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Möbius inversion from the point of view
of arithmetical semigroup flows

Manuel Benito, Luis M. Navas and Juan Luis Varona

Abstract

Most, if not all, of the formulas and techniques which in number
theory fall under the rubric of “Möbius inversion” are instances of a
single general formula involving the action or flow of an arithmetical
semigroup on a suitable space and a convolution-like operator on
functions.

The aim in this exposition is to briefly present the general formula
in its abstract context and then illustrate the above claim using an
extensive series of examples which give a flavor for the subject. For
simplicity and to emphasize the unifying character of this point of
view, these examples are mostly for the traditional number theoretical
semigroup N and the spaces R or C.

1. Introduction

The “Möbius Inversion Formula” in elementary number theory most often
refers to the formula

(1.1) f̂(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

µ(d)f̂
(n
d

)
,

where f is an arithmetical function, that is, a function on N with values
typically in Z, R or C; the sum ranges over the positive divisors d of a given
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n ∈ N, and µ is of course the Möbius function, given by

(1.2)


µ(1) = 1,

µ(n) = 0 if n has a squared factor,

µ(p1p2 · · · pk) = (−1)k when p1, p2, . . . , pk are distint primes.

As is well known, the proper abstract context for this formula is that
of Dirichlet convolution of arithmetical functions. Namely, if we define
f ∗ g(n) =

∑
ab=n f(a)g(b), then pointwise addition and ∗ make the set

of arithmetical functions into a commutative ring, with identity given by
the delta function at 1, defined as δ(1) = 1 and δ(n) = 0 if n 6= 1.

The inversion formula then expresses two important facts. The first is
that µ is the “Dirichlet inverse” of the constant function 1 with respect to ∗,
in other words, 1 ∗ µ = µ ∗ 1 = δ. Written out, this means

(1.3)
∑
d|n

µ(d) =

{
1, if n = 1,

0, if n > 1.

The second thing to note is the functional transform nature of the formula.
The operation f̂ = 1 ∗ f is called the Möbius transform and the inversion
formula is then f = µ ∗ f̂ . This type of transform is a discrete analog of
the convolution transforms, or “multipliers”, whose study forms an extensive
branch of harmonic analysis. In this context, the inversion formula is a trivial
algebraic consequence of the first fact and the associativity of convolution.

Let us briefly survey some of the most well-known and useful formulas
that are also labelled as “Möbius inversion”, staying within number theory
to preserve the arithmetical flavor of the subject, although there are also
interesting and fruitful applications of this concept in other realms, a notable
one being combinatorics.

For f a real or complex function, one often finds the inverse pairs

(1.4)

f̂(x) =
∞∑
n=1

f(nx), f(x) =
∞∑
n=1

µ(n) f̂(nx)

f̂(x) =
∞∑
n=1

f(x/n), f(x) =
∞∑
n=1

µ(n) f̂(x/n)

(see for example [11, § 16.5, Th. 270] or [17, § 20]). It may come as a surprise
that Möbius’ original inversion formula is not (1.1) but rather, the inversion

of the transform f̂(x) =
∑

n anf(xn) for a given analytic function f (see
Example 14 and, for a historical survey of inversion, [2]). Riemann famously
used inversion in his approximation of the number of primes less than or
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equal to x by
∑∞

n=1 µ(n)n−1 Li(x1/n), so that we may add the transform

f̂(x) =
∑∞

n=1 anf(x1/n) to the mix. Much more recently, in [13], a paper
of mathematical physics, one encounters

∑∞
n=1 f(nax) with a ∈ R, with

inversion formula attributed to Chen.

It is apparent that all these transforms have the form

f̂(x) =
∞∑
n=1

anf(ϕ(n, x))

for some operation ϕ. Consideration of the separate proofs of the correspond-
ing inversion formulas shows that there are again two essential phenomena
at work. One is Dirichlet inversion, namely, the coefficient sequence an rep-
resents an arithmetical function whose Dirichlet inverse is the sequence of
coefficients in the inverse transform. This is Möbius’ idea, with the special
case of the constant sequence an = 1 being the most common, leading to
the Möbius function upon inverting.

The second, and mostly neglected, fact is that the inversion formula holds
also because of the following properties of the operation ϕ:

ϕ(n, ϕ(m,x)) = ϕ(nm, x), ϕ(1, x) = x.

This is precisely the definition of a “flow” or “action” of the semigroup N
on a space X which here is R or C. To emphasize the dynamical aspects
of some of the applications, we prefer to use the standard terminology of
dynamical systems and call ϕ a flow.

Now, this observation is not new. In fact, for N-flows on R and ignoring
questions of convergence, this “flow transform”, with its corresponding in-
version formula, goes back to Cesàro [5] in the 1880s! It may have been too
far ahead of its time, since it has been apparently long forgotten. Currently,
we recognize a certain “general principle” of Möbius inversion but cite and
prove each case separately. Actually, at least in [4], from 1991, it has been
partially rediscovered, and perhaps there are other instances.

We feel that the growing number of inversion formulas, not only in num-
ber theory, but also especially in physics, bring renewed interest to the flow
transform and require a modern rigorous formulation in terms of semigroups
acting on topological spaces as well as a study of its algebraic and analyt-
ical properties (convolutional properties, convergence, validity of inversion,
etc.). We have attempted to begin this study in [3]. Here we will only state
the general formulas and point out the associated facts, instead focusing on
examples, old and new, to illustrate its use.
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2. Inversion for flow transforms

Let us briefly establish the context we need and then proceed to state the
general Möbius inversion formula for arithmetical flows.

Recall that an arithmetical semigroup S is, in fact, a commutative monoid
(there is an identity element 1) having a finite or countably infinite subset P
called the primes such that S has unique factorization into primes, namely,
every element n ∈ S different from 1 has an expression as n = pe11 p

e2
2 · · · p

ek
k ,

where the pi are distinct primes and the ei are positive integers, and these
data are uniquely determined by n, modulo reordering. In addition, there is
a norm mapping N : S → R satisfying

(i) N(1) = 1 and N(p) > 1 for p ∈ P,

(ii) N(ab) = N(a)N(b) for all a, b ∈ S,

(iii) for each x > 0 there are only finitely many s ∈ S with N(s) ≤ x.

See [12] for the general theory of arithmetical semigroups and how one
can generalize analytic number theory to them, as well as their applications
to problems of enumeration of objects in various categories such as those of
finite graphs or topological spaces.

If R is a commutative ring, an R-valued arithmetical function on S is
simply a function α : S → R. Just as in the case S = N, the set A of such
arithmetical functions is a commutative R-algebra with respect to pointwise
sum and generalized Dirichlet convolution, defined by

(2.1) (α ∗ β)(n) =
∑
ab=n

α(a)β(b).

The multiplicative unit is the delta function δ at the identity element of S.
If we also define the Möbius function of S just as for S = N, via (1.2), then
the relation 1 ∗ µ = δ holds in general.

Analogously, an arithmetical function α on S is said to be multiplicative
if α(nm) = α(n)α(m) when n,m are coprime, and completely multiplicative
if this holds for every n,m ∈ S. Multiplicativity is preserved by convolution.
The Möbius function is multiplicative.

If S is any semigroup and X is a set, an S-flow on X is a map ϕ :
S ×X → X satisfying ϕ(m,ϕ(n, x)) = ϕ(mn, x). If S has a unit, 1 (e.g. if
S is an arithmetical semigroup), then we also require that ϕ(1, x) = x. If S
is a topological semigroup and X a topological space then we require joint
continuity of ϕ.

One may alternatively think of a flow as a representation, in other words,
as a semigroup homomorphism of S into the monoid E(X) of self-maps of X.
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Instead of writing ϕ(s, x) we may separate the element of the semigroup and
write ϕs(x), where ϕs ◦ϕt = ϕst. We think of the elements of the semigroup
as “pushing” the points of X around. In physical applications, s often
represents an instant of time.

If S is an arithmetical semigroup, an S-flow on a space X may be re-
garded as a collection of commuting self-maps of X indexed by the primes,
{ϕp : p ∈ P}, in addition to the identity map ϕ1 = ι. By unique factoriza-
tion, the map corresponding to n =

∏r
i=1 p

ei
i is the composition

(2.2) ϕn = ϕ◦e1p1
◦ · · · ◦ ϕ◦er

pr
,

where the superscript circle notation denotes iterated composition.
Let S be an arithmetical semigroup, and ϕ an S-flow on a space X. Let

R be a commutative ring, complete with respect to a valuation | · |, and
M an R-module, complete with respect to a | · |-norm ‖ · ‖. We define the
ϕ-generalized convolution of an R-valued arithmetical function α on S with
a function f : X →M by

(2.3) (α�ϕ f)(x) =
∑
n∈S

α(n)f(ϕ(n, x)) =
∑
n∈S

α(n)f(ϕn(x)),

provided the series converges. Note that α �ϕ f is a new function from X
to M . The inspiration for this definition comes from [1, § 2.14] by general-
izing to arithmetical semigroups and incorporating the flow. The subscript
ϕ may be dropped for a fixed flow.

In the “classical” transforms mentioned in the introduction, the semi-
group is S = N, the space X is usually a subset of R, and the ring R and
module M are an appropriate combination of Z, R or C, with the usual
absolute value. The need for more general algebraic structures should be
apparent when one recalls other well-known examples of Möbius inversion,
using the “standard” formula (1.1), where the range is not a subset of C,
such as the expression for the mth cyclotomic polynomial

Φn(z) =
∏
d|n

(zd − 1)µ(n/d),

in which it is Q(z)∗, or that of the product of all monic irreducible poly-
nomials of degree n over the finite field Fq of q elements (often found in
applications to Cryptography),

Pn(x) =
∏
d|n

(xq
n/d − x)µ(d),

in which it is Fq(x)∗. Hence the usefulness of at least the verbatim gen-
eralization of (1.1) to any structure in which we can “add”, i.e., to any
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abelian group. However, the elegant interpretation via convolution requires
two operations, hence most naturally a ring structure. Similarly, the func-
tional transforms require addition and also a product of the function by the
coefficient sequence, the natural context for a module.

These needs are all reconciled by introducing a commutative ring R and
anR-moduleM , and using an “asymmetric” convolution, where one function
takes values in R and the other in M . Since an abelian group is a Z-
module, this includes the generalization mentioned above. The existence of
a canonical homomorphism from Z to R shows that (1.3) holds whether we
consider µ as Z or as R-valued, thus providing a useful “functoriality”.

We shall mostly avoid questions of convergence, which are detailed in [3],
in favor of the purely algebraic aspects which yield inversion formulas. The
crucial result is the following “mixed associative property” of Dirichlet and
ϕ-convolution:

Theorem 1. Let S be an arithmetical semigroup, R a complete valued
commutative ring, M a complete normed R-module, X a set, and ϕ an
S-flow on X. Given arithmetical functions α, β : S → R and a function
f : X →M , we have, under the appropriate convergence hypotheses,

(2.4) α�ϕ (β �ϕ f) = (α ∗ β)�ϕ f

where ∗ denotes Dirichlet convolution (2.1), and �ϕ is the “generalized flow
convolution” defined in (2.3). In addition, one also has the trivial formula

δ �ϕ f = f,

stating that δ, the identity for ∗, is also a left identity for �ϕ.

Proof. Ignoring convergence, this follows directly from the definitions:

(α�ϕ (β �ϕ f))(x) =
∑
n∈S

α(n)(β �ϕ f)(ϕ(n, x))

=
∑
n∈S

α(n)
∑
m∈S

β(m)f(ϕ(m,ϕ(n, x)))

=
∑
n,m∈S

α(n)β(m)f(ϕ(nm, x))

=
∑
k∈S

(∑
nm=k

α(n)β(m)

)
f(ϕ(k, x))

=
∑
k∈S

(α ∗ β)(k)f(ϕ(k, x))

= ((α ∗ β)�ϕ f)(x). �
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The main inversion result immediately follows.

Theorem 2. With notation and hypotheses as in Theorem 1, given an
arithmetical function α : S → R, invertible with respect to Dirichlet con-
volution (2.1), with inverse α−1, then under the appropriate convergence
hypotheses, we have the inversion relation

(2.5) f̂ = α�ϕ f, f = α−1 �ϕ f̂ .

Proof. Ignoring convergence (which can be rather subtle!), this is a trivial

consequence of Theorem 1. If f̂ = α�ϕ f , then

α−1 �ϕ f̂ = α−1 �ϕ (α�ϕ f) = (α−1 ∗ α)�ϕ f = δ �ϕ f = f,

and similarly, starting from f = α−1 �ϕ f̂ , we get f̂ = α�ϕ f . �

A special case is actual Möbius inversion for a flow, namely, formulas
involving the Möbius function µ.

Theorem 3. With notation and hypotheses as in Theorem 1, given a nonzero
completely multiplicative arithmetical function α : S → R, then under ap-
propriate convergence conditions, we have the inversion relation

(2.6) f̂(x) =
∑
n∈S

α(n)f(ϕ(n, x)), f(x) =
∑
n∈S

µ(n)α(n)f̂(ϕ(n, x)).

The traditional case is α = 1, where α−1 = µ.

Proof. When α is completely multiplicative, one has α−1 = µα. �

One way to “ignore” convergence problems is to make the sums finite by
considering functions f whose support Z is such that the orbit {ϕ(n, x) :
n ∈ S} escapes Z as N(n)→∞. For example, when S = N, X = (0,+∞)
and ϕ(n, x) = x/n, one often takes functions vanishing on (0, 1), as we will
see in the first example.

3. Examples

Example 1. (The usual inversion formula). The “standard” for-
mula (1.1) is actually a consequence of the case S = N, R = Z, X = (0,+∞),
and M an abelian group (with appropriate valuations and norms), using the
flow ϕ(x, n) = x/n and convolving with α = 1. By Theorem 3, we have the
inversion formula

(3.1) f̂(x) =
∞∑
d=1

f
(x
d

)
, f(x) =

∞∑
d=1

µ(d)f̂
(x
d

)
,
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under suitable convergence conditions. In particular, let f have support in
[1,+∞). Then the sums in the above formula are finite; therefore, we can
forget about topology, and we obtain the special case

(3.2) f̂(x) =

bxc∑
d=1

f
(x
d

)
, f(x) =

bxc∑
d=1

µ(d)f̂
(x
d

)
.

Now, to get (1.1), one only need restrict further to functions with support
in N, substituting x = n ∈ N in the above formula.

Example 2. (The standard inversion formulas). We have mentioned
some of the following commonly encountered transforms:

∞∑
n=1

α(n)f(nx),
∞∑
n=1

α(n)f(x/n),
∞∑
n=1

α(n)f(xn),
∞∑
n=1

α(n)f(x1/n),

the third appearing in Möbius’ original inversion formula, from the 1832
paper [14]. These transforms correspond to the semigroup S = N and X,
R, M are usually one of R+ = (0,+∞), R or C. Möbius essentially treats
x as a formal variable, which also fits into our framework. We may call the
four flows in these transforms the standard N-flows. Together they cover all
the common examples of Möbius inversion.

Example 3. (Modifications of flows). Let η : S → T be a semigroup
homomorphism and h : X → Y a homeomorphism. If ϕ is a T -flow on Y
then

(3.3) ψ(s, x) = h−1(ϕ(η(s), h(x)))

is an S-flow on X. This is clearer in the representation notation:

ψs = h−1 ◦ ϕη(s) ◦ h,

revealing the operations of conjugation by h and pullback by η.
The four standard flows in Example 2 may be obtained in this way. In

general, start with S = N and choose a completely multiplicative function
η : S → C. This is a homomorphism of S onto the image semigroup T =
η(S) ⊆ C. X and Y will be appropriate subspaces of C, with T · Y ⊆ Y so
that the restriction of multiplication on C is a T -flow on Y , which we denote
by π(t, y) = ty. Now, consider the resulting modification of π:

(3.4) ϕ(n, x) = h−1(η(n)h(x)).

Take η(n) = na for a ∈ C. For a = −1 and h(x) = x on X = Y = R+, R
or C, we obtain ϕ(n, x) = x/n. For a = ±1 and h(x) = log(x) on X = R+,
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Y = R, we obtain xn and x1/n. In general we obtain the flows nax and xn
a
.

The former is used in [13], as we mentioned above. For any a ∈ R and
h(x) = exp x on X = R, Y = R+, we obtain

ϕ(n, x) = x+ a log n,

which was apparently discovered by Cesàro ([2]), but has not to our knowl-
edge been applied to any problem.

Example 4. (The Chebyshev flow). In [9] we have, to our knowledge,
a heretofore unknown inversion formula involving the Chebyshev polynomi-
als Tn. The self-maps of X = [−1, 1] given by the polynomials themselves,
ϕn(x) = Tn(x) = cos(n arccosx), define an N-flow on X. The relation
Tn(Tm(x)) = Tnm(x) is often called the “nesting property”.

A priori, the expression cos(n arccosx) looks like a special case of (3.4).
Note, however, that although cos : [0, π]→ [−1,+1] and arccos : [−1,+1]→
[0, π] are indeed inverse homeomorphisms, multiplication by n ∈ N does
not yield a self-map of [0, π]. Of course, cos is defined on R, on which
multiplication acts, but arccos is not the inverse of cos : R→ [−1,+1].

These difficulties can be avoided in proving Tn(Tm(x)) = Tnm(x), by
considering x in a small enough interval [1− ε, 1], where m arccosx ∈ [0, π],
and then using analytic continuation to extend the identity to all x.

Nevertheless, Tn is an example of conjugation by a homeomorphism as
in (3.3). For instance, let Y be the quotient space of the unit circle T
embedded in C, modulo complex conjugation, that is, identifying points on
the “top” and “bottom” halves of T which are symmetric across the real
axis. Then x 7→ ei arccosx induces a homeomorphism h : X → Y , whose
inverse is the map induced by taking real parts, Re : T → [−1,+1]. Since
Tn(x) = Re(ei arccosx)n, the Chebyshev flow is the conjugate via h of the flow
induced on Y by the standard flow zn on T.

An example of inversion for this flow is

(3.5) f̂(x) =
∞∑
n=1

n−sf(Tn(x)), f(x) =
∞∑
n=1

µ(n)n−sf̂(Tn(x))

(this formula is also related to Example 13). The series converge absolutely
if, for example, the function f is bounded and we take s ∈ C with Re(s) > 1.

Example 5. (Prime-independent flows). Fix a self-map Φ of a space
X and define an S-flow on X by requiring that ϕ1 = ι and ϕp = Φ for all
primes p (hence the name prime-independent). By (2.2), ϕ(n, x) = Φ◦Ω(n),
where Ω(n) is the number of prime factors of n counted with multiplicity.



72 M. Benito, L. M. Navas and J. L. Varona

The convolution transform associated to this flow is

(3.6) (α� f)(x) =
∑
n∈S

α(n) f(Φ◦Ω(n)(x)).

This sum, assuming it is absolutely convergent, can be grouped according
to the value of Ω. An easy way to obtain convergent sums is to use Dirichlet
series: α(n) = n−s (s ∈ C with Re(s) > 1), and bounded f .

Example 6. (Iterative flows). Example 5 may be generalized by taking
any nonnegative completely additive function ` : S → Z+, i.e. satisfying
`(nm) = `(n) + `(m) (Ω is such a function), and any self-map Φ : X → X.
Then the `-fold iterates of Φ define an S-flow on X, ϕ(n, x) = Φ◦`(n)(x),
with convolution transform

(3.7) (α� f)(x) =
∑
n∈S

α(n) f(Φ◦`(n)(x)).

If Φ is invertible, we may drop the requirement that ` be nonnegative.

Example 7. (One prime, more iteration). An arithmetical semigroup
S with just one prime p is isomorphic to (Z+,+, 0), where the identity
element is 0 and whose unique prime is 1 (and for the norm N we can take,
for instance, N(n) = 2n). If p is a prime in a larger arithmetical semigroup,
we may consider the subsemigroup it generates, denoted by S = 〈p〉. Of
course 〈p〉 = {pn}n≥0.

Since every arithmetical semigroup is the direct sum of the semigroups
generated by each of its primes, this case is a “building block” for others.
Note however that an arbitrary arithmetical function is not determined by
its values at the primes.

The Möbius function of S = 〈p〉 is given by µ(1) = 1, µ(p) = −1 and
µ(pn) = 0 for n > 1. To give an S-flow ϕ on a space X is equivalent to
choosing a self-map Φ : X → X and declaring ϕp = Φ. Then ϕpn = Φ◦n,
the n-fold iterate of Φ.

An arithmetical function on S = 〈p〉 = {pn}n≥0 with values in a com-
mutative ring R is simply a sequence {an}∞n=0 in R. If A =

∑∞
n=0 anT

n is
the generating formal power series of the sequence, then the transform and
corresponding inversion formula are given by

(3.8) f̂(x) =
∞∑
n=0

anf(Φ◦n(x)), f(x) =
∞∑
n=0

a∗n f̂(Φ◦n(x)),

where {a∗n} is the sequence whose generating series A∗ is the multiplicative
inverse of A as formal power series over R, that is, AA∗ = 1. This follows
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because in (Z+,+, 0), the “divisors” of n ∈ Z+ are the integers 0 ≤ k ≤ n,
and Dirichlet convolution is given by (α ∗ β)(n) =

∑n
k=0 α(k)β(n − k), or

from a general structure theorem describing the arithmetical functions as a
power series ring. Those familiar with Functional Analysis will recognize a
similarity to the so-called “functional calculus”.

A completely multiplicative arithmetical function α corresponds to a
power sequence {an}, i.e., to the generating series A = (1−aT )−1. Inversion
for these transforms is the “telescoping series trick”:

(3.9) f̂(x) =
∞∑
n=0

anf(Φ◦n(x)), f(x) = f̂(x)− af̂(Φ(x))

(this is a rather trivial case of the formula α−1 = µα).
Essentially the same situation occurs if we take a prime p in any arith-

metical semigroup S and define a flow by declaring ϕ1 = ι, ϕp = Φ and ϕq
to be constant for primes q 6= p. Since the ϕq must commute, the constant
must be independent of q and must be a fixed point a of Φ. Then ϕn = a
when n /∈ 〈p〉.

Example 8. (One prime: sums and differences). For S = (Z+,+, 0),
with single prime 1, and the space X = R, making 1 act via ϕ(1, x) = Φ(x) =
x+1 gives the translation flow ϕ(n, x) = x+n. Since the “divisors” of n ∈ Z+

are the integers 0 ≤ k ≤ n, the classical Möbius inversion formula (1.1)
reduces to the trivial (but nonetheless important!) relation between the
summation and difference operators:

(3.10) f̂(n) =
n∑
k=0

f(k), f(n) = f̂(n)− f̂(n− 1).

Example 9. (One prime: Vieta’s formula for Pi). Let S = (Z+,+, 0),
the one-prime arithmetical semigroup. Take X = C and let 1 act via Φ(z) =
az, with a ∈ C fixed. Its iterates define the flow ϕn(z) = Φ◦n(z) = anz. The
corresponding inversion formula is mentioned in [13] with physical appli-
cations. Note that if a is not a root of unity, this particular choice also
corresponds to the restriction of the multiplication flow to the one-prime
arithmetical semigroup S = {an}n≥0 ⊆ C. Interestingly, Vieta’s formula for
π, which is the first recorded “exact formula” for this constant, and also the
first infinite product in mathematics, is a special case:

2

π
=

√
1

2

√
1

2
+

1

2

√
1

2

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · .



74 M. Benito, L. M. Navas and J. L. Varona

To see why this is so, consider the duplication formula for the sine function,
sin(2z)/(2 sin z) = cos z. Let us modify this to s(z)/s(z/2) = cos(z/2),
where s(z) = z−1 sin z. Here a = 1/2. For the ring R, we take the integers
Z and as Z-module M , the group of nonzero meromorphic functions on C
under multiplication. Thus our notation will be multiplicative rather than
additive, and we will have infinite products instead of infinite sums. Now

f(z) = (µ� s)(z) =
∞∏
n=0

s(z/2n)µ(n) = s(z) · s(z/2)−1 · 1 · 1 · · · ,

so the duplication formula simply states that f(z) = cos(z/2), and hence
inverting gives the convergent infinite product

(3.11)
sin z

z
= s(z) = (1� f)(z) =

∞∏
n=0

f(z/2n) =
∞∏
n=1

cos
z

2n

which for z = π/2 turns out to be Vieta’s formula. By the way, comparing
this with z = π/3 yields the amusing, but probably useless,

(3.12)
2 +
√

3

2 +
√

2
· 2 +

√
2 +
√

3

2 +
√

2 +
√

2
·

2 +

√
2 +

√
2 +
√

3

2 +

√
2 +

√
2 +
√

2

· · · = 9

8
.

Other functions with “multiplication formulas” yield similar products:

(3.13)

sin z

z
=
∞∏
n=1

(
1− 4

3
sin2 z

3n

)
,

z

tan z
=
∞∏
n=1

(
1− tan2 z

2n

)
,

Γ(z + 1) = 4z
∞∏
n=1

1√
π

Γ

(
1

2
+

z

2n

)
.

Example 10. (“Strange” functions). Curiously, the simple one-prime
semigroup also provides several standard examples in Analysis. We have,
for instance, using the iteration of Φ(x) = ax,

∞∑
n=1

bn cos(πanx),

which is one of Weierstrass’ examples of a continous nowhere differentiable
function (for suitable real a, b). He also gave

∞∑
n=1

sin(πnax)

πna
,
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which uses the flow mentioned in Example 3.
If instead we use Φ(z) = za, with a ∈ C fixed, then Φ◦n(z) = za

n
. We

get another telescoping inversion formula:

(3.14) f̂(z) =
∞∑
n=0

f(za
n

), f(z) = f̂(z)− f̂(za).

For a = 2 and f(z) = z, the transform f̂(z) is the standard example of an
analytic function which cannot be continued to any point on the unit circle,
i.e. this is its natural boundary.

A moment’s reflection reveals that the density of the orbits of points
under the flow is the reason these examples are “pathological”.

Example 11. (Two primes). Let S be the arithmetical subsemigroup of
N generated by the primes 2 and 3. Take X = C, R = Z and M the nonzero
meromorphic functions on C. We use the division S-flow ϕ(n, z) = z/n.
From the formula

sin(z) sin(6z)

sin(2z) sin(3z)
= 1− 4 sin2(z),

but using s(z) = z−1 sin z instead of sin, and dividing z by 6, the left hand
side becomes µ� s. Inversion gives a “two-prime formula”:

(3.15)
sin z

z
=

∞∏
n,m=1

(
1− 4 sin2 z

2n3m

)
,

which, as might be expected, is the combination of two “one-prime formulas”

∞∏
n=1

(
1− 4 sin2 z

2n

)
=

1

3
(1 + 2 cos(4z)),

∞∏
m=1

1

3

(
1 + 2 cos

4z

3m

)
=

sin z

z
.

Example 12. (Multivariable inversion formulas). In [16] one finds
inversion formulas such as

f̂(x) =
∞∑

m,n=1

f(nαmβx), f(x) =
∞∑

m,n=1

µ(m)µ(n)f̂(nαmβx),

with α, β > 0, or

f̂(x) =
∞∑
k=0

f(2kx), f(x) =
∞∑
n=1

∞∑
m=1

µ(n)(−1)m+1 1

mn
f̂(mnx),

where there are double sums. These correspond to the semigroup S = N×N
and in general such formulas suggest studying direct sums of arithmetical
semigroups. This is done in [3] where more examples are also given.
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Example 13. (Parametric Dirichlet series). Let us choose R = C as
base ring, so the module M is a complex Banach space. Now, consider two-
variable functions f : C×X → M and separate the first variable using the
notation fs(x) = f(s, x). For fixed s ∈ C, the function N(n)−s is completely
multiplicative. Considering the convolution N−s � fs leads to the inversion
formula

(3.16) f̂(s, x) =
∑
n∈S

f(s, ϕ(n, x))

N(n)s
, f(s, x) =

∑
n∈S

µ(n) f̂(s, ϕ(n, x))

N(n)s
.

These transforms represent Dirichlet series depending on the parameter x.
For “reasonable” arithmetical functions they will converge absolutely for
Re(s) large enough (but the bound may depend on x). By multiplying N−s

with completely multiplicative complex-valued functions, we obtain vari-
ations of this inversion formula. For example, using Liouville’s function
λ(n) = (−1)Ω(n), which has inverse |µ(n)|, we have
(3.17)

f̂(s, x) =
∑
n∈S

λ(n) f(s, ϕ(n, x))

N(n)s
, f(s, x) =

∑
n∈S

|µ(n)| f̂(s, ϕ(n, x))

N(n)s
.

In [15, § 6.3, pp. 222–223] we find the special case of S = N and ϕ(n, x) =
x/n. Using functions with support in [1,+∞) again makes the sums finite.
One also finds ϕ(n, x) = n−sx considering a real fixed s and limiting the
sum to n ≤ x1/s.

In [3] we generalize the well-known property that the product of the
Dirichlet series corresponding to several arithmetical functions is the Dirich-
let series corresponding to their convolution. This fact, we recall, is the
source of many well-known arithmetical identities involving the Riemann
zeta function, such as

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
,

ζ(s)

ζ(2s)
=
∞∑
n=1

|µ(n)|
ns

, ζ(s)2 =
∞∑
n=1

d(n)

ns
,

where d(n) is the number of divisors of n.

Example 14. (Inversion of Taylor series). Consider S = N and
R = X = M = C. Inversion of convolution with respect to the exponential
N-flow ϕ(n, z) = zn has the form

(3.18) f̂(z) =
∞∑
n=1

α(n) f(zn), f(z) =
∞∑
n=1

α−1(n) f(zn).
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For f(z) = z, we are inverting a power series and obtaining an expansion
for the identity. In his paper [14], we find the following nice example due to
Möbius, inverting the Taylor series of the logarithm:

− log(1− z) =
∞∑
n=1

n−1zn, z = −
∞∑
n=1

n−1µ(n) log(1− zn)

(convergent for |z| < 1). Exponentiating gives the product expansion

ez =
∞∏
n=1

(1− zn)−µ(n)/n.

Substituting z = p−s for prime p and Re(s) > 1, using the Euler product for
the Riemann zeta function, ζ(s) =

∏
p (1− 1/ps)−1 , and taking logarithms,

we obtain a formula for the “prime zeta function” attributed to Glaisher:

∑
p

1

ps
=
∞∑
n=1

µ(n)

n
log ζ(ns), Re(s) > 1.

From the inversion of the arctangent, whose Taylor series at 0 happens
to be convolution with χρ, where ρ(n) = n−1 and χ = χ4 is the non-
trivial Dirichlet character modulo 4 (χ4(m) = 0 for even m and χ4(m) =
(−1)(m−1)/2 for odd m), and since Dirichlet characters are completely mul-
tiplicative, we obtain
(3.19)

arctan z =
∞∑
n=0

(−1)n

2n+ 1
z2n+1, z =

∞∑
n=0

(−1)nµ(2n+ 1)

2n+ 1
arctan(z2n+1).

Evaluating at z = 1 we get

π

4
=
∞∑
n=0

(−1)n

2n+ 1
,

4

π
=
∞∑
n=0

(−1)nµ(2n+ 1)

2n+ 1
,

which is Leibniz’s famous formula, and its Möbius inverse. This also follows
from Example 13, considering L(χ, s) at s = 1.

Example 15. (Lambert series). If α : N→ C is an arithmetical function,
recall that its associated Lambert series is

(3.20) Lα(z) =
∞∑
n=1

α(n)
zn

1− zn
,
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considered as a formal or, if appropriate, a convergent complex series. The
Lambert series L = Lδ associated to the delta function δ is just

L(z) =
z

1− z
.

As a complex series, it converges for |z| < 1, and its Taylor expansion
around 0 is the geometric series

∑∞
n=1 z

n. In general, the usefulness of Lam-
bert series comes from the general expression relating the Lambert (3.20)
and Taylor expansions:

(3.21)
∞∑
n=1

α(n)
zn

1− zn
=
∞∑
n=1

β(n)zn with β(n) =
∑
d|n

α(d).

In terms of Dirichlet convolution, this reduces to β = α ∗ 1.
This basic property is easily seen to be a flow-convolution identity for the

N-flow ϕ(n, z) = zn. Indeed, let I denote the identity series I(z) = z. As
we have mentioned in Example 14, the Taylor series with coefficients given
by an arithmetical function β : N→ C is simply β� I. Thus, the geometric
series expansion of L is the convolution formula L = 1 � I. On the other
hand, for a given arithmetical function α, its associated Lambert series Lα
is clearly

∑∞
n=1 α(n)L(zn), which is just α�L. Then (3.21) is a consequence

of the “mixed associative property” (2.4):

Lα = α� L = α� (1� I) = (α ∗ 1)� I = β � I where β = α ∗ 1.

This well-known relation is the source of many interesting formulas (see for
example [11, § 17.10, pp. 257–258] or [12, § 58-C, pp. 448–452]), some of
which are related to elliptic function q-expansions ([10, § 3.7 and 3.8]). For
instance,∑

n odd

zn

1− zn
=
∞∑
n=1

d(n)zn,
∞∑
n=1

(−1)Ω(n) zn

1− zn
=
∞∑
n=1

zn
2

,

where d(n) is the number of divisors of n and Ω(n) is the number of prime
divisors of n with multiplicities; (−1)Ω is Liouville’s λ function, as in (3.17).

Example 16. (Möbius inversion of Fourier series). Applying Möbius
inversion to Fourier series goes at least as far back as Chebyshev [7] and ap-
pears recently in [8] in a study of a lattice problem in physics.

For example, a sine expansion is a convolution with respect to the mul-
tiplication flow. We write the inversion formula as

(3.22) f̂(x) =
∞∑
n=1

α(n) sin(2πnx), sin(2πx) =
∞∑
n=1

α−1(n)f̂(nx).
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Chebyshev studied the Möbius inverses of the Fourier expansions of the
square and triangular waves and obtained the value of some arithmetical
sums. By thinking along similar lines we also obtain some curious values of
infinite sums. By the triangular wave T we mean the period 1 extension to
R of the function on [0, 1) defined by

T (x) = 4x 1[0,1/4)(x) + (2− 4x) 1[1/4,3/4)(x) + (4x− 4) 1[3/4,1)(x),

where 1A denotes the function which is 1 on A and 0 on Ac. Its Fourier
expansion is

T (x) =
8

π2

∞∑
n=0

(−1)n
sin(2π(2n+ 1)x)

(2n+ 1)2
=

8

π2
ρ2χ4 � sin2π(x),

where ρ(n) = 1/n, χ4(n) is the nontrivial Dirichlet character modulo 4 (i.e.,
χ4(m) = (−1)(m−1)/2 for odd m and χ4(m) = 0 for even m), and sin2π

denotes the function sin2π(x) = sin(2πx). Since ρ2χ4 is completely multi-
plicative, its Dirichlet inverse is (ρ2χ4)−1 = µρ2χ4, and hence the inversion
formula gives

sin(2πx) =
π2

8

∞∑
n=1

µ(n)χ4(n)

n2
T (nx).

Substituting rational values x = k/m into this expansion yields interesting
sums reminiscent of L-series. For example, with m = 5 and x = 1/5, we
have

T (n/5) =
2

5
×



0, if n ≡ 0 (mod 5),

2, if n ≡ 1 (mod 5),

1, if n ≡ 2 (mod 5),

−1, if n ≡ 3 (mod 5),

−2, if n ≡ 4 (mod 5).

and since sin(2π/5) =
√

(5 +
√

5)/8, we get

(3.23)

5
√

2
√

5 +
√

5

π2
=
∞∑
n=1

µ(n)β(n)

n2
, β(n) =



0, if gcd(n, 20) > 1,

2, if n ≡ ±1 (mod 20),

1, if n ≡ ±3 (mod 20),

−1, if n ≡ ±7 (mod 20),

−2, if n ≡ ±9 (mod 20).

In fact these formulas are related to factorizations of the real parts of L-series
(more details are given in [3]).
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Example 17. (Multiplication by arbitrary sequences). Transforms of
the form

∑∞
n=1 f(anx) for essentially arbitrary sequences {an} can be dealt

with as Möbius inversion in the monoid of words over a countable alphabet.
Since this takes us a little too far afield, we again refer the reader to [3] for
more information.
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