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ABSTRACT: We study some problems related to convergence and di-
vergence a.e. for Fourier series in systems {φk}, where {φk} is either
a system of orthonormal polynomials with respect to a measure dµ on
[−1, 1] or a Bessel system on [0, 1]. We obtain boundedness in weighted
Lp spaces for the maximal operators associated to Fourier-Jacobi and
Fourier-Bessel series. On the other hand, we find general results about
divergence a.e. of the Fourier series associated to Bessel systems and
systems of orthonormal polynomials on [−1, 1].

§0. Introduction.

Let dµ be a positive measure on a finite interval [a, b] ⊂ R and

Snf(x) =
n∑

k=1

ckφk(x) , ck =
∫ b

a

f(t)φk(t) dµ(t)

the n-th partial sum of the Fourier series of f with respect to a real, complete and or-
thonormal system {φk} on L2(dµ).

In what follows {φk} will be either the system of orthonormal polynomials given by
the normalization of the sequence {1, x, x2, . . .} in L2([−1, 1]; dµ), or the Bessel system in
L2([0, 1]; dµ), where dµ = x dx.

We shall denote by S∗f(x) = sup
n
|Snf(x)| the maximal operator associated to the

Fourier series of f .We are interested in the two following questions:
(a) Given p ∈ [1, 2) , does Snf(x) converge to f(x)µa.e. for any f in Lp(dµ) ?
(b) Is S∗ of strong or weak type (p,p) ?

Very well known standard arguments show that an affirmative answer to question (b)
leads to an affirmative answer to question (a). Several authors have studied the former
questions in the case of orthonormal polynomials on [−1, 1] or Bessel systems on [0, 1].
Titchmarsh [16] and Benedek-Panzone [3] analyze question (a) in the case of Fourier-
Bessel series, determinating the range of p′s such that (a) is true, but their techniques
(equiconvergence theorems) cannot be used to approach matter (b).
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For Jacobi polynomials, equiconvergence theorems again show that there exists a range
of p,s such that (a) is true (see [15]). Badkov studies in [2] the problem of the boundedness
of the operator S∗ for generalized Jacobi polynomials. He obtains boundedness (even in
some weighted Lp-spaces) for the same range of p′s in which (a) is true.

With respect to negative answers to question (a), Pollard [14] shows that for each
p < 4/3 there exists a function f ∈ Lp(dx) such that its Legendre-Fourier series diverges
a.e.. After that, Meaney [10] extends the result to p = 4/3 and to Jacobi polynomials
(see also Badkov [2]). In these results, the asymptotic behavior of the polynomials is used
together with category arguments.

Our purpose in this paper is two fold:
First we obtain results about boundedness of the maximal operators in weighted Lp

spaces, which extend Badkov’s results in the case of Jacobi polynomials and are new in
the case of Bessel functions (even in the unweighted case). The procedure is simple and
basicly consists of showing that a general result of Gilbert on transplantation remains true
when one considers weights in the Muckenhoupt Ap-classes.

Second we note that a lower bound on the Lp-norm of the polynomials is only needed
in order to obtain a result on divergence a.e.. In this case, a powerful result established by
Máté, Nevai and Totik [9], which is valid for a very general class of polynomials on [−1, 1]
allows us to prove a general divergence theorem which includes the Badkov and Meaney
results. Moreover, we are able to prove an analogous to Máté, Nevai and Totik’s result in
the context of Bessel functions which allows us to obtain divergence results in this case.

We shall use the following notations:
Let α, β > −1 . We shall denote by P

(α,β)
n the Jacobi polynomials on [−1, 1] with

respect to the measure dµ(α,β) = (1 − x)α(1 + x)βdx (see [15]). Let Jα be the Bessel
function or order α > −1, and jα

n (x) =
√

2|Jα+1(αn)|−1 Jα(αnx) (where αn is the increas-
ing sequence of the zeroes of Jα) the Bessel system of order α, which is orthonormal and
complete in L2([0, 1];xdx).

The corresponding maximal operators will be denoted by S∗α,β and S∗α , respectively.
Ap([a, b]) (where 1 < p < ∞) will stand for the Muckenhoupt classes (see [11])

consisting of those nonnegative functions ω on [a, b] such that

(|I|−1

∫
I

ω)(|I|−1

∫
I

ω−p′/p)p/p′
≤ C for every interval I ⊆ [a, b],

where p + p′ = p p′.

§1. Extension to Ap classes of a Gilbert result.

Let (un)n≥0 a sequence of functions on [0, π] verifying:
(1.1) There exists a constant A such that sup

0<x<π
|un(x)| ≤ A , ∀n.

(1.2) There exist functions X1, X2, X3, X4 in L∞((0, π/2)) such that

un(x) = X1(x) cos nx+X2(x) sinnx+(nx)−1(X3(x) cos nx+X4(x) sinnx)+O((nx)−2)

uniformly for x ∈ (1/n, π/2).
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(1.3) There exist functions X ′
1, X

′
2, X

′
3, X

′
4 in L∞((0, π/2)) such that

∆un(x) = x(X ′
1(x) cos nx + X ′

2(x) sinnx)

+ n−1(X ′
3(x) cos nx + X ′

4(x) sinnx) + O(n−2x−1)
uniformly for x ∈ (1/n, π/2), where ∆un = un − un+1.

(1.4) There exists a function X in L∞((0, π/2)) such that
∆un(x) = n−1X(x)un(x) + (n−2 + x)O(1)

uniformly for x ∈ (0, 1/n).
(1.5) There exists a sequence (Un) satisfying (1.1)-(1.4) and such that

un(π − x) = (−1)nUn(x) + O(n−2)
uniformly for x ∈ (0, π/2).
Let (rn,k) be a double sequence such that:

(1.6)
∑∞

n=0 |rn,k| < ∞ , ∀k.
(1.7) There exists a constant B such that |rn,k| ≤ B ∀n, k.
(1.8) There exists a constant B such that

∑∞
n=0 |∆(rn,k)| < B , ∀k , where ∆(rn,k) =

rn+1,k − rn,k.
If (un), (vn) satisfy (1.1)-(1.5) and (rn,k) verifies (1.6)-(1.8) then we define the kernels:

Kk(x, t) =
∞∑

n=0

rn,k einx e−int , Lk(x, t) =
∞∑

n=0

rn,kun(x)vn(t).

In this situation the Gilbert result is (see [5]):

Theorem. Let 1 < p < ∞ . If the operator f −→ sup
k
|
∫ π

−π

f(t)Kk(x, t)dt| is of weak

type (p, p) or strong type (p, p) in Lp((−π, π)), then the same is true for the operator

φ −→ sup
k
|
∫ π

−π

φ(t)Lk(x, t)dt| in Lp((0, π)).

Examples of (un) satisfying (1.1)-(1.5) are (see [5]):
uα,β

n (θ) = Aα,β
n Pα,β

n (cos θ)(1− cos θ)α/2+1/4(1 + cos θ)β/2+1/4 , α, β ≥ −1/2
(where Aα,β

n is a normalization constant), or
uα

n(θ) = π−1θ1/2jα
n (π−1θ) , α ≥ −1/2.

If we call T ∗α,β and T ∗α to the corresponding maximal operators, then we have the
relations:
(1.9) S∗α,βf(cos θ) = T ∗α,βg(θ)(1− cos θ)−α/2−1/4(1 + cos θ)−β/2−1/4

where g(θ) = f(cos θ)(1− cos θ)α/2+1/4(1 + cos θ)β/2+1/4, and
(1.10) S∗αf(π−1θ) = T ∗αg(θ)θ−1/2

where g(θ) = f(π−1θ) θ−1/2.
It is clear from Gilbert’s theorem that it is possible to obtain boundedness for the

maximal operators T ∗α,β and T ∗α by comparing them with the usual Carleson-Hunt maximal
operator (see [4], [6]) associated to the trigonometric system. However, formulae (1.9) and
(1.10) indicate that we shall need a ”weighted” Gilbert theorem if we want to obtain some
boundedness for the maximal operators S∗α,β and S∗α.
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Theorem 1. Let 1 < p < ∞ . Let ω ∈ Ap((−π, π)) an even weight. Let (un) , (vn)
and (rn,k) be sequences under the hypothesis of Gilbert’s theorem. If the operator f −→

A∗f = sup
k
|
∫ π

−π

f(t)Kk(x, t)dt| is of weak or strong type (p, p) in Lp((−π, π), ω), then the

same is true for the operator φ −→ B∗f = sup
k
|
∫ π

−π

φ(t)Lk(x, t)dt| in Lp((0, π), ω).

Proof.
The Gilbert proof is based on the control of the operator B∗ by operators close to the

operator A∗ (since (un) , (vn) may be expressed in terms of sines and cosines) together
with another one which can be essentially controlled by the Hardy-Littlewood maximal
function. Now, the proof consists of observing that all the operators taking part in the
proof are bounded with Ap weights because of the hypothesis and Muckenhoupt’s result
related to the boundedness of the Hardy-Littlewood maximal function with Ap weights
(see [11]). Details can be found in ([13], Chapter IV).

When rn,k = 1 if n ≤ k and 0 otherwise, and (un) = (vn) is the sequence uα,β
n (or

uα
n), then A∗ is the operator

f −→ S∗(f [)(x) = sup
k
|

k∑
n=0

f̂(n)einx|,

where S∗ is the Carleson maximal operator and f [ = f̂(0)+ 1
2 (f+f̃) , f̃ being the conjugate

function of f .
Both operators S∗ and f [ are bounded in Lp((−π, π), ω) when ω is an Ap weight, due

to Hunt, Muckenhoupt and Wheeden’s theorem (see [7]) and Hunt and Young’s theorem
(see [8]). On the other hand, the corresponding operator B∗ is the maximal operator T ∗α,β

(or T ∗α ).
Some applications of Theorem 1 are:

Theorem 2.
(i) Let α, β ≥ −1/2 and 1 < p < ∞. Let u be a weight on [−1, 1]. If

ω(t) = u(cos t)(1− cos t)(2−p)(2α+1)/4(1 + cos t)(2−p)(2β+1)/4 ∈ Ap((0, π))

then S∗α,β is bounded in Lp(u dµ(α,β)).
(ii) Let α ≥ −1/2 and 1 < p < ∞. Let u be a weight on [0, 1]. If u(x) x1−p/2 ∈ Ap((0, 1))

then S∗α is bounded in Lp(u(x) xdx).

Proof.
(i) By (1.9), S∗α,β is bounded on Lp(u dµ(α,β)) if and only if T ∗α,β is bounded on Lp(ω)

and this follows from the abovementioned remarks.
(ii) It is analogous using (1.10) instead of (1.9).
A particular case of part (i) in Theorem 2 is
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Corollary 1 (Badkov [2]). Let α, β ≥ −1/2, 1 < p < ∞, u(x) = (1− x)ap(1 + x)bp . If
the conditions:

a + (α + 1)(1/p− 1/2) < 1/4, b + (β + 1)(1/p− 1/2) < 1/4
a + (α + 1)(1/p− 1/2) > −1/4, b + (β + 1)(1/p− 1/2) > −1/4

are fullfilled, then S∗α,β is bounded on Lp(u dµ(α,β)).

Proof.
We need only to check that

(1− cos t)ap+{(2−p)(2α+1)}/4(1 + cos t)bp+{(2−p)(2β+1)}/4 ∈ Ap((0, π))

but this is equivalent to

t2ap+{(2−p)(2α+1)}/2(π − t)2bp+{(2−p)(2β+1)}/2 ∈ Ap((0, π))

and a simple exercise of integration shows that this is true taking into account the hypoth-
esis.
Note. Considering different systems (un), (vn), theorem 1 also allows us to obtain trans-
plantation’s results of the following type:

“Let dµ, dν be two different measures of Jacobi type and let Pn, Qn the corresponding
orthonormal Jacobi polynomials. Then, for a certain range of p′s, for each f ∈ Lp(dν),
there exists a g ∈ Lp(dµ) such that∫ 1

−1

g(x)Pn(x)dµ(x) =
∫ 1

−1

f(x)Qn(x)dν(x) ∀n ≥ 0

and ||g||Lp(dµ) ≤ C ||f ||Lp(dν) where the constant C is independent of f”.
Theorems of this type have been studied by Askey [1] and Muckenhoupt [12], not for

the polynomials on [−1, 1] but for the corresponding orthonormal functions in (0, π).

§2. Divergence almost everywhere.

First, we are going to study the case of orthonormal polynomials in [−1, 1].
Assume dµ is a positive Borel measure on [−1, 1] such that µ′ > 0 a.e., and let

{Pn(x)}∞n=0 denote the corresponding orthonormal polynomials.
The following result is due to Máté, Nevai and Totik [9]:

Lemma 1. Suppose 1 ≤ r < ∞. If g is a Lebesgue measurable function in [−1, 1], then

(
∫ 1

−1

|g(x)(1− x2)−1/4µ′(x)−1/2|rdx)1/r ≤ M lim inf
n→∞

(
∫ 1

−1

|g(x)Pn(x)|rdx)1/r

where M = π1/22max{1/r−1/2,0}.

By using this lemma we obtain:
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Theorem 3. Let ω be a Lebesgue measurable positive function in [−1, 1] and 1 < p ≤
q < ∞, (1/p + 1/q = 1). If

(2.1) ω(x)−1 6∈ Lq(dµ) or µ′(x)1−q/2(1− x2)−q/4ω(x)−q 6∈ L1(dx),

then there exists f ∈ Lp(ωpdµ) such that Snf either does not exist or diverges almost
everywhere in [−1, 1].

Proof.
Suppose that c0(f) =

∫ 1

−1
f(x)P0(x)dµ(x) exists for each f ∈ Lp(ωpdµ). By duality,

this implies P0 ∈ Lq(ω−qdµ), i.e., ω−1 ∈ Lq(dµ). If ω−1 ∈ Lq(dµ) , then Snf exists for
every n = 0, 1, 2, ... and every f ∈ Lp(ωpdµ) , and so the operators

cn : f ∈ Lp(ωpdµ) −→ cn(f) =
∫ 1

−1

f(x)Pn(x)dµ(x)

are continuous by using Holder’s inequality. Moreover, ‖cn‖ = ‖Pnω−1‖Lq(dµ) and so, by
(2.1) and lemma 1, it is clear that sup

n
‖Pnω−1‖Lq(dµ) = ∞. Then, the Banach-Steinhaus

theorem shows that there exists f ∈ Lp(ωpdµ) such that sup
n
|cn(f)| = ∞.

On the other hand, if Snf(x) =
∑n

k=0 ck(f)Pk(x) converges in a set E of Lebesgue
measure |E| > 0 and sup

n
|cn(f)| = ∞, then there exists a subsequence Pnk

with

lim
k

Pnk
(x) = 0 a.e. in E.

If we take δ > 0 and δ < |E|, by using Egoroff’s theorem, there exists D ⊂ E such that
|D| = δ and lim

k
Pnk

(x) = 0 uniformly in D. Therefore

lim
k

∫
D

|Pnk
|dµ = 0.

But, by lemma 1 with r = 1 and g(x) = µ′(x)χD(x), we have

lim
k

∫
D

|Pnk
|dµ ≥ M−1

∫
D

(1− x2)−1/4µ′(x)1/2dx > 0,

which is a contradiction.
Next, we show a similar result for Bessel systems. First of all, we need to establish

an analogous result to lemma 1. For that, we shall use the following estimates for Bessel
functions

(2.2) Jα(z) = zα2−αΓ(α + 1)−1 + O(zα+2), z −→ 0

(2.3) Jα(z) =
√

2(πz)−1/2 cos(z − απ

2
− π

4
) + O(z−3/2) z −→∞
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(2.4)
∫ 1

0

Jα(αnx)2x dx ≈ 1
παn

, n −→∞

and the Fejer lemma: if f, g are nonnegative functions, g is continuous with period 2π and
f ∈ L1((0, 2π)), then

(2.5) lim
λ→∞

1
2π

∫ 2π

0

f(t)g(λt)dt = ĝ(0) f̂(0)

where ĥ(x) denotes the Fourier transform of h.

Lemma 2. Let α > −1. Let h(x) be a Lebesgue measurable nonnegative function on
[−1, 1] and 1 < p < ∞. Then

(2.6) lim
n→∞

∫ 1

0

|jα
n (x)|ph(x)dx ≥ M

∫ 1

0

h(x) x−p/2 dx

where

M =
2p/2

2π

∫ 2π

0

| cos t|p dt.

Proof.
If there exists no δ ∈ (0, 1) such that h(x)xαp 6∈ L1(0, δ) then (2.6) is trivial since (2.2)

implies that all the integrals on the left in (2.6) are equal to ∞. Then, we may suppose
that h(x)xαp ∈ L1(0, δ) for some δ ∈ (0, 1). By (2.4) it is enough to prove

(2.7) lim
n→∞

∫ 1

0

|(παn)1/2Jα(αnx)|ph(x)dx = M

∫ 1

0

h(x) x−p/2 dx.

Suppose that h(x)x−p/2 ∈ L1((0, 1)). If we prove

(2.8) lim
n→∞

∫ 1

0

|(αnx)1/2Jα(αnx)− (2/π)1/2 cos(αnx− απ

2
− π

4
)|ph(x)x−p/2dx = 0

then (2.7) is reduced to show that

(2.9) lim
n→∞

∫ 1

0

|(2/x)1/2 cos(αnx− απ

2
− π

4
)|ph(x)dx = M

∫ 1

0

h(x) x−p/2 dx.

Now, (2.9) holds by using (2.5) with

t = 2πx, g(t) = |21/2 cos(t− απ

2
− π

4
)|p, f(t) = h(

t

2π
)
( t

2π

)−p/2

, λ =
αn

2π
.

Thus, let us prove (2.8) under conditions

(2.10) h(x)xαp ∈ L1((0, δ)) and h(x)x−p/2 ∈ L1((0, 1).
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Take n large enough so that αn > 1. In view of (2.4), if αnx ≥ 1 then

|(αnx)1/2Jα(αnx)− (2/π)1/2 cos(αnx− απ

2
− π

4
)| ≤ C (αnx)1/2(αnx)−3/2 < C1

and, according to (2.2), if αnx ≤ 1 it follows

|(αnx)1/2Jα(αnx)− (2/π)1/2 cos(αnx− απ

2
− π

4
)| ≤ C ((αnx)α+1/2 + 1) ≤ C1 (xα+1/2 + 1)

(in the last inequality we use αnx ≤ 1, if α + 1/2 ≥ 0, and αnx ≥ x, if α + 1/2 ≤ 0, ).
Now, by (2.10), we can apply the dominate convergence theorem and we obtain (2.8).
Finally, in case that h(x)x−p/2 6∈ L1((0, 1)), let {Kj}∞j=1 be the sequence of increasing

measurable sets Kj = {x ∈ (0, 1) : h(x)x−p/2 ≤ j}, and denote by hj the function hj = h
on Kj and 0 elsewhere. By applying (2.7) for each hj and then the monotone convergence
theorem, (2.7) also holds in this case, and the proof of the lemma is finished.

From lemma 2 and proceeding exactly as in the proof of theorem 3, we obtain:

Theorem 4. Let α > −1 be and suppose 1 < p ≤ q < ∞, (1/p + 1/q = 1). Let ω be a
Lebesgue measurable nonnegative function on [0, 1]. If

ω(x)−qxαq+1 6∈ L1(dx) or ω(x)−qx1−q/2 6∈ L1(dx)

then there exists f ∈ Lp(ω(x)pxdx) whose Fourier series with respect to the system {jα
n (x)}

either does not exist or diverges almost everywhere on [0, 1].

Notes.
(i) If α ≥ −1/2, the proof of lemma 2 shows that the sign “≥” can be replaced by “=”.
(ii) Theorems 3 and 4 contain as particular cases the known cases of generalized Jacobi

polynomials ([2], [10], [14]) or Bessel systems ([3]).
(iii) An analogous result to Theorem 4 can be obtained for Dini systems in [0, 1].

References.

[1] R. Askey, A transplantation theorem for Jacobi series, Illinois J. Math. 13 (1969),
583-590.

[2] V. M. Badkov, Convergence in the mean and almost everywhere of Fourier series in
polynomials orthogonal on an interval, Math. USSR Sb. 24 (1974), 223-256.

[3] A. I. Benedek and R. Panzone, Pointwise convergence of series of Bessel functions,
Rev. Un. Mat. Arg. 26 (1972), 167-186.

[4] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math.
116 (1966), 135-157.

[5] J. E. Gilbert, Maximal theorems for some orthogonal series. I, Trans. Amer. Math.
Soc. 145 (1969), 495-515.

[6] R. Hunt, On the convergence of Fourier series, Proc. Conf. Orthogonal Expansions
and Continuous Analogues, 235-255. Southern Illinois Univ. Press, Carbondale, Ill.,
1968.

8



[7] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the con-
jugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.

[8] R. Hunt and W. S. Young, A weighted norm inequality for Fourier series, Bull. Amer.
Math. Soc. 80 (1974), 274-277.
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