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Abstract. A Pierce series is an alternating sum of the reciprocals of
an increasing sequence of positive integers, each one divisible by the
previous one. In this short note we study some Pierce series that arise
from certain continued fractions. Moreover, we show that the sums of
these Pierce series are transcendental numbers.

1. Introduction and main results

Given an eventually increasing sequence of positive integers (xn) such
that xn | xn+1 for all n, the sum of the reciprocals is the Engel series

(1)

∞∑
j=1

1

xj
=

∞∑
j=1

1

y1y2 · · · yj
,

where y1 = x1 and yn+1 = xn+1/xn for n ≥ 1, and the alternating sum of
the reciprocals is the Pierce series

(2)
∞∑
j=1

(−1)j+1

xj
=
∞∑
j=1

(−1)j+1

y1y2 · · · yj
.

In the recent papers [3, 4], A.N.W. Hone gives some families of sequences
(xn) that are generated by certain nonlinear recurrences of second order, and
such that some continued fraction expansion defined from the (xn) coincides
with the Engel series (1). Additionally, he proves, under some circumstances,
that (1) is a transcendental number. We give a similar result for Pierce series,
although the structure of the corresponding continued fractions is different.

To generate the sequences (xn), let us take the initial values x0 = x1 = 1
and define (xn) by the recurrence relation

(3) xn+2xn = (1 + αn+1xn+1)x
2
n+1, n ≥ 0,

with αn+1 any positive integer. If we take

(4) yn =
xn+1

xn
, zn =

yn+1

yn
=
xn+2xn
x2n+1

= 1 + αn+1xn+1,

it is clear that y0 = 1 and x2 = y1 = z0 = 1 + α1; moreover, by induction
we can see that xn, yn, zn ∈ Z+ = {1, 2, 3, . . . } (use (4) to prove that, if
xn+2, yn+1, zn ∈ Z+, then zn+1, yn+2, xn+3 ∈ Z+).
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We use the standard notation [1, 5, 6, 7, 9] for continued fractions, namely

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 + · · ·
1

an

=
pn
qn
,

with a0 ∈ Z and aj ∈ Z+ for j ≥ 1 (we also assume qn > 0), and

[a0; a1, a2, . . . ] = lim
n→∞

[a0; a1, a2, . . . , an],

a limit that always exists.
The convergents pn/qn of a continued fraction satisfy the recurrence re-

lation

(5)
p−1 = 1, p0 = a0, p1 = a0a1 + 1, pk = akpk−1 + pk−2, k ≥ 1,

q−1 = 0, q0 = 1, q1 = a1, qk = akqk−1 + qk−2, k ≥ 1.

Among the large number of well-known properties of continued fractions,
let us mention that they satisfy

pkqk−1 − pk−1qk = (−1)k−1, k ≥ 1.

Using this property (written as pk/qk−pk−1/qk−1 = (−1)k−1/(qk−1qk)) and
induction, we obtain

(6) [a0; a1, a2, . . . , an] = a0 +
1

q1
− 1

q1q2
+

1

q2q3
+ · · ·+ (−1)n−1

qn−1qn
.

This provides, of course, an alternating series, but it is not a Peirce series
because, in general, qj - qj+2 (actually, this is what happens in [2], another
paper that studies continued fractions for some alternating series whose
sum is a transcendental number). Anyway, the existence of this alternating
series closely related to the basic theory of continued fractions is a strong
motivation for searching for series of type (2) (Pierce series), perhaps more
than series of type (1) (Engel series). Let us also remember that alternating
series (with the general term decreasing to zero) have a great interest due to
their very good approximation properties: according to Leibniz’s theorem,
any partial sum approximates the sum of the series with an error bounded
by the first omitted term.

The proof of the following theorem can be found in Section 2.

Theorem 1. Let (xn) be a sequence generated from the initial values x0 =
x1 = 1 by the recurrence (3). The partial alternating sums of their recipro-
cals have the continued fraction expansions

(7) SN :=

N∑
j=1

(−1)j+1

xj
= [a0; a1, a2, . . . , a3N−4]

for all N ≥ 2, where a0 = 0, a1 = 1, a2 = x2 − 1, a3 = α2x2, and

(8) a3n+1 = 1, a3n+2 = xn+1−1, a3n+3 =
αn+2xn+2

xn+1
−1 ∈ Z+, n ≥ 1.
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It is interesting to note that this result is somewhat different to what
happens in the case of Engel series (1), where we have a relation of the type

N∑
j=1

1

xj
= [b0; b1, b2, . . . , b2N−2],

and where, instead of (8), only two expressions b2n = xn and b2n+1 =
αn+1xn+1/xn appear. The details can be found in [3].

Finally, taking N → ∞ in Theorem 1 and using Roth’s theorem on ra-
tional approximation and transcendence, we have the following result whose
proof can be seen in Section 3:

Theorem 2. The infinite sum

(9)

∞∑
j=1

(−1)j+1

xj
= [a0; a1, a2, . . . , an, . . . ]

(where the coefficients of the continued fraction are as in (8)) is a transcen-
dental number.

2. Proof of Theorem 1

Let us take the sequence (an) as in (8), whose terms belong to Z+ for
n > 0 because we can write a3n+3 = αn+2xn+2/xn+1 − 1 = yn+1 − 1.

Now, let us denote pn
qn

= [a0; a1, a2, . . . , an]. From a0 = p0/q0, a0 +1/a1 =

p1/q1, a0 + 1/(a1 + 1/a2) = p2/q2, and taking into account that a0 = 0,
a1 = 1, a2 = x2 − 1, we easily obtain p0 = 0, q0 = 1, p1 = 1, q1 = a1 = 1,
p2 = a2 = x2 − 1 and q2 = a2 + 1 = x2. Let us prove now by induction that
the denominators qn satisfy the recurrence relation

(10) q3n−1 = xn+1, q3n =
xn+2

xn+1
−xn+1 + 1, q3n+1 =

xn+2

xn+1
+ 1, n ≥ 1.

For n = 1 we have already seen that q2 = x2; by using (5) and (1 +
α2x2)x2 = x1x3/x2 (with x1 = 1), we get q3 = a3q2+q1 = (−1+1+α2x2)x2+
1 = x3/x2 − x2 + 1; and, finally, q4 = a4q3 + q2 = 1(x3/x2 − x2 + 1) + x2 =
x3/x2 + 1. Let us now check the induction step. Assuming (10) for n, for
n+ 1 we have

q3n+2 = a3n+2q3n+1 + q3n

= (xn+1 − 1)
(xn+2

xn+1
+ 1
)

+
xn+2

xn+1
− xn+1 + 1 = xn+2,

q3n+3 = a3n+3q3n+2 + q3n+1

=
(−1 + 1 + αn+2xn+2

xn+1
− 1
)
xn+2 +

xn+2

xn+1
+ 1 =

xn+3

xn+2
− xn+2 + 1,

q3n+4 = a3n+4q3n+3 + q3n+2

= 1
(xn+3

xn+2
− xn+2 + 1

)
+ xn+2 =

xn+3

xn+2
+ 1.

Now, let us prove (7) by induction. For N = 2, (7) becomes

S2 =
1

x1
− 1

x2
= [a0; a1, a2],
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which follows easily from the equalities a0 = 0, a1 = 1, a2 = x2− 1. For the
induction step, let us use (6), which allows us to write

[a0; a1, a2, . . . , a3N−4] = a0 +
1

q1
− 1

q1q2
+

1

q2q3
+ · · ·+ (−1)3N−5

q3N−5q3N−4

and the corresponding expression for [a0; a1, a2, . . . , a3N−1]. Then, we only
need to check that

1

xN+1
=

1

q3N−4q3N−3
− 1

q3N−3q3N−2
+

1

q3N−2q3N−1
.

According to (10), we have

1

q3N−4q3N−3
− 1

q3N−3q3N−2
+

1

q3N−2q3N−1

=
1

xN+1 − x2N + xN
−

x2N
(xN+1 − x2N + xN )(xN+1 + xN )

+
xN

(xN+1 + xN )xN+1

=
xN+1(xN+1 + xN )− x2NxN+1 + xN (xN+1 − x2N + xN )

(xN+1 − x2N + xN )(xN+1 + xN )xN+1

=
xN+1(xN+1 − x2N + xN ) + xN (xN+1 − x2N + xN )

(xN+1 − x2N + xN )(xN+1 + xN )xN+1
=

1

xN+1
,

and the proof is complete.

3. Proof of Theorem 2

The transcendence of (9) is due to the large rate of growth of the se-
quence (xn). The analysis of the increasing of (xn) is already done in [3, 4],
but we repeat it here for the sake of completeness. By definition, αn ≥ 1,
so that

(11) xn+1 = (1 + αnxn)x2n/xn−1 > x3n/xn−1 ≥ x2n, n ≥ 1.

This rate of growth is not enough for our purposes, but this result can be

easily improved. Let us write (11) as xn−1 ≤ x
1/2
n , and use it in xn+1 >

x3n/xn−1. In this way, we obtain

(12) xn+1 > x3n/xn−1 ≥ x2+1/2
n , n ≥ 1.

Roth’s theorem (1955, [8, 1]). Let ξ be an irrational algebraic number.
Then, for any arbitrary fixed ε > 0, there are only finitely many rational
approximations p/q (we assume q > 0) for which∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
.

Now, Theorem 2 follows immediately from Leibnitz’s error estimate for
the truncation of alternating series, (12), and Roth’s theorem:∣∣∣∣∣∣

∞∑
j=1

(−1)j+1

xj
− p3n−1
q3n−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

j=n+2

(−1)j+1

xj

∣∣∣∣∣∣ < 1

xn+2
<

1

x
2+1/2
n+1

=
1

q
2+1/2
3n−1

.
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