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Abstract. For each n > 1 and each multiplicative closed set of integers S, we study
closed model category structures on the pointed category of topological spaces, where
the class of weak equivalences are classes of maps inducing isomorphism on homotopy
groups with coefficients in determined torsion abelian groups, in degrees higher than or
equal to n. We take coefficients either on all the cyclic groups Z/s with s ∈ S , or
in the abelian group C[S−1] = Z[S−1]/Z where Z[S−1] is the group of fractions of the
form z

s with s ∈ S . In the first case, for n > 1 the localized category Ho(TnS−Top∗)
is equivalent to the ordinary homotopy category of (n − 1)-connected CW -complexes
whose homotopy groups are S-torsion. In the second case, for n > 1 we obtain that the
localized category Ho(TDn

S−Top∗) is equivalent to the ordinary homotopy category
of (n− 1)-connected CW -complexes whose homotopy groups are S-torsion and the nth

homotopy group is divisible.
These equivalences of categories are given by colocalizations XTnS → X, XTDnS → X

obtained by cofibrant approximations on the model structures. These colocalization
maps have nice universal properties. For instance, the map XTDn S → X is final (in
the homotopy category) among all the maps of the form Y → X with Y an (n − 1)-
connected CW -complex whose homotopy groups are S-torsion and its nth homotopy
group is divisible. The spaces XTnS , XTDn S are constructed using the cones of Moore
spaces of the form M(T, k) , where T is a coefficient group of the corresponding structure
of models, and homotopy colimits indexed by a suitable ordinal.

If S is generated by a set P of primes and Sp is generated by a prime p ∈ P one
has that for n > 1 the category Ho(TnS−Top∗) is equivalent to the product category∏

p∈P Ho(TnSp−Top∗) . If the multiplicative system S is generated by a finite set of
primes, then localized category Ho(TDnS−Top∗) is equivalent to the homotopy cate-
gory of n-connected Ext-S-complete CW -complexes and a similar result is obtained for
Ho(TnS−Top∗) .

1. Introduction

In this paper we use model structures [17] on the category Top∗ of pointed topological

spaces, to study the ordinary homotopy category of simply connected torsion spaces. For
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the model structures analysed in this paper, the localized category is equivalent to the

standard homotopy category of cofibrant spaces. In our study we give some algebraic

characterization of these classes of cofibrant spaces, we also analyse some equivalences

of homotopy categories and develop some methods to compute homology and homotopy

groups.

In this work, for each n > 1 and for a closed multiplicative set of integers S, we

introduce a new closed model structure that is denoted by TDnS−Top∗ . The class of

weak equivalences of the new structure TDnS−Top∗ is the class of maps X → Y inducing

isomorphism of homotopy groups at degrees ≥ n with coefficients in the abelian group

C[S−1] = Z[S−1]/Z , where we use the C to recall that C[S−1] is a subgroup of the circle

group of complex numbers of module 1.

We show that for n > 1 the category Ho(TDnS−Top∗) is equivalent to the standard

homotopy category of (n − 1)-connected CW -complexes whose homotopy groups are S-

torsion and the nth homotopy group is S-divisible. The equivalence of categories is given

by the CW -approximation XTDnS , which is the cofibrant approximation of X in the

closed model structure.

The space X(S,n) (in this paper denoted by XTnS) was constructed in [3] using as build-

ing blocks the cones of Moore spaces, which are finite complexes of the form M(Z/s; m)

with s ∈ S , and inductive colimits indexed by the ordinal of positive integers. Nev-

ertheless, to construct the space XTDnS, we use cones of Moore spaces of the form

M(C[S−1], m) and colimits indexed by a higher limit ordinal. The reason of this fact

is that an infinite number of cells is needed to construct the Moore space M(C[S−1], m) .

The relation between these constructions is given in section 7 by a fibration

K(TS(πnX)/DSTS(πnX), n− 1)→ XTDnS → XTnS

where DSA denotes the maximal S-divisible subgroup of an abelian group A and TSA

denotes the S-torsion subgroup of A .

The following paragraphs of this introduction contain a selection of the main results of

this paper.

In section 4, we give up to weak equivalence the following algebraic characterization of

TDnS-cofibrant spaces.

Theorem 4.1 Let X be a pointed space, then the following statements are equivalent

(i) X is weakly equivalent to an TDnS-cofibrant space,

(ii) X is a (n − 1)-connected space, for every S-uniquely divisible abelian group B

the reduced singular cohomology groups H̃q(X; B) are trivial and for any abelian

group C with no S-divisible (nontrivial) subgroups the singular cohomology group

Hn(X; C) is trivial,

(iii) X is an (n − 1)-connected space, for every s ∈ S the singular homology groups

Hn(X; Z/s) are trivial and for q ≥ n, Hq(X; Z[S−1]) ∼= 0 .
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(iv) X is a (n−1)-connected space, HnX is an S-torsion divisible group and for q > n ,

HqX is an S-torsion group.

(v) X is a (n−1)-connected space, πnX is an S-torsion divisible group and for q > n ,

πqX is an S-torsion group.

In section 5, we describe how the colocalized spaces can also be constructed by using

homotopy fibres of Quillen-Sullivan localization maps FX → X → X[S−1] , n-connective

coverings Y n of a space Y and homotopy fibres of maps which represent some distinguished

cohomological classes. We see that XTnS is weakly equivalent to (FXn)n and the following

result is proved:

Theorem 5.3 Consider the homomorphism of abelian groups

a : πn(XTnS)→ Tor(πnX, C[S−1]) ∼= TS(πnX)→ TS(πnX)/DS(TS(πnX)),

the corresponding cohomological element

A : (FXn)n → K(TS(πnX)/DSTS(πnX), n)

and denote by (F̄Xn)n the homotopy fibre of A . Then XTDnS is weakly equivalent to

(F̄Xn)n . Moreover, for k ≥ n + 1 the following sequence is exact

0→ πk+1X ⊗ C[S−1]→ πk(X
TDnS)→ Tor(πkX, C[S−1])→ 0,

and for k = n , we have the exact sequence

0→ πn+1X ⊗ C[S−1]→ πn(XTDnS)→ DSTS(πnX)→ 0.

In 1972, Bousfield and Kan [1] introduced techniques of homology localization. For

instance, for the ring Z/p with p a prime and for a 1-connected space X they constructed

a localization map X → (Z/p)∞X that induces isomorphism on the homology functors

Hq(−; Z/p). The space (Z/p)∞X is also 1-connected and its homotopy groups are Ext-p-

complete abelian groups.

In this preprint, an n-connected space X is said to be Ext-S-complete, if its homotopy

groups are Ext-S-complete and an abelian group π is Ext-S-complete if Ext(C[S−1], π) ∼=
π . The case of Ext-p-complete is obtained when S is generated by a prime p .

For a multiplicative system S generated by a finite number of primes p1, · · · , pr and for

the ring R = Z/p1 × · · · × R = Z/pr , in section 9, for n > 1 , the following equivalence

of categories is given:

Theorem 9.1 The left derived functor

RL
∞ : Ho(TDnS−Top∗) −→ Ho(Ext-S-complete n-connected spaces)

is left adjoint to

(.)TDnS : Ho(Ext-S-complete n-connected spaces) −→ Ho(TDnS−Top∗) .

Moreover, the pair of functors above give an equivalence categories.
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2. Preliminaries

2.1. Closed model categories. A closed model category C is a category endowed with

three distinguished classes of maps called cofibrations, fibrations and weak equivalences

satisfying certain axioms. We refer the reader to [17] , [18], [11], [12], [4], [5] for any

properties, notation and results concerning closed model categories.

In this paper, the following closed model category (CMC) structure will be considered:

The closed model category Q−Top of topological spaces with the following classes:

Given a map f : X −→ Y in Top, f is said to be a fibration if it is a fibre map in the

sense of Serre; f is a weak equivalence if f induces isomorphism πq(f) for q ≥ 0 and for

any choice of base point and f is a cofibration if it has the LLP with respect to all trivial

fibrations. For the study of this structure and its properties we refer the reader to Quillen

[17]. We also recall that Q−Top∗ has also an induced closed model category structure:

A pointed map f : (X, ∗) → (Y, ∗) is said to be a fibration (resp., weak equivalence,

cofibration) if in the non pointed setting the map f : X → Y is a fibration (resp., weak

equivalence, cofibration.) We recall that both categories of spaces and pointed spaces

have compatible simplicial structures, see [17], [8] . For instance for pointed spaces, if K

is a finite simplicial object and X is a pointed space then X ⊗K is defined to be

X ⊗K = X × |K|+/(X × ∗ ∪ ∗ × |K|+)

where |K|+ is the disjoint union of |K| and the one point space ∗ .

In particular we have the standard pointed cylinder

X ⊗ I = X ⊗∆[1] .

Let Ho(Q−Top∗) denote the corresponding localized category obtained by formal in-

version of of weak equivalences defined above.

In this subsection we recall a CMC structure on the category of pointed spaces that

will be used to prove the main theorems of this paper. A particular case of this CMC

structure was given in [6], and the general construction can be seen in [9] , where the reader

is referred for proofs, notations and results. Nevertheless, we include some significant facts

and properties of this CMC structure that are used in the following sections.

In the category of pointed topological spaces and continuous maps, Top∗ , let F =

{Mλ|λ ∈ Λ} be a family of spaces which are suspensions of CW -complexes (Mλ = ΣNλ

where Nλ is a CW -complex).

We consider the following classes of maps:

Definition 2.1. Let f : X −→ Y be a map in Top∗ ,

(i) f is an F-weak equivalence if the induced map

[ΣkMλ, f ] : [ΣkMλ, X] −→ [ΣkMλ, Y ]
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is an isomorphism for each k ≥ 0 and λ ∈ Λ , where [−,−] denotes the standard

set of pointed homotopy classes.

(ii) f is an F-fibration if it has the RLP in the category of pointed spaces with respect

to the family T (F) of inclusions

(CΣkNλ × 0) ∪ (ΣkNλ ⊗ I) −→ CΣkNλ ⊗ I

for every k ≥ 0 and λ ∈ Λ .

A map which is both an F-fibration and an F-weak equivalence is said to be a

F-trivial fibration.

(iii) f is an F-cofibration if it has the LLP with respect to any trivial F-fibration.

A map which is both an F-cofibration and an F-weak equivalence is said to be

a F-trivial cofibration.

A pointed space X is said to be F-fibrant if the map X −→ ∗ is an F-fibration,

and X is said to be F-cofibrant if the map ∗ −→ X is an F-cofibration.

Remark 2.1. Let C be the path-component of the given base point of X . Note that the

inclusion C −→ X is always an F-weak equivalence. It as also clear that all objects in

Top∗ are F-fibrant.

In order to see the difference with the CMC structures given in [11] we have included

the following characterization of the family of F -fibrations . Notice that the family of

F -fibrations of our CMC structure is larger than the class of Serre fibrations.

We refer the reader to [9] to see a proof of the following characterizations:

Theorem 2.1. Suppose that F has at least a non trivial CW -complex, and for a map

f : X −→ Y in Top∗, denote by f0 : X0 −→ Y0 the induced map on the path-components

of the given base points. Then f is an F-fibration if and only if f0 is a Serre fibration.

Proposition 2.1. For a map f : X −→ Y in Top∗, the following statements are equiva-

lent:

(i) f is a F-trivial fibration,

(ii) f has the RLP with respect to the family C(F) of inclusions

∗ −→Mλ , λ ∈ Λ ,

ΣkMλ −→ CΣkMλ , k ≥ 0 , λ ∈ Λ .

Using the characterization of F -trivial fibrations by the RLP with respect to a family

of maps, one can prove following result, see [9] .

Theorem 2.2. The category Top∗ together with the classes of F-fibrations, F-cofibrations

and F-weak equivalences, has the structure of a closed model category.
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Remark 2.2. P.S. Hirschhorn a [11] and E. Dror-Farjoun [7] have been working with

cellularization functors associated to a set A of objects in a closed model category . P.S.

Hirschhorn proves that there is a closed model structure on Top∗ taking as fibrations the

usual Serre fibrations of Top∗ , as weak equivalences they consider A-cellular equivalences

and the A-cellular cofibrations are defined by the LLP with respect to all the maps which

are both fibrations and A-cellular equivalences. Taking as set of objects A = {
∨

λ∈Λ Mλ}
if we consider the closed model structure given by P.S. Hirschhorn, we have that the class

of F-weak equivalences is exactly the class of A-cellular equivalences. To see this fact it

is necessary to take into account that
∨

λ∈Λ Mλ is a suspension space that induces nice

properties in the corresponding function space. However, one has that in Top∗ the class

of F-fibrations is larger than the class of fibrations. For example, since 0 → I is not a

Serre fibration (in Top) we have that in Top∗ the map ∗ + 0 → ∗ + I is an F-fibration

which is not a Serre fibration. Therefore the CMC structure given in this work is different

to the CMC structure given in [11] . However, it is interesting to note that a space is

F-cofibrant if and only if it is connected and cofibrant in the closed model category given

by Hirschhorn .

We denote by F−Top∗ the closed model category Top∗ with the distinguished fam-

ilies of F -fibrations, F -cofibrations and F -weak equivalences and by Ho(F−Top∗) the

category of fractions obtained from F−Top∗ by formal inversion of the family of F -weak

equivalences.

One of the basic tool of this paper will be the factorization technique given by the follow-

ing generalization of the argument of the small object, see [13], [7], [11]. Let f : X −→ Y

be a map in Top∗, then f can be factored in two ways:

(i) f = pi, where i is a F -cofibration and p is a F -trivial fibration,

(ii) f = qj, where j is an F -weak equivalence having the LLP with respect to all

F -fibrations and q is a F -fibration.

For instance, in order to obtain the first factorization, we choose a limit ordinal γ whose

cardinality is greater than the cardinal of the set of cells of Mλ for every λ ∈ Λ .

First we can consider all maps of the form v : Mλ −→ Y , λ ∈ Λ to construct the space

X0 = X
∨

(
∨

v Mλ(v)) and the map p0 : X0 −→ Y defined by the sum of f and all the

maps v . This map p0 : X0 −→ Y has the RLP with respect to the maps ∗ −→Mλ . Now

we construct the following γ-sequence, for any ordinal β ≤ γ

X0 → X1 → X2 → · · · → Xβ → · · ·

and compatible maps pβ : Xβ −→ Y . For β = 0 , we have the map p0 : X0 −→ Y . Given

an ordinal β , suppose that we have pα : Xα −→ X for any α < β . Now we consider two

cases:
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First case: β is the successor ordinal of α , then we take all commutative diagrams D

of the form

ΣkMλ

��

uD
// Xα

pα

��
CΣkMλ

vD

// Y

where k ≥ 0 and λ ∈ Λ . Define jβ : Xα −→ Xβ , by the pushout∨
D ΣkMλ

//

��

Xα

jβ

��∨
D CΣkMλ

// Xβ

and define pβ : Xβ −→ Y by the sum of pα and all the vD .

Second case: β is a limit ordinal. In this case we take

Xβ = colimα<βXα

pβ = colimα<βpα

By transfinite induction we obtain an F -cofibration i : X −→ Xγ and a F -trivial fibra-

tion p : Xγ −→ Y .

The other factorization f = qj is similarly obtained. In this case, we also have that j

has the LLP with respect to all F -fibrations.

As consequence of the presence of the closed model structure one has the following

version of the Whitehead Theorem:

Theorem 2.3. Let f : X −→ Y be a map in Top∗ and suppose that X and Y are F-

cofibrant, then f is a pointed homotopy equivalence if and only

[ΣkMλ, f ] : [ΣkMλ, X] −→ [ΣkMλ, Y ]

is an isomorphism for each k ≥ 0 and λ ∈ Λ .

We note that the factorizations above are functorial. This will be interesting when we

consider left-derived and right-derived functors. This also implies that we have functorial

cylinders and cocylinders. Note that if X = ∗, using the construction above we obtain an

F -cofibrant space Y F and an F -trivial fibration p : Y F −→ Y . This construction induces

a well defined functor (−)F : Top∗ −→ Top∗ , and a natural transformation Y F −→ Y .

Definition 2.2. The F-cofibrant space obtained through the factorization of ∗ −→ Y

as the composite of an F-cofibration and an F-trivial fibration, will be called the F-

colocalization of Y . The F-trivial fibration Y F → Y will be called the F-colocalization

map of Y .
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Since on a closed model category the hom-set from a cofibrant object to a fibrant object

can be realized as a set of homotopy classes, we have

Theorem 2.4. Let X be a F-cofibrant space and let Y F → Y be the F–colocalizacion

map of a space Y , then

Ho(Q−Top∗)(X, YF) −→ Ho(Q−Top∗)(X, Y)

is an isomorphism. In particular, if Y is F-weakly equivalent to a point, then

Ho(Q−Top∗)(X, Y) ∼= ∗ .

Therefore the F -colocalizacion map Y F → Y is finally universal in the homotopy

category among the maps X → Y from an F -cofibrant space X to Y . One also has that

the map Y F → Y is initially universal in the homotopy category among the maps X → Y

which are F -weak equivalences.

2.2. Some basic notions and properties of abelian groups. We recall some basic

notions that are quite useful for the category of abelian groups and that will be used in

this paper.

Definition 2.3. An abelian group A is said to be left orthogonal to B and B is said to

be right orthogonal to A if Hom(A, B) ∼= 0 and Ext(A, B) ∼= 0 . Given classes A and B ,

if for every A of A and every B of B , A is left orthogonal to B , the class A is said to

be left orthogonal to B and B is said to be right orthogonal to A . If Ext(A, B) ∼= 0 we

use the terms left Ext-orthogonal and right Ext-orthogonal. If Hom(A, B) is trivial, we

use the term Hom-orthogonal. This last terminology is also used for non abelian groups.

Definition 2.4. An abelian group A is said to be ⊗Tor-orthogonal if A ⊗ B ∼= 0 and

Tor(A, B) ∼= 0 . Given classes A and B , if for every A of A and every B of B , A is

⊗Tor-orthogonal to B , the class A is said to be ⊗Tor-orthogonal to B. If Tor(A, B) ∼= 0

we use the term Tor-orthogonal and if A⊗B is trivial, we use the term ⊗-orthogonal.

Given a closed multiplicative system S and an abelian group A, for each s ∈ S one can

consider the induced map s̃ : A→ A defined by s̃a = sa

Definition 2.5. . An abelian group A is said to be S-uniquely divisible if for every s ∈ S

the map s̃ : A→ A is a bijection. A is said to be S-free-torsion if for every s ∈ S the map

s̃ : A→ A is an injection. A is said to be S-divisible if for every s ∈ S the map s̃ : A→ A

is a surjection. If S is generated by a prime p some times we write p-uniquely divisible,

p-free-torsion or p-divisible.

An abelian group which is right orthogonal to Z/s satisfies that the map s̃ : A −→ A is

an isomorphism. Therefore one has:

(1) an abelian group is right orthogonal to the family {Z/s|s ∈ S} if and only if A is

S-uniquely divisible,
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(2) an abelian group A is right Hom-orthogonal to {Z/s|s ∈ S} if and only if A is

S-torsion-free,

(3) an abelian group A is right Ext-orthogonal to the family {Z/s|s ∈ S} if and only

if A is S-divisible.

If S is a multiplicative closed system of integers, recall that Z[S−1] is the of the fractions

of the form z
s

with z an integer and s ∈ S and the quotient abelian group Z[S−1]/Z is

denoted by C[S−1] . The following exact sequence will be frequently used

0→ Hom(C[S−1], B)→ Hom(Z[S−1], B)→
B → Ext(C[S−1], B)→ Ext(Z[S−1], B)→ 0

Given an abelian group B, there exists a maximal S-divisible subgroup DSB which

contains every S-divisible subgroup of B. We have the following properties:

(4) B is right orthogonal to C[S−1] if and only if B is S-uniquely divisible,

(5) B is right Hom-orthogonal to C[S−1] if and only if the maximal S-divisible sub-

group DS(B) of B is S-uniquely divisible,

(6) B is right Ext-orthogonal to C[S−1] if and only of B is S-divisible.

If G is a group and we assume that all the integers of S are positive, we can consider

the progroup {Kers̃| s ∈ S} whose bounding maps are of the form Kers1 → Kers0 ,

x → tx if s1 = s0t . Note G is right Hom-orthogonal to C[S−1] if and only the pointed

set lim Kers̃ is trivial, where s̃ : G→ G is the map g → gs .

Definition 2.6. An abelian group B is said to be Ext-S-complete if the boundary mor-

phism of the exact sequence above induces an isomorphism B ∼= Ext(C[S−1], B) . If

Hom(Z[S−1], B) ∼= 0 , B is said to be S-reduced and if Ext(Z[S−1], B) ∼= 0 , B is said to

be S-cotorsion. Note that B is S-reduced if and only if B has no (non trivial) S-divisible

subgroups.

(7) B is right orthogonal to Z[S−1] if and only if B is Ext-S-complete,

(8) B is right Hom-orthogonal to Z[S−1] if and only if B is S-reduced, or equivalently

if DS(B) ∼= 0 ,

(9) B is right Ext-orthogonal to Z[S−1] if and only of B is S-cotorsion.

An abelian group which is ⊗Tor-orthogonal to Z/s satisfies that the map s̃ : A −→ A

is an isomorphism. Therefore we have:

(10) an abelian group is ⊗Tor-orthogonal to the family {Z/s|s ∈ S} if and only if A is

S-uniquely divisible.

(11) an abelian group A is ⊗-orthogonal to the family {Z/s|s ∈ S} if and only if A is

S-divisible,

(12) an abelian group A is Tor-orthogonal to the family {Z/s|s ∈ S} if and only if A

is S-torsion-free.
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Definition 2.7. An abelian group A is said to be S-torsion for every a ∈ A there exist

s ∈ S such that sa = 0 . If S is generated by a prime p we write p-torsion. For an abelian

group A , we denote by TS(A) the maximal S-torsion subgroup of A . An abelian group

is said to be S-adjusted if A/TS(A) is S-uniquely divisible.

If we consider the exact sequence

0→ Tor(A, C[S−1])→ A→ A⊗ Z[S−1]→ A⊗ C[S−1]→ 0

one has that TS(A) ∼= Tor(A, C[S−1]) . Using this notation one has:

(13) an abelian group is ⊗Tor-orthogonal to C[S−1] if and only if A is S-uniquely

divisible.

(14) an abelian group A is ⊗-orthogonal to C[S−1] if and only if A is S-adjusted or

equivalently if A/TS(A) is S-uniquely divisible. If S is generated by a set P of

primes, A is ⊗-orthogonal to C[S−1] if and only for each p ∈ P for all a ∈ A and

for all i ≥ 0 there is xi ∈ A such that a− pixi is a p-torsion element.

(15) an abelian group A is Tor-orthogonal to C[S−1] if and only if A is S-torsion-free.

(16) an abelian group is ⊗Tor-orthogonal to Z[S−1] if and only if A is S-torsion,

(17) an abelian group A is ⊗-orthogonal to Z[S−1] if and only if A is S-torsion,

(18) every abelian group A is Tor-orthogonal to Z[S−1] .

3. Some closed model categories associated to a set S of integers

In order to introduce model structures associated with a set of integers S and an integer

n > 0 , we recall briefly the definition of homotopy groups with coefficients. For a more

complete description and properties we refer the reader to Hilton [10]. For k ≥ 1 and an

abelian group A , we have the canonical space M(A; k) which is usually called the Moore

space with coefficient group A and degree k . For a pointed space X , consider the set of

pointed homotopy classes πk(A; X) = [M(A, k), X] . This hom-set admits the structure of

a group for k ≥ 2 which abelian for k ≥ 3 . It is said that πk(A; X) is the k-th homotopy

group of X with coefficients in A . We also refer the reader to Neisendorfer [15] for some

properties of homotopy groups with coefficients.

We shall frequently use the following exact sequence for k ≥ 1 :

0→ Ext(A, πk+1X)→ πk(A; X)→ Hom(A, πkX)→ 0.

In the category of pointed topological spaces and continuous maps, Top∗ , for a set S

of non-zero integers and n > 0 , in [3] we have considered the family Sn of Moore spaces,

which in this paper is denoted by TnS

Sn = {M(Z/s; n)|s ∈ S} = TnS

and we have studied the associated closed model structure.
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If S is multiplicative closed, we consider the ring Z[S−1] of the fractions of the form z
s

with z an integer and s ∈ S . The quotient abelian group Z[S−1]/Z will be denoted by

C[S−1] .

In [9] , we have considered the closed model structure induced by the family

DnS = {M(Z[S−1]; n)}.

In the present paper is devoted to study the closed model structure induced on pointed

spaces by the family

TDnS = {M(C[S−1]; n)}

which only has one Moore space.

For the family TnS, a map f : X −→ Y in Top∗ is a TnS-weak equivalence if the

induced map

πl(Z/s; f) : πl(Z/s; X) −→ πl(Z/s; Y )

is an isomorphism for each l ≥ n and s ∈ S .

For the family DnS, a map f : X −→ Y in Top∗ is a DnS- weak equivalence if the

induced map

πl(Z[S−1]; f) : πl(Z[S−1]; X) −→ πl(Z[S−1]; Y )

is an isomorphism for each l ≥ n .

With respect to the family TDnS , f is a TDnS-weak equivalence if the induced map

πl(C[S−1]; f) : πl(C[S−1]; X) −→ πl(C[S−1]; Y )

is an isomorphism for each l ≥ n .

We note that the homotopy groups with coefficients only depend on the path component

C of the given base point of X . Therefore the inclusion C −→ X is always a weak

equivalence for the model structures associated with the families TnS , DnS and TDnS .

It as also clear that all objects in Top∗ are fibrant in the corresponding structures.

We denote by TDnS−Top∗ the closed model category Top∗ with the distinguished

classes of fibrations, TDnS-cofibrations and TDnS-weak equivalences and by Ho(TDnS−Top∗)

the category of fractions obtained from TDnS−Top∗ by formal inversion of the family of

TDnS-weak equivalences. Similar notation will be used for DnS or for TnS .

In these closed model categories it is very interesting to determine the classes of cofibrant

spaces. If S is multiplicative closed and n > 1 one has, see [3], that a space X is weakly

equivalent to a TnS-cofibrant space if and only if X is (n − 1)-connected and for k ≥ n

the homotopy groups of X are S-torsion abelian groups. In [9], we have shown that

for n > 1 , a space X is weakly equivalent to a DnS-cofibrant space if and only if X

is (n − 1)-connected and for k ≥ n the homotopy groups of X are S-uniquely divisible

abelian groups.
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In this paper, we shall give a characterization of TDnS-cofibrant spaces for n > 1 .

However, it remains to study these kind of F - structures and the corresponding charac-

terizations of “cofibrant spaces” for n = 1 .

For n > 1 , we note that a space Y is TnS-weakly equivalent to a point if πnY is

right Hom-orthogonal to S-torsion abelian groups (S-torsion-free) and for k > n , πkY is

right orthogonal to S-torsion abelian groups (S-uniquely divisible). As a consequence of

Theorem 2.4 one has that if X is an TnS-cofibrant space with n > 1 and B is an abelian

group which is right orthogonal to Z/s for every s ∈ S , then the reduced cohomology

of X with coefficients in B is trivial. Moreover, if B is S-torsion-free, then Hn(X; B) is

trivial.

With respect the DnS-structure, if n > 1 , a space Y is DnS-weakly equivalent to a

point if πnY is S-reduced and for k > n , πkY is S-complete. As a consequence of Theorem

2.4 one has that if X is an DnS-cofibrant space with n > 1 and B is an S-complete abelian

group, then the reduced cohomology of X with coefficients in B is trivial. Moreover, if B

is S-reduced, then Hn(X; B) is trivial.

For n > 1, one has that a space Y is TDnS-weakly equivalent to a point if the maximal

S-divisible subgroup of πnY is S-uniquely divisible and and for k > n , πkY is S-uniquely

divisible. Given an TDnS-cofibrant space X , if B is an abelian group whose maximal S-

divisible subgroup is S-uniquely divisible, then Hn(X; B) is trivial and if B is a S-uniquely

divisible group, then for k ≥ n , Hk(X; B) is trivial.

Remark 3.1. In order to give the factorizations of axiom CM5 , we have chosen a

determined limit ordinal. Since the standard Moore space M(Z/s, n) has a finite number

of cells, then for the case of the TnS-structure we can choose the countable limit ordinal

ℵ0 . Since the standard Moore space M(C[S−1], n) has a countable number of cells, then

for the TDnS-structure we have to choose the continuum limit ordinal ℵ1 .

4. TDnS-cofibrant spaces for n > 1

In this section, we suppose that n > 1 . We also consider a multiplicative system S

generated by a set P of positive primes.

We note that an TDnS-cofibrant space is (n − 1)-connected. We also observe that nth

singular homology group of an TDnS-cofibrant space is an S-torsion divisible abelian group

and for q > n we shall prove that the qth singular homology group is an S-torsion abelian

group.

This properties of the homology groups will imply that the homotopy groups of an

TDnS-cofibrant space satisfy similar properties in dimension n and > n, respectively. In

this section, we show that these properties give up to weak equivalence a characterization

of the class of TDnS-cofibrant spaces.

Lemma 4.1. If X is an TDnS-cofibrant space, then X is an (n− 1)-connected space.
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Proof. For any ordinal β ≤ ℵ1 , consider the ℵ1-sequence given in §2:

X0 → X1 → X2 → · · · → Xβ → · · ·

where X0 =
∨

f M(C[S−1]; n)f for all maps f : M(C[S−1]; n) −→ X . For Xβ we have

two cases:

If β is the successor ordinal of α , then Xβ has the homotopy type of the homotopy

cofibre of a map of the form
∨

D M(C[S−1]; mD) −→ Xα , mD ≥ n .

If β is a limit ordinal. We have that

Xβ = colimα<βXα

By transfinite induction we obtain an TDnS-cofibrant space Xℵ1 and an TDnS-trivial

fibration p : Xℵ1 −→ X .

It is clear that X0 is an (n− 1)-connected space. For the first case, using the excision

theorem for homotopy groups, it follows that if Xα is (n− 1)-connected, then Xβ is also

(n − 1)-connected. For the second case, one has that the homotopy groups commute

with homotopy colimits. Then by transfinite induction we have that Xℵ1 is an (n − 1)-

connected space. Since X is a cofibrant space we have that the TDnS-trivial fibration

p : Xℵ1 → X is a weak equivalence, hence X is also an (n− 1)-connected space. �

The following result gives up to weak equivalence some algebraic characterizations of

TDnS-cofibrant spaces.

Theorem 4.1. Let X be a pointed space, then the following statements are equivalent

(i) X is weakly equivalent to an TDnS-cofibrant space,

(ii) X is a (n − 1)-connected space, for every S-uniquely divisible abelian group B the

reduced singular cohomology groups H̃q(X; B) are trivial and for any abelian group C with

no S-divisible (nontrivial) subgroups the singular cohomology group Hn(X; C) is trivial,

(iii) X is an (n − 1)-connected space, for every s ∈ S the singular homology groups

Hn(X; Z/s) are trivial and for q ≥ n Hq(X; Z[S−1]) ∼= 0 .

(iv) X is a (n− 1)-connected space, HnX is an S-torsion divisible group and for q > n ,

HqX is an S-torsion group.

(v) X is a (n − 1)-connected space, πnX is an S-torsion divisible group and for q > n ,

πqX is an S-torsion group.

Proof. (i) => (ii). Lemma 4.1 and the cohomological results given at the end of §3 (before

Remark 3.1 .)

(ii) => (iii). Note that if s ∈ S then any Z/s-module M is right Hom-orthogonal to

C[S−1]. Therefore the reduced nth cohomology group of X with coefficients in a Z/s-

module M vanishes if s ∈ S . By the universal coefficient theorem for Z/s-module chain

complexes we have that Hom(Hn(X; Z/s), M) ∼= 0 . In particular one has that

Hom(Hn(X; Z/s), Hn(X; Z/s)) ∼= 0 .
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This implies that Hn(X; Z/s) ∼= 0 . We can repeat the argument for Z[S−1]-modules to

obtain that for q ≥ n Hq(X; Z[S−1]) ∼= 0 .

(iii) <=> (iv). This is obvious from the universal coefficient theorem and the properties

(11) and (16) of §2 .

(iv) <=> (v). It follows from Serre mod C theory, see [19] . A 1-connected space has

uniquely S-divisible homology groups if and only if it has uniquely S-divisible homotopy

groups.

(v) => (i). Assume that X satisfies (v). Take the TDnS-trivial fibration p : XTDnS → X

with fibre F . If we consider the exact sequence of homotopy groups of the fibration p :

· · · → πl+1X
TDnS → πl+1X → πlF → πlX

TDnS → πlX → · · ·

we obtain that πlF is an S-torsion for l ≥ n− 1 , πn−1F is a divisible group, and F is an

(n− 2)-connected space.

On the other hand, because p is a fibration we also have the exact sequence

· · · → πk(C[S−1]; XTDnS)→ πk(C[S−1]; X)→ πk−1(C[S−1]; F )

→ πk−1(C[S−1]; XTDnS)→ πk−1(C[S−1]; X)→ · · ·
Since p is an TDnS-trivial fibration and

πn−1(C[S−1]; XTDnS) ∼= Ext(C[S−1]; πnX
TDnS) ∼= 0

because πnX
TDnS is divisible, it follows that πk(C[S−1]; F ) ∼= 0 for k ≥ n− 1 .

Because πn−1F is an S-divisible group, one has that its maximal S-divisible subgroup

is πn−1F . Because πn−1F is right Hom-orthogonal to C[S−1] , this maximal subgroup

πn−1F is S-uniquely divisible. However we also have that πn−1F is an S-torsion group.

Then one has that πn−1F ∼= 0 . For q ≥ n, one also has that πqF is an S-torsion S-

uniquely divisible group, hence πqF ∼= 0 . Therefore the map p : XTDnS → X is a weak

equivalence.

�

Now we study the homotopy groups with coefficients in C[S−1] of the TDnS-colocalization

of a space X and in particular the homotopy groups with coefficients of an TDnS-cofibrant

space.

Proposition 4.1. Let XTDnS be the TDnS-colocalization of a pointed space X . Then for

q ≥ n the following sequence is exact

0→ Ext(C[S−1], πq+1X)→ πq(C[S−1]; XTDnS)→ Hom(C[S−1], πqX)→ 0

In particular, if the maximal S-divisible subgroup of πqX is S-uniquely divisible, one has

πq(C[S−1]; XTDnS) ∼= Ext(C[S−1], πq+1X)

with the additional condition that πq+1X is an S-cotorsion group, then

πq(C[S−1]; XTDnS) ∼= πq+1X/DS(πq+1X)
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where DS(πq+1X) is the maximal S-divisible subgroup of πq+1X and if πq+1X is an S-

cotorsion S-reduced group

πq(C[S−1]; XTDnS) ∼= πq+1X.

On the other hand, if πq+1X is S-cotorsion and S-divisible then

πq(C[S−1]; XTDnS) ∼= Hom(C[S−1], πqX).

Corollary 4.1. Suppose that B is an abelian group and K(B, q) the Eilenberg-Mac Lane

space at dimension q . Then for m > n, K(B, m)TDnS has two possible non trivial homo-

topy groups with coefficients in C[S−1]

πm−1(C[S−1]; K(B, m)TDnS) ∼= Ext(C[S−1], B),

πm(C[S−1]; K(B, m)TDnS) ∼= Hom(C[S−1], B).

If the maximal S-divisible subgroup of B is S-uniquely divisible, then the space K(B, m)TDnS

has only one non trivial homotopy group with coefficients in C[S−1]

πm−1(C[S−1]; K(B, m)TDnS) ∼= Ext(C[S−1], B).

If B is S-cotorsion S-divisible, then K(B, m)TDnS has only one non trivial homotopy group

with coefficients in C[S−1]

πm(C[S−1]; K(B, m)TDnS) ∼= Hom(C[S−1], B).

Remark 4.1. We can also compute the homotopy group πn−1(X
TDnS; C[S−1]) if we take

into account Theorem 5.3 of the following section. In particular, one has that

πn−1(C[S−1]; K(B, n)TDnS) ∼= Ext(C[S−1], DSTSB).

5. TnS-colocalizations, TDnS-colocalizations and S-cocompletions

Trough all this section we assume that n > 1 and that S is a closed multiplicative

system.

We consider the Sullivan-Quillen localization for 1-connected spaces, then for a 1-

connected space X we have the localization l : X −→ X[S−1] . The homotopy fibre FX

of the localization map is called the S-cocomplection of X . In this section, we compare

the S-cocomplection FX with the TnS-colocalization XTnS and the TDnS-colocalization

XTDnS . We denote by Y n the n-connective covering of Y .

Theorem 5.1. Let X be a 1-connected space. Then we have:

(i)If πqX is S-uniquely divisible for q ≤ n− 1 and πnX is S-adjusted, then FX is weakly

equivalent to XTnS .

(ii) If πqX is S-uniquely divisible for q ≤ n−1, and πnX is S-divisible, then FX is weakly

equivalent to XTDnS .
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Proof. For k ≥ 0 we have the following exact sequence

· · · → πk+1X → πk+1X[S−1]→ πkFX → πkX → πkX[S−1] ,

Then one has for k ≥ 1 the following exact sequence

0→ πk+1X ⊗ C[S−1]→ πkFX → Tor(πkX, C[S−1])→ 0.

In case (i), because X is 1-connected, πqX is S-uniquely divisible for q ≤ n − 1 and

πnX is S-adjusted, by (13), (14) of §2 it follows that FX is (n − 1)-connected. In case

(ii), one obtains that FX is (n−1)-connected and πnFX ∼= πn+1X⊗C[S−1] is a divisible

abelian group. In both cases we have that for q ≥ n , πqFX , is an S-torsion abelian

group.

As a consequence of Theorem 2.4, for a (n − 1)-connected space FX with S-torsion

homotopy groups, we have the bijection

p∗ : Ho(Q−Top∗)(FX,XTnS) −→ Ho(Q−Top∗)(FX,X)

where p : XTnS → X is the colocalization map.

With the additional condition that πnFX is divisible we also have the bijection

Ho(Q−Top∗)(FX,XTDnS) ∼= Ho(Q−Top∗)(FX,X)

Therefore, for the maps i : FX −→ X , there exists a map i′ : FX −→ XTnS , such that

i′p = i in Ho(Q−Top∗) .

On the other hand, because X[S−1] is S-uniquely divisible space, it follows that X[S−1]

is TnS-weakly equivalent to a point. Then

Ho(Q−Top∗)(XTnS, X[S−1]) ∼= Ho(TnS−Top∗)(XTnS, X[S−1]) ∼= 0.

By the same reason,

Ho(Q−Top∗)(XTnS, ΩX[S−1]) ∼= 0.

Because FX −→ X −→ X[S−1] is a fibration sequence, it follows that

i∗ : Ho(Q−Top∗)(XTnS, FX) −→ Ho(Q−Top∗)(XTnS, X)

is a bijection. Therefore there exists a map p′ : XTnS −→ FX such that ip′ = p .

Finally it is easy to check that p′i′ = id , i′p′ = id . Therefore XTnS is weakly equivalent

to FX . Similarly, under condition (ii) we also have that XTDnS is weakly equivalent to

FX . �

The following result proves that for any space X, the colocalizations can be expressed

in terms of cocompletions, connective coverings and amplification constructions induced

by certain cohomological elements.

We note that for n > 1 , given any space X the n-connective covering Xn → X induces

a weak equivalence (Xn)TnS → XTnS where Xn is a 1-connected space.
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Theorem 5.2. The space XTnS is weakly equivalent to (FXn)n . Moreover, for k ≥ n

the following sequence is exact

0→ πk+1X ⊗ C[S−1]→ πk(X
TnS)→ Tor(πkX, C[S−1])→ 0.

Proof. It similar to the proof above. �

Theorem 5.3. Consider the homomorphism of abelian groups

a : πn(XTnS)→ Tor(πnX, C[S−1]) = TS(πnX)→ TS(πnX)/DS(TS(πnX)),

the corresponding cohomological element

A : (FXn)n → K(TS(πnX)/DSTS(πnX), n)

and denote by (F̄Xn)n the homotopy fibre of A . Then XTDnS is weakly equivalent to

(F̄Xn)n . Moreover, for k ≥ n + 1 the following sequence is exact

0→ πk+1X ⊗ C[S−1]→ πk(X
TDnS)→ Tor(πkX, C[S−1])→ 0,

and for k = n , we have the exact sequence

0→ πn+1X ⊗ C[S−1]→ πn(XTDnS)→ DSTS(πnX)→ 0.

Corollary 5.1. Suppose that B is an abelian group and K(B, q) the Eilenberg-Mac Lane

space at dimension q > 1 . Then K(B, n)TnS is an Eilenberg-Mac Lane space such that

πn(K(B, n)TnS) ∼= Tor(πnX, C[S−1]) . For m > n, K(B, m)TnS has two possible non

trivial homotopy groups

πm−1(K(B, m)TnS) ∼= B ⊗ C[S−1],

πm(K(B, m)TnS) ∼= Tor(B, C[S−1]).

Corollary 5.2. Suppose that B is an abelian group and K(B, q) the Eilenberg-Mac Lane

space at dimension q > 1 . Then K(B, n)TDnS is an Eilenberg-Mac Lane space such that

πn(K(B, n)TDnS) ∼= DSTS(B) . For m > n, K(B, m)TDnS has two possible non trivial

homotopy groups

πm−1(K(B, m)TDnS) ∼= B ⊗ C[S−1],

πm(K(B, m)TDnS) ∼= Tor(B, C[S−1]).

6. Homology of TnS-colocalizations and TDnS-colocalizations

In all this section we suppose that n > 1 and S will be a closed multiplicative system.

We shall consider the Serre spectral sequence of a fibre map in order to study some

properties of the homology of TnS-colocalizations and TDnS-colocalizations.

Proposition 6.1. Let XTnS , XTDnS be the corresponding colocalizations of a space X ,

then
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(i) For every integer q we have

H̃q(X
TnS; Z) ∼= H̃q+1(X

TnS; C[S−1])

H̃q(X
TDnS; Z) ∼= H̃q+1(X

TDnS; C[S−1])

(ii) For every s ∈ S one has

Hn(XTnS; Z/s) ∼= TS(πnX)⊗ Z/s,

and for any S-torsion abelian group T :

H̃q(X
TDnS; T ) ∼= 0 for q ≤ n.

Proof. (i) follows from the exact sequence of homology groups induced by the short exact

sequence of coefficients 0→ Z→ Z[S−1]→ C[S−1]→ 0 .

For (ii), we can apply the Hurewicz Theorem and Theorem 5.2. For the second isomor-

phism, recall that by Theorem 4.1 we have that for any s ∈ S , Hn(XTDnS; Z/s) ∼= 0 . For

a given S-torsion group T we have a short exact sequence 0 → A → B → T → 0 where

B is a sum of groups of the form Z/s . By [14], a subgroup of a sum of cyclic groups is

also a sum of cyclic groups, then one has A is a sum of cyclic groups and because B is

S-torsion A is also a sum of groups of the form Z/s . From the exact sequence induced by

the short exact sequence of coefficients above we also have that for any S-torsion group

T , Hn(XTnS; T ) ∼= 0.

�

Proposition 6.2. Suppose that X is a 1-connected space. Then we have:

(i) If πkX is S-uniquely divisible for k ≤ n− 1 and πnX is S-adjusted, then Hq(X
TnS; T )

∼= Hq(X; T ) for any S-torsion abelian group T and for q > 0 the following sequence is

exact

0→ Hq+1X ⊗ C[S−1]→ Hq(X
TnS)→ Tor(HqX, C[S−1])→ 0 .

In particular, if HqX is S-torsion-free, then Hq(X
TnS) ∼= Hq+1X⊗C[S−1] , and if Hq+1X

is S-adjusted, then Hq(X
TnS) ∼= Tor(HqX, C[S−1]) .

(ii) If πkX is S-uniquely divisible for k ≤ n−1 and πnX is S-divisible, then Hq(X
TDnS; T ) ∼=

Hq(X; T ) for any S-torsion abelian group T and for q > 0 he following sequence is exact

0→ Hq+1X ⊗ C[S−1]→ Hq(X
TDnS)→ Tor(HqX, C[S−1])→ 0 .

Therefore, if HqX is S-torsion-free, then Hq(X
TDnS) ∼= Hq+1X ⊗ C[S−1] , and if Hq+1X

is S-adjusted, then Hq(X
TDnS)∼=Tor(HqX, C[S−1]) .

Proof. For each space X we have the fibre sequence Ω(X[S−1]) → FX → X . Since X

is 1-connected, the homotopy groups and the reduced homology groups of Ω(X[S−1]) are

S-uniquely divisible, then for any S-torsion abelian group T , using the spectral sequence

of a fibre map

E2
pq = Hp(X; Hq(Ω(X[S−1]); T ))
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we have that Hk(FX; T ) ∼= Hk(X; H0(ΩX[S−1]; T )) ∼= Hk(X; T ) for all k . Under the

conditions of (i), one has that FX ∼= XTnS and under conditions of (ii) FX ∼= XTDnS . If

we take T = C[S−1] by Proposition 6.1 and the formula of universal coefficients we obtain

the short exact sequences of (i) and (ii). �

Proposition 6.3. Let f : X → Y be a map between 1-connected spaces, then we have:

(i) Suppose that πkX , πkY for k ≤ n− 1 are S-uniquely divisible and πnX , πnY are

S-adjusted. If Hq(f, Z/s) is an isomorphism for every q ≥ n and s ∈ S , then f is a

TnS-weak equivalence.

(ii) Suppose that πkX , πkY are S-uniquely divisible for k ≤ n − 1, and πnX , πnY

are S-divisible. If Hq(f, C[S−1]) is an isomorphism for every q ≥ n + 1 , then f is a

TDnS-weak equivalence.

Proof. Consider the commutative diagram:

XTnS
pX

//

fTnS

��

X

f

��
Y TnS

pY

// Y

By Proposition 6.2 , pX and pY induce isomorphism on the homology groups with

coefficients in any S-torsion group. Because f also induce isomorphism Hq(f, Z/s) for

every q ≥ n and s ∈ S , it follows that fTnS induces isomorphism Hq(f
TnS, Z/s) for

every q ≥ n and s ∈ S . Therefore fTnS induces isomorphism Hq(f
TnS, C[S−1]) for every

q ≥ n + 1 . By Proposition 6.1 , we have that fTnS induces isomorphism on homology

with coefficients in Z . Since XTnS , ZTnS are 1-connected space we have that fTnS

is a homotopy equivalence. Taking into account that pX , pY and fTnS are TnS-weak

equivalences, one has that f is also a TnS-weak equivalence. For the case (ii) the proof is

similar.

�

Corollary 6.1. Suppose that B is an abelian group and M(B, q) the Moore space at degree

q > 1 . Then for m > n, M(B, m)TnS has two possible non trivial reduced homology groups

Hm−1(M(B, m)TnS) ∼= B ⊗ C[S−1],

Hm(M(B, m)TnS) ∼= Tor(B, C[S−1]).

7. The categories Ho(TnS−Top∗) and Ho(TDnS−Top∗)

In this section, we compare the closed model categories induced by the families TnS ,

TDnS and the standard closed model category of pointed spaces. Notice that there is no

problem if we assume that S is generated by a set of primes. As usual we suppose that

in this section n > 1 .
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It is interesting to note the existence of short exact sequences

0→ A→ B → C[S−1]→ 0

0→ Z/s→ C[S−1]→ C[S−1]→ 0

where s ∈ S and A , B are direct sums of subgroups of the form Z/s with s ∈ S .

From the exact sequences of the homotopy groups with coefficients in the abelian groups

in sequences above, it follows that the weak equivalences of the corresponding closed model

categories satisfy the following relations:

TDnS-w.e. ⊃ Tn+1S-w.e. ⊃ TDnS-w.e. ⊃ TnS-w.e. ⊃ w.e. ,

and for the classes of cofibrations (and cofibrant spaces) one has:

TDn+1S-cof. ⊂ Tn+1S-cof. ⊂ TDnS-cof. ⊂ TnS-c. ⊂ cof. .

Now using the functors (−)TnS , (−)TDnS : Top∗ −→ Top∗ given in Definition 1.2, we

have:

Theorem 7.1. (i) There exist the following pairs of adjoint functors

Ho(TnS−Top∗)
( )TnS

−−−−→←−−−−
Id

Ho(Q−Top∗)

Ho(TDnS−Top∗)
( )TDn

S

−−−−→←−−−−
Id

Ho(Q−Top∗)

Ho(TDnS−Top∗)
( )TDn

S

−−−−→←−−−−
Id

Ho(TnS−Top∗)

Ho(Tn+1S−Top∗)
( )Tn+1S

−−−−→←−−−−
Id

Ho(TDnS−Top∗)

Ho(Tn+1S−Top∗)
( )Tn+1S

−−−−→←−−−−
Id

Ho(TnS−Top∗)

Ho(TDn+1S−Top∗)
( )

TDn+1
S

−−−−−→←−−−−
Id

Ho(TDnS−Top∗)

where the upper arrows are always left adjoint functors.

(ii) The following restrictions

Ho(TnS−Top∗)
( )TnS

−−−−→←−−−−
Id

Ho(Q−Top∗)|TnS−cof

Ho(TDnS−Top∗)
( )TDn

S

−−−−→←−−−−
Id

Ho(Q−Top∗)|TDnS−cof

are equivalence of categories, where Ho(Q−Top∗)|TnS−cof , Ho(Q−Top∗)|TDnS−cof are

the full subcategories determined by the corresponding cofibrant spaces.

Proof. It suffices to check that the units and the counits of the adjunctions are isomor-

phism. �
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Remark 7.1. (i) The family of functors ( )TnS : Ho(TnS−Top∗) −→ Ho(Q−Top∗) give

for each space X a tower of fibrations:

· · · → ((XT1S)T2S)T3S → (XT1S)T2S → XT1S → X

We note that (XT1S)T2S is isomorphic to XT2S in Ho(Q−Top∗) . Therefore the tower

of fibrations above will be written as · · · → XT3S → XT2S → XT1S → X . We have that

for q ≥ 3 the fibre of XTq+1S → XTqS has only possible non trivial homotopy groups with

coefficients in Z/s in degrees q , q − 1 and q − 2 , for all s ∈ S .

(ii) For family of functors ( )TDnS we have a similar tower of fibrations:

· · · → ((XTD1
S)TD2

S)TD3
S → (XTD1

S)TD2
S → XTD1

S → X

that as above will be denoted by · · · → XTD3
S → XTD2

S → XTD1
S → X . The fibres have

a similar property for homotopy groups with coefficients in C[S−1] .

(iii) We can combine both kind of functor to obtain a tower of fibrations of the form

· · · → XTD3
S → XT3S → XTD2

S → XT2S → XTD1
S → XT1S → X

In this case, we can see that for higher degrees the fibre of XTq+1S → XTDq S and the

fibre of XTDq S → XTqS reduces the number of possible non trivial homotopy groups with

coefficients.

Proposition 7.1. Let S be a closed multiplicative system and suppose that n > 1, then

(i) the homotopy fibre of the canonical map XTDnS → XTnS is an Eilenberg Mac Lane

space of type K(TS(πnX)/DSTS(πnX), n− 1),

(ii) the homotopy fibre of the canonical map XTn+1S → XTDnS is an Eilenberg Mac Lane

space of type K(πnX
TDnS, n− 1).

Proof. It follows from the formulas given in Theorem 5.2 and Theorem 5.3 . �

Remark 7.2. (i) Note that for n ≥ 3 the homotopy fibre F of XTDnS → XTnS has only

one non trivial homotopy group with coefficients in C[S−1] :

πn−2(C[S−1]; F ) ∼= Ext(C[S−1], TSDS(πnX))

(ii) For n ≥ 2 and s ∈ S , the homotopy fibre F ′ of XTn+1S → XTDnS has one non

trivial homotopy group:

πn−1(Z/s; F ′) ∼= Hom(Z/s, πn−1F
′)

and only one non trivial homotopy group with coefficients in C[S−1] :

πn−1(C[S−1]; F ′) ∼= Hom(C[S−1], πn−1F
′)
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8. The categories Ho(TnS−Top∗) and Ho(TnS
p−Top∗)

In this section, we suppose that S is generated by a set of positive primes P and Sp

is the multiplicative closed system generated by a positive prime p ∈ P . For n > 1 we

analyze some relations between the closed model categories induced by the families TnS ,

TnS
p .

We note that the classes of distinguished maps satisfy the following relations:

TnS-w.e. ⊃ TnS
p-w.e.,

and for the classes of cofibrations (and cofibrant spaces) one has:

TnS
p-cof. ⊂ TnS-cof.

Then, one has the following pair of adjoint functors

Ho(TnS
p−Top∗)

( )TnSp

−−−−→←−−−−
Id

Ho(TnS−Top∗)

On the other hand if we consider the family TnS
p−Top∗ , p ∈ P , of closed models cate-

gories, we can take the product of these closed model structures
∏

p∈P TnS
p−Top∗ and the

localized category Ho(
∏

p∈P TnS
p−Top∗) which is equivalent to

∏
p∈P Ho(TnS

p−Top∗) .

The functor

∆: TnS−Top∗ −→
∏
p∈P

TnS
p−Top∗ ,

given by ∆X = (X)p∈P , is right adjoint to

W :
∏
p∈P

TnS
p−Top∗ −→ TnS−Top∗ ,

W (Yp)p∈P =
∨

p∈P Yp .

It is easy to check that ∆ preserves weak equivalences and fibrations. To check that W

carries weak equivalences between cofibrant objects into weak equivalences, suppose that

fp : Xp → Yp is a weak equivalence in (TnS
p−Top∗)cof for each p ∈ P . By Theorem 2.3

we have that for every p ∈ P , fp is a pointed homotopy equivalence. Then
∨

p fp is also a

pointed homotopy equivalence and it follows that
∨

p fp is a TnS-weak equivalence. Thus

one has an induced adjunction (equivalence) on the localized categories:

Theorem 8.1. For n > 1 , the induced adjunction∏
p∈P

Ho(TnS
p−Top∗)

W L

−−−−→←−−−−
∆

Ho(TnS−Top∗)

WL(Xp)p∈P =
∨
p∈P

XTnSp

p

gives an equivalence of categories.
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Proof. Using the functors H̃∗(−; T ) where T is either an S-torsion group or a p-torsion

group with p ∈ P , one can check that the unit and the counit of the adjunction are weak

equivalences. �

Corollary 8.1. The homotopy category of torsion 1-connected CW -complexes is equiv-

alent to the product of the homotopy categories of 1-connected p-torsion CW -complexes

where p ranges on the set of positive primes.

Corollary 8.2. A torsion 1-connected space X is weakly equivalent to the wedge
∨

p XT2Sp
.

On the other hand, the functor ∆ , is left adjoint to

P :
∏
p∈P

TnS
p−Top∗ −→ TnS−Top∗ ,

P (Yp)p∈P =
∏

p∈P Yp .

We can check that P carries weak equivalences between cofibrant objects into weak

equivalences as follows: Suppose that fp : Xp → Yp is a weak equivalence in (TnS
p−Top∗)cof

for each p ∈ P . By Theorem 2.3 , we have that each fp is a pointed homotopy equivalence

in Top∗ . Then
∏

p fp is a pointed homotopy equivalence. Therefore P (fp) is an TnS-weak

equivalence. Thus one has an induced functor PL :
∏

p∈P TnS
p−Top∗ −→ TnS−Top∗ and

one has:

Proposition 8.1. For n > 1 , the pair of functors∏
p∈P

Ho(TnS
p−Top∗)

P L

−−−−→←−−−−
∆

Ho(TnS−Top∗)

PL(Xp)p∈P =
∏
p∈P

XTnSp

p

gives an equivalence of categories.

Proof. Using the universal property of the map XTnS → X one has induced maps XTnS →
XTnSp

, XTnS →
∏

p∈P XTnSp
. Note that the maps XTnS → X , XTnS →

∏
p∈P XTnSp

are

TnS-weak equivalences, then PL∆ is isomorphic to the identity functor. On the other

hand, each projection
∏

p∈P XTnSp

p → XTnSp

p is a TnS
p-weak equivalence. Therefore ∆PL

is also isomorphic to the identity functor and we have an equivalence of categories.

�

Corollary 8.3. For any space X and n > 1 , the inclusion
∨

p∈P XTnSp

p →
∏

p∈P XTnSp

p

is an TnS-weak equivalence. Moreover, if for each k ≥ n , πkX has finitely many non

trivial torsion components, and for each k ≥ n + 1 πkX is p-divisible except for finitely

many primes p , then the inclusion above is a weak equivalence.
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Proof. For k ≥ n we can use the formula

0→ πk+1X ⊗ C[(Sp)−1]→ πk(X
TnSp

)→ Tor(πkX, C[(Sp)−1])→ 0

to prove that under that conditions on the homotopy groups of X one has that
∏

p∈P XTnSp

p

has S-torsion homotopy groups. Now the result follows from Theorem 2.3 . �

Remark 8.1. The results given in Corollary 8.2 or in Corollary 8.3 for the case of of X a

1-connected CW -complex with finitely generated torsion homotopy groups can be obtained

from the fracture lemma, see 6.3 of ch V in [1] , or from the Pullback Theorem given in

[16] .

9. S-torsion and Ext-S-complete spaces

In this section, for a space X, we consider the ring R = Z/p1 × · · · × Z/pr , where

p1, · · · pr are primes, and the R-localization X → R∞X given by Bousfield-Kan [1], see

also [2] . Through all this section we assume that n > 1 and the closed multiplicative

system S is generated by a finite set of primes p1, · · · pr .

Recall that an abelian group B is said to be Ext-S-complete if the extension group

Ext(C[S−1], B) ∼= B . Note that

Ext(C[S−1], B) ∼= Ext(C[
1

p1

], B)× · · · × Ext(C[
1

pr

], B) .

Definition 9.1. A 1-connected space Y is said to be Ext-S-complete if its homotopy

groups are Ext-S-complete.

Applying the universal properties of the constructions R∞X and (−)TDnS, one has:

Theorem 9.1. The left derived functor

RL
∞ : Ho(TDnS−Top∗) −→ Ho(Ext-S-complete n-connected spaces)

is left adjoint to

( )TDnS : Ho(Ext-S-complete n-connected spaces) −→ Ho(TDnS−Top∗) .

Moreover, the pair of functors above give an equivalence categories.

Proof. For the case of one prime p , the homotopy groups of (Z/p)∞X are given by the

exact sequence:

0→ Ext(C[
1

p
], πkX)→ πk(Z/p)∞X)→ Hom(C[

1

p
], πk−1X)→ 0

If S is generated by finite primes p1, · · · pr using the formulas

(Z/p1 × · · · × Z/pr)∞X ∼= (Z/p1)∞X × · · · × (Z/pr)∞X

πk(R)∞X ∼= πk((Z/p1)∞X)× · · · × πk((Z/pr)∞X)

Ext(C[S−1], π) ∼= Ext(C[ 1
p1

], π)× · · · × Ext(C[ 1
pr

], π)

Hom(C[S−1], π) ∼= Hom(C[ 1
p1

], π)× · · · × Hom(C[ 1
pr

], π)

we have a similar formula for R∞X
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0→ Ext(C[S−1], πkX)→ πkR∞X → Hom(C[S−1], πk−1X)→ 0

If X is an TDnS-cofibrant space, we have that πnX is S-divisible, then πnR∞X ∼=
Ext(C[S−1], πnX) ∼= 0 and R∞X is an Ext-S-complete n-connected space. On the other

hand, if Y is an Ext-S-complete n-connected space, then Y TDnS is an TDnS-cofibrant

space.

By the universal properties of the constructions RL
∞ and (−)TDnS we have that on the

homotopy categories RL
∞ is left adjoint to (−)TDnS .

The unit of the adjunction in contained in the commutative diagram

(R∞X)TDnS

��
X

99tttttttttt
// R∞X

where we have supposed that X is TDnS-cofibrant. The localization X → R∞X induces

isomorphism on singular homology with coefficients in Z/p1 × · · · × Z/pr . Since R∞X

is n-connected we apply Proposition 6.2 to obtain that (R∞X)TDnS → R∞X induces

isomorphism on singular homology with coefficients in Z/p1 × · · · × Z/pr . Therefore the

unit X → (R∞X)TDnS induces isomorphism on homology with coefficients in Z/p1×· · ·×
Z/pr . From this fact we also have that the unit induce isomorphism on homology with

coefficients in every S-torsion group. By Proposition 6.3 , because X and (R∞X)TDnS are

1-connected spaces, one has that the unit is a homotopy equivalence.

On the other hand, for the counit of the adjunction we have the commutative diagram

Y TDnS //

��

Y

R∞(Y TDnS)

::tttttttttt

where Y is an Ext-S-complete n-connected space.

The localization Y TDnS → R∞(Y TDnS) induces isomorphism on singular homology with

coefficients in Z/p1 × · · · × Z/pr . Since Y is n-connected , by Proposition 6.2 we have

that Y TDnS → Y induces isomorphism on singular homology with coefficients in Z/p1 ×
· · · × Z/pr . Therefore the counit R∞(Y TDnS) → Y induces isomorphism on homology

with coefficients in Z/p1 × · · · × Z/pr . Taking into account that R∞(Y TDnS) and Y are

Ext-S-complete spaces, it follows that the counit is a weak equivalence. �

Theorem 9.2. Let X be an (n− 1)-connected space with πnX an S-divisible group, then

for k > n

πkR∞X ∼= πk−1(C[S−1]; X)
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Moreover, if we also assume that for k ≥ n πkX an S-torsion group then one has the

following exact sequence for k > n

0→ πk(C[S−1]; X)⊗ C[S−1]→ πkX → Tor(πk−1(C[S−1]; X), C[S−1])→ 0

and for k = n one has

πnX ∼= πn(C[S−1]; X)⊗ C[S−1]

Proof. Notice that the maps X → R∞X and Sk → R∞Sk for k > n induce isomorphism

on singular homology with coefficients in every S-torsion abelian group. By Proposition

6.3 (ii) these maps are TDnS-weak equivalence, hence XTDnS → (R∞X)TDnS , (Sk)TDnS →
(R∞Sk)TDnS are homotopy equivalences. Using Proposition 6.2 (ii) it follows that (Sk)TDnS

is a Moore space of type M(C[S−1], k − 1) . Now one has the following isomorphism

πkR∞X ∼= Ho(Q−Top∗)(R∞Sk, R∞X)
∼= Ho(TDnS−Top∗)((R∞Sk)TDnS, (R∞X)TDnS)
∼= Ho(TDnS−Top∗)(M(C[S−1], k − 1), XTDnS)
∼= Ho(Q−Top∗)(M(C[S−1], k − 1), XTDnS)
∼= πk−1(C[S−1]; XTDnS)
∼= πk−1(C[S−1]; X)

where we have used the universal property of the localization maps, the equivalence of

categories given in Theorem 9.1, the fact that M(C[S−1], k − 1) is TDnS-cofibrant and

XTDnS is TDnS-fibrant and finally that XTDnS → X is an TDnS-weak equivalence.

For the second part of the theorem, we note that by by Theorem 4.1 X is weak equivalent

to an TDnS-cofibrant space, then one has that (R∞X)TDnS ∼= X . Now the result follows

from the exact sequences given in Theorem 5.3 . �

Corollary 9.1. Let A be an S-torsion group,then then we have a splittable short sequence

0→ Hom(C[S−1], A)⊗ C[S−1]→ A→ Tor(Ext(C[S−1], A), C[S−1])→ 0

where Hom(C[S−1], A) ⊗ C[S−1] is isomorphic to DSA the maximal S-divisible subgroup

of A and Tor(Ext(C[S−1], A), C[S−1]) has no S-divisible (non trivial) subgroups.

On the other hand, if B is an Ext-S-complete group, then one has a splittable short

sequence

0→ Ext(C[S−1], Tor(B, C[S−1]))→ B → Hom(C[S−1], B ⊗ C[S−1])→ 0

where Ext(C[S−1], Tor(B, C[S−1])) is S-adjusted and S-complete, and

Hom(C[S−1], B ⊗ C[S−1]) is S-torsion-free and S-complete.

Proof. It suffices to consider the Eilenberg Mac Lane space K(A, m) for an S-torsion

group, with m > n and compute the homotopy groups of R∞K(A, m) and (R∞K(A, m))TDnS.
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For B an S-complete group we compute the homotopy groups of K(A, m)TDnS and

R∞(K(A, m)TDnS) . �

Remark 9.1. The formulas of Corollary above are well known. We refer the reader to

[BK, ch VI] and Harrison [Ha]. Note that we consider the case that S is generated by a

finite number of primes.

Using the equivalence of categories

Ho(TDnS−Top∗) '
r∏

i=1

Ho(TDnSpi−Top∗)

and Theorem 9.1 , one can prove the following results:

Corollary 9.2. The homotopy category of n-connected Ext-S-complete spaces is equiva-

lent to the finite product of the homotopy categories of n-connected Ext-pi-complete spaces

for i = 1 · · · r .

Corollary 9.3. Let Y be an n-connected Ext-S-complete space, then

(i) Y is weakly equivalent to (Z/p1)∞Y × · · · × (Z/pr)∞Y ,

(ii) The inclusion

(Z/p1)∞Y
∨
· · ·

∨
(Z/pr)∞Y → (Z/p1)∞Y × · · · × (Z/pr)∞Y ,

is a weak equivalence.

Remark 9.2. (i) Note that the the category Ho(TnS−Top∗) is equivalent to the homotopy

category of (n − 1)-connected Ext-S-complete spaces whose nth homotopy group is S-

adjusted.

(ii) Given an Ext-S-complete abelian group B , there exist a unique Ext-S-complete

space C = C(C[S−1]; B, m) up to weak equivalence such that πm(C[S−1]; C) ∼= B and for

k 6= m , C has trivial homotopy groups with coefficients in C[S−1] . On the other hand,

there exists a unique S-torsion space T = T (C[S−1]; B, m) up to weak equivalence, such

that with respect to homotopy groups with coefficients in C[S−1] , T is an Eilenberg Mac

Lane space.

(iii) Recall that the standard homotopy groups are related with the homotopy groups

with coefficients in C[S−1] or in Z/s by the formulas:

0→ Ext(C[S−1], πk+1X)→ πk(C[S−1]; X)→ Hom(C[S−1], πkX)→ 0

0→ Ext(Z/s, πk+1X)→ πk(Z/s; X)→ Hom(Z/s, πkX)→ 0

It is interesting to note that the homotopy groups with coefficients in C[1
p
] and in Z/s,

with s = pl are related by the formulas

0→ lim
l

1πk+1(Z/pl; X)→ πk(C[
1

p
]; X)→ lim

l
πk(Z/pl; X)→ 0
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0→ Ext(Z/pl, πk+1(C[
1

p
]; X))→ πk(Z/pl; X)→ Hom(Z/pl, πk(C[

1

p
]; X))→ 0.

If X is an 1-connected Ext-S-complete space one has

πkX ∼= πk−1(C[S−1]; X).

Finally, if X is an 1-connected space and there exists a multiplicative system S generated

by a finite set of primes such that π2X is S-divisible and for k ≥ 2 πkX is S-torsion,

then the standard homotopy groups and the homotopy groups with coefficients in C[S−1]

are related by the short exact sequence for k ≥ 2:

0→ πk(C[S−1]; X)⊗ C[S−1]→ πkX → Tor(πk−1(C[S−1]; X), C[S−1])→ 0.
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