Y
the (S, n)-colocalizacion of a space Y , then

Ho(Top?)(X, Y (S,n)) −→ Ho(Top?)(X, Y )

is an isomorphism. In particular, if Y is an Ext-(S, n)-complete space,
then

Ho(Top?)(X, Y ) ∼= ? .

Remark 3.1. If X is an (S, n)-cofibrant space and B is an abelian
group which is right-orthogonal to Z[S−1] , then the reduced cohomology
of X with coefficients in B is trivial.

Remark 3.2. If B is an abelian group which is right-orthogonal to
Z[S−1] , if we denote C [S−1] = Z[S−1]/Z , one has that Hom(C [S−1], B) ∼=
0 and Ext(C [S−1], B) ∼= B . If S is the multiplicative system generated
by a prime p , for a given abelian group D the group Ext(C [S−1], D)
is usually called the Ext-p-completion of D . We refer the reader to [1]
for questions related with Ext-p-completions.

Remark 3.3. In order to give the factorizations of axiom CM5 , we
have chosen a determined limit ordinal. Since the standard Moore space
M(Z[S−1], n) has a countable number of cells, then for this case we can
choose the continuum limit ordinal ℵ1 .

4. (S, n)-cofibrant spaces and uniquely S-divisible spaces

In this section, we observe that an (S, n)-cofibrant space is (n − 1)-
connected and its reduced singular homology groups are uniquely S-
divisible. This fact implies that the homotopy groups of an (S, n)-
cofibrant space are also uniquely S-divisible abelian groups. On the
other hand, we prove that if X is a uniquely (S, n)-divisible, (n − 1)-
connected space, then X is weakly equivalent to an (S, n)-cofibrant
space. This gives an algebraic characterization of (S, n)-cofibrant spaces.
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Proposition 4.1. If X is an (S, n)-cofibrant space, then X is (n− 1)-
connected.

Proof. For any ordinal β ≤ ℵ1 , consider the ℵ1-sequence given in
Theorem 2.2 :

X0 → X1 → X2 → · · · → Xβ → · · ·
where X0 =

∨
f M(Z[S−1]; n)f for all maps f : M(Z[S−1]; n) −→ X .

For Xβ we have two cases:
If β is the successor ordinal of α , then Xβ is the homotopy cofibre

of a map of the form
∨
D M(Z[S−1]; mD) −→ Xα , mD ≥ n .

If β is a limit ordinal. We have that

Xβ = Colimα<βX
α

By transfinite induction we obtain an (S, n)-cofibrant space Xℵ1 and
a trivial (S, n)-fibration p : Xℵ1 −→ X . Now we can apply Theorem
3.2 to obtain that p is also a weak equivalence.

It is easy to see that X0 is an (n−1)-connected space and taking into
account that a Moore space of the form M(Z[S−1]; mD) with mD ≥ n
is (n − 1)-connected, one has that the pushouts and colimits of the
construction above give again (n−1)-connected spaces. Therefore Xℵ1

is an (n− 1)-connected space. Because p is a weak equivalence one has
that X is (n− 1)-connected.

�

Definition 4.1. A pointed space X is said to be uniquely (S, n)-divisible
if for k ≥ n the homotopy groups πk(X) are uniquely S-divisible. Sim-
ilarly we have the notion of (S, n)-divisible and of (S, n)-torsion.

Proposition 4.2. Suppose that X is a uniquely (S, 2)-divisible, 1-
connected space. Then for q ≥ 1 one has:

πqX ∼= Hom(Z[S−1], πqX) ∼= πq(Z[S−1]; X).

Proof. We note that if B is a uniquely S-divisible abelian group, then
Hom(Z[S−1], B) ∼= B and Ext(Z[S−1], B) ∼= 0 . For the last isomor-
phism you can see that any epimorphism B −→ Z[S−1] has a section.
Now from the exact sequence

0→ Ext(Z[S−1], πq+1X) → πq(Z[S−1]; X)→ Hom(Z[S−1], πqX) → 0

it follows the desired result. �
The following result gives up to weak equivalence some algebraic

characterizations of (S, n)-cofibrant spaces.

Theorem 4.1. Let X be a pointed space, then the following statements
are equivalent

(i) X is weakly equivalent to an (S, n)-cofibrant space,
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(ii) for every abelian group B right-orthogonal to Z[S−1] the reduced

singular cohomology groups H̃q(X; B) are trivial and X is an
(n− 1)-connected space,

(iii) for every s ∈ S the reduced singular homology groups H̃q(X;Z/s)
are trivial and X is an (n − 1)-connected space.

(iv) the reduced singular homology groups of X are uniquely S-divisible
groups and X is an (n− 1)-connected space,

(v) X is a uniquely (S, n)-divisible, (n− 1)-connected space.

Proof. (i) => (ii). Proposition 4.1 and Remark 3.1 .
(ii) => (iii). Note that if s ∈ S then any Z/s-module M is right-

orthogonal to Z[S−1]. Therefore the reduced cohomology of X with
coefficients in a Z/s-module M vanishes if s ∈ S . By the univer-
sal coefficient theorem for Z/s-module chain complexes we have that
Hom(H̃q(X;Z/s), M) ∼= 0 and Ext(H̃q(X;Z/s), M) ∼= 0̃. In particular

one has that Hom(H̃q(X;Z/s), H̃q(X;Z/s)) ∼= 0 . This implies that

H̃q(X;Z/s) ∼= 0 . Then we have that the the reduced homology of X
with coeficients in Z/s is trivial.

(iii) <=> (iv). This is obvious from the universal coefficient theo-
rem. If A is an abelian group, then A ⊗ Z/sZ and Tor(A,Z/sZ) are
respectively the cokernel and kernel of multiplication bys on A , so
these group vanish if and only if A is uniquely s-divisible.

(iv) <=> (v). It follows from Serre mod C theory, see [15] . A 1-
connected space has uniquely S-divisible homology groups if and only
if it has uniquely S-divisible homotopy groups.

(v) => (i). Let p : X(S,n) → X be the S-cofibrant approxima-
tion of X. By Proposition 4.2 , if (v) holds, then for every q ≥ n ,
πq(Z[S−1]; X) is isomorphic to πq(X) and similarly for X(S,n). There-
fore, p is a weak equivalence and X is weakly equivalent to an (S, n)-
cofibrant space.

�

Theorem 4.2. The localized category Ho(Top(S,n)
? ) is equivalent to the

homotopy category of uniquely (S, n)-divisible, (n−1)-connected spaces.

Proof. By Theorem 3.1 Top(S,n)
? has the structure of a closed model

category. Therefore the localized category Ho(Top(S,n)
? ) is equivalent

to homotopy category of (S, n)-cofibrant spaces (in this case all spaces
are (S, n)-fibrant) . Now by Theorem 4.1 one has that a space X is
(S, n)-cofibrant if and only if X is a uniquely (S, n)-divisible, (n − 1)-
connected space. Then Ho(Top(S,n)

? ) is equivalent to homotopy category
of uniquely (S, n)-divisible, (n− 1)-connected spaces. �

Now we study the relationship between the homotopy groups of a
space X and the homotopy groups of its (S, n)-colocalization X(S,n).
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Proposition 4.3. Let X(S,n) be the (S, n)-colocalization of a pointed
space X . Then for q ≥ n the following sequence is exact

0→ Ext(Z[S−1], πq+1X)→ πq(X
(S,n))→ Hom(Z[S−1], πqX)→ 0.

Corollary 4.1. Suppose that B is an abelian group and K(B, q) the
Eilenberg-Mac Lane space at degree q ≥ 2 . Then K(B, n)(S,n) is an
Eilenberg-Mac Lane space such that πn(K(B, n)(S,n)) ∼= Hom(Z[S−1], B) .
For m > n, K(B, m)(S,n) has two possible non trivial homotopy groups

πm−1(K(B, m)(S,n)) ∼= Ext(Z[S−1], B),

πm(K(B, m)(S,n)) ∼= Hom(Z[S−1], B).

Remark 4.1. The multiplicative system S can be seen as a cofinite
directed set. We can assume that all the integers of S are positive.
Given s′, s ∈ S we say that s′ ≥ s if there is an integer t such that
s′ = ts . Given an abelian group B we can construct the pro-group SB
directed by S as follows: Define SB(s) = B for all s ∈ S . If s′ = ts

the bounding map SB
s′

s : SB(s′) −→ SB(s) is defined by SB
s′

s (x) = tx
for every x ∈ SB(s′) . It is easy to check that

Hom(Z[S−1], B) ∼= lim(SB),

Ext(Z[S−1], B) ∼= lim1(SB).

Remark 4.2. Given a pointed space X , we can associate to the
loop space ΩX the pro-space SΩX directed by S as follows: Define
SΩX(s) = ΩX for all s ∈ S . If s′ = ts the bounding map SΩX(s′) −→
SΩX(s) is defined by sending a loop ω to the composite ωt. The homo-
topy limit holimSΩX is weakly equivalent to the space Ω(X(S,n)) .

Remark 4.3. For n > 1 , and a multiplicative system S of non zero
integers, we have the Sullivan-Quillen localization, that for an (n− 1)-
connected space X gives a localization map X −→ X ⊗ Z[S−1] , such
that X ⊗ Z[S−1] is a uniquely (S, n)-divisible, (n− 1)-connected space.
This map is initially universal among every map f : X −→ Z with Z a
uniquely (S, n)-divisible, (n−1)-connected space. Using the (homotopy)
universal property of the map Y (S,n) → Y , for every (n− 1)-connected
space X , and a pointed space Y , one has

Ho(Top?)(X ⊗ Z[S−1], Y ) ∼= Ho(Top?)(X, Y (S,n))

In particular for q ≥ n , the homotopy groups of Y (S,n) can be obtained
as

πq(Y
(S,n)) ∼= Ho(Top?)(S

q, Y (S,n)) ∼= Ho(Top?)(S
q ⊗ Z[S−1], Y ).
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Remark 4.4. For n = 2 , and the multiplicative system S = Z − {0}
we have a “corrationalization” functor and a canonical map Y (S,2) → Y
that gives an equivalence of the localized category and homotopy cate-
gory of rational 1-connected spaces. We remark that we can also define
a functor and a colocalizacion map Y (S,1) → Y . The functor Y (S,1)

becomes more complicated because we do not have some nice properties
of 1-connected spaces.

Remark 4.5. Suppose that X is an 1-connected space and for the ring
R = Z/p , we consider the Bousfield-Kan R-completion X −→ R∞X ,
see [1] . If we take the multiplicative system S generated by p and n =
2 , we have the (S, n)-colocalization X(S,n) −→ X and the homotopy
fibre F of the map X −→ R∞X . Since the homotopy groups of R∞X
are Ext-p-complete, one has that the hom-set Ho(Top?)(X

(S,2), R∞X) is
trivial. Therefore there is a canonical map X(S,n) −→ F . On the
other hand, if we assume that in each πkX the p-torsion elements are
of bounded order, one has the exact sequence

· · · → πk+1X → Ext(C [ 1
p
], πk+1X)→ πkF → πkX → Ext(C [ 1

p
], πkX → · · ·

(recall that C [ 1
p
] denotes the quotient Z[ 1

p
]/Z) and consequently the ex-

act sequence

0→ Ext(Z[ 1
p
], πk+1X) → πkF → Hom(Z[ 1

p
], πkX) → 0

Therefore we have that πkF are uniquely p-divisible. With the ad-
ditional condition Ext(Z[ 1

p
], π2X) ∼= 0 , we have that F is also 1-

connected. In this case, there is also a canonical map F −→ X(S,2)

and we have that F is weakly equivalent to X(S,2) .
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