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Abstract. We define a convolution-like operator which transforms functions on
a space X via functions on an arithmetical semigroup S, when there is an ac-
tion or flow of S on X. This operator includes the well-known classical Möbius
transforms and associated inversion formulas as special cases. It is defined in a
sufficiently general context so as to emphasize the universal and functorial aspects
of arithmetical Möbius inversion. We give general analytic conditions guarantee-
ing the existence of the transform and the validity of the corresponding inversion
formulas, in terms of operators on certain function spaces. A number of examples
are studied that illustrate the advantages of the convolutional point of view for
obtaining new inversion formulas.

1. Introduction

Few subjects in number theory seem as prone to rediscovery and reinvention as
that of Möbius inversion. A survey of the literature will convince one not only of
the ubiquitousness but also of the multiplicity of “Möbius inversion formulas”, and
that without considering the more exotic generalizations of Dirichlet convolution,
or venturing into less number-theoretical realms such as combinatorics or poset
theory and incidence algebras. Recently, there has also been increased interest from
physicists, resulting in formulas new and old (see for example [9, 10, 15, 21]).

An instructive historical survey of the original work of Möbius, as well as Cheby-
shev and Cesàro, is [2]. Möbius’ original inversion formula is not the one inverting
finite divisor sums, but rather infinite sums

∑
n anf(xn) transforming a power se-

ries f (see [17] and our Example 9). Many of these “Möbius transforms” are for-
mal or finite series. The most widely known are series of the form

∑
n anf(nx) or∑

n anf(x/n) ([13, § 16.5, Th. 270] or [20, § 20]). One of the more famous analytic
ones is that introduced by Riemann to approximate π(x), the number of primes less
than or equal to x: π(x) ≈ R(x) =

∑∞
n=1

µ(n)
n Li(x1/n). These classical transforms

involve multiplicative convolution on N, but the range of arithmetical functions can
be any commutative ring. For instance, Möbius inversion in Q[z] yields the expres-
sion

∏
n|m(zn − 1)µ(m/n) for the mth cyclotomic polynomial. More recently, in [15]

we find
∑∞

n=1 f(nax) with a ∈ R. The corresponding inversion formula is called
“Chen’s modified Möbius inversion formula” and is applied in physics.

Clearly a transform of the form
∑∞

n=1 anf(ϕ(n, x)) is in the offing. Furthermore,
what makes inversion work is that these ϕ satisfy ϕ(n, ϕ(m,x)) = ϕ(nm, x), namely,
they involve an action or “flow” of N, in the sense of dynamical systems. This very
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type of general transform and its inversion formula goes back to Cesàro [5], for
N-flows on R and ignoring questions of convergence. The result, implicit in the
multitude of classical inversion formulas, is not explicitly named, and has been re-
discovered in [3], independently by the second author, and quite probably by others.
Cesàro’s insight, coming long before the development of the theory of arithmeti-
cal dynamical systems, was neglected. Such generality was not needed in light of
the predominance in elementary and analytic number theory of the four “standard”
flows nx, x/n, xn, x1/n, corresponding to the basic arithmetic operations, although
they are not the only ones. In fact, these four are conjugate (see Example 1), which
already suggests the classification problem for arithmetical flows.

Given that the most widely used inversion formulas are all special cases, and that
it is no more difficult to prove the general formula than a given particular one, at
least for finite sums, it seems logical to merely cite which flow we are using in a given
situation, rather that list a number of separate inversion formulas (see for instance
[1, 13, 20]). If nothing else, one gains economy of resources.

In this paper we hope to show the usefulness of the dynamical point of view in
elucidating the universal or functorial nature of Möbius inversion (see for instance
Examples 2, 8 and 11). We study inversion formulas derived from flows on general
arithmetical semigroups S, showing how the interaction of analytic, algebraic and
dynamical considerations unifies and simplifies disparate results, providing general
conditions for the validity of inversion formulas and incorporating examples that
at first sight do not quite seem to fit into the framework (e.g. Example 7), and
illustrating the use of convolutional algebraic methods in interesting special cases
(Examples 5, 6, 8, 9, or 10).

Our chief aim is to make explicit and create awareness of the role that semigroup
flows have been implicitly playing in inversion formulas since the very beginning.
We wish to focus attention on those ideas closest to analytic number theory, hence
our choice of arithmetical semigroups, though generalizations will be suggested by
our results. We do this both for the sake of brevity and because there are already
enough compelling examples in the field.

We shall begin by defining the general setting we work in, and proceed to study the
main analytical tool in the theory of Möbius transforms, which is a convolution-like
action of arithmetical functions on certain function spaces. For N and finite series,
this point of view is introduced, e.g., in [1]. We study the technical conditions
required for its extension to convergent series. Algebraically, the formulation of the
inversion principle is essentially functorial and hence allows for great generality. We
may vary the underlying semigroup as well as the space the flow acts on, the range of
arithmetical functions and the function spaces the inversion formulas apply to. One
should keep in mind that the general principle of Möbius inversion is the structure of
the Dirichlet convolution algebra of arithmetical functions, which is a ring of formal
power series ([4, 16]). The less studied aspect in this theory up to now has been the
dynamical ingredient of the flow, whose role we will attempt to point out both in
the general results and in our examples. No doubt this is the area where the most
work remains to be done.

2. Definitions

In order to produce more general inversion formulas without straying too far
from the spirit of the original classical number-theoretic ones, we will work with
semigroups that preserve the essence of N yet allow enough generality that they cover
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examples essentially unrelated to it. This is provided by the concept of arithmetical
semigroup, whose definition we now recall.

Definition 1. An arithmetical semigroup is a commutative semigroup S such that
(1) S has a neutral element, 1S (so one could call it an arithmetical monoid,

although the term semigroup has prevailed).
(2) There is a finite or countably infinite subset P of primes such that S has

unique factorization with respect to P, i.e., every element n 6= 1S of S can
be written uniquely, up to reordering, in the form n = pe11 p

e2
2 · · · p

ek
k , where

the pi are distinct elements of P, and the ei are positive integers.
(3) There is a real-valued norm mapping N on S satisfying

(a) N(1S) = 1 and N(p) > 1 for p ∈ P,
(b) N(st) = N(s)N(t) for all s, t ∈ S,
(c) for each x > 0 there are only finitely many s ∈ S with N(s) ≤ x.

Remark 1. In particular, S must be finite or countably infinite. Also, note that d|n
implies N(d) ≤ N(n), and that the value semigroup N(S) is a discrete subsemigroup
of R∗ = R \ {0}, the multiplicative group of real numbers. It is also often useful
and convenient to consider an equivalent degree or dimension map ∂, rather than
the norm, related to it via exponentiation, N(s) = c∂(s) for a fixed c > 1. We then
require of ∂ that ∂(1S) = 0, ∂(p) > 0, ∂(st) = ∂(s) + ∂(t), and that there are only
finitely many s ∈ S of bounded degree.

Such semigroups provide a context for studying abstract analytic number theory:
e.g. the distribution of primes. (N, ·, 1) is the prototype. Other examples vary
from the number-theoretical, such as the Gaussian integers or Z[

√
2], each modulo

units or, more generally, the multiplicative semigroup of nonzero integral ideals in
a number field, to categorical ones, such as semisimple finite rings, compact simply
connected Lie groups, finite topological spaces and finite graphs. See [14] for the
development of this theory and ample references.

Next, we review the main facts about general Dirichlet convolution.
Fix a commutative ring R. An arithmetical function on S is a function α : S → R.

The set A = A(S,R) of R-valued arithmetical functions on S is a commutative R-
algebra with respect to pointwise sum and Dirichlet convolution, defined by (α ∗
β)(n) =

∑
ab=n α(a)β(b) (the finiteness condition on the norm function of S implies

this is a finite sum). The unit is the function δ(1S) = 1R, δ(s) = 0 if s 6= 1S . As
usual, we use A∗ to denote the set of invertible functions of A. The arithmetical
functions with finite support, i.e. f(s) = 0 except for finitely many s, form the
monoid ring R[S], which is a subalgebra of A.

The order function ord(α) = min{N(s) : α(s) 6= 0} for α 6= 0 and ord(0) =
∞ defines a complete non-Archimedean (submultiplicative) norm ‖α‖ = 1/ ord(α)
which is multiplicative if R is a domain. In fact, A is isomorphic to the power series
algebra over R in as many indeterminates as the cardinality of the set of primes P
in S. Additionally, if R is a unique factorization domain, so is A (see [4, 14, 16]).

As usual, an arithmetical function α is said to be multiplicative if α(nm) =
α(n)α(m) when n,m are coprime, and completely multiplicative if this holds for
every n,m ∈ S. The convolution of multiplicative functions is multiplicative. We
shall frequently use the fact that f ·(g∗h) = fg∗fh if f is completely multiplicative,
where · or juxtaposition denote the pointwise product.

An arithmetical function α is invertible with respect to ∗ if and only if α(1S) ∈ R∗
(units of R). Every nonzero multiplicative function satisfies α(1S) = 1R, hence is
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invertible. The Möbius function µ of an arithmetical semigroup is defined just as
for N in terms of prime decomposition. It is multiplicative, with 1 ∗ µ = µ ∗ 1 = δ
where 1 denotes the constant function with value 1R (from here on, we shall drop
subscripts and let the context make clear what structure we are referring to). If g
is invertible and f is completely multiplicative, then (fg)−1 = fg−1.

The dynamical aspect of inversion formulas is contained in the following

Definition 2. For a semigroup S and a nonempty set X, an S-flow on X or action
of S on X is a map ϕ : S ×X → X satisfying ϕ(m,ϕ(n, x)) = ϕ(mn, x). If S has a
unit 1 then we also require ϕ(1, x) = x (e.g. for S an arithmetical semigroup).

Let E(X) be the monoid of functions mapping X to itself, under composition.
Then a flow may be equivalently defined as a monoid homomorphism ϕ : S → E(X),
denoting the image of s ∈ S by ϕs. This is the transformational or representational
point of view. The relation between both is of course ϕs(x) = ϕ(s, x). We shall use
both notations.

If S is a topological semigroup and X is a topological space one also requires
joint continuity. In this case E(X) denotes the continuous self-mappings of X. Here
the countable semigroup S will be given the discrete topology and often X will be
merely a set on which we may also assume given the discrete topology.

Remark 2. Clearly, in an arithmetical semigroup S a flow is determined by the
action of the primes. In other words, a flow may also be regarded as a collection
{ϕp : p ∈ P} of commuting self-mappings of X, in addition to the trivial map ϕ1 = ι,
the identity. It will then be understood that ϕn for n ∈ S having the factorization
n =

∏r
i=1 p

ei
i , is the map obtained as the composition ϕn = ϕ◦e1p1

◦ · · · ◦ ϕ◦er
pr
.

Let us briefly recall the algebraic methods whereby flows may be transferred from
one semigroup and space to another, thus providing us with standard ways of both
generating new examples from given ones and also of classifying them.

If (S,X,ϕ) and (S, Y, ψ) are S-flows, a flow homomorphism is a map h : X → Y
such that h(ϕ(s, x)) = ψ(s, h(x)). In other words, h◦ϕs = ψs◦h for all s ∈ S. When
X,Y are topological spaces, continuity is also required. A flow isomorphism thus
establishes the conjugacy relation ψs = h ◦ ϕs ◦ h−1 between the maps ψs, ϕs. Con-
versely, this relation serves to transfer the flow from X to Y via a homeomorphism
h : X → Y .

If η : T → S is a semigroup homomorphism, then an S-flow on X may be pulled
back to a T -flow on X by defining (η∗ϕ)(t, x) = ϕ(η(t), x). Equivalently, viewing
the flow as a map ϕ : S → E(X), this is just the composition ϕ ◦ η.

We next turn to the context we wish to formulate inversion formulas in.
Let M be an R-module and consider the space of functions f : X →M . Now, in

order to be able to “do analysis”, which for our purpose means taking infinite sums,
we require (R, | · |) to be a complete valued ring, and (M, ‖ · ‖) a complete normed
R-module. In the case of finite sums we can just assume the discrete topologies.
The exact nature of M,R is not essential to the inversion principle. What we need
is that the definitions make sense and that convergence is good enough to justify
the exchange of sums involved in the proofs.

3. Generalized convolution with respect to a flow

We will generalize the method given in [1, § 2.14] to arithmetical semigroups and
incorporate an S-flow ϕ into the convolution operator.



MÖBIUS INVERSION FORMULAS FOR FLOWS OF ARITHMETIC SEMIGROUPS 5

Definition 3. Given an R-valued arithmetical function α on S, an S-flow ϕ on
X, and a function f : X → M , the ϕ-convolution of α and f is the function
α�ϕ f : X →M defined by

(α�ϕ f)(x) =
∑
n∈S

α(n)f(ϕ(n, x)) =
∑
n∈S

α(n)f(ϕn(x)), (1)

provided the series converges. We shall drop the subscript ϕ if the flow is fixed.

Dynamically, this involves summing f along the orbit of x under the flow ϕ. The
arithmetical function α often serves as a convergence factor. Hence, like all convo-
lutions, this too is a kind of “averaging” of the function. The algebraic justification
of the name “convolution” is given in Section 5, Example 2.

Summation over the arithmetical semigroup S means, by definition, taking the
limit of the finite partial sums

∑
n∈S,N(n)≤x as x → ∞. Note that for any function

f : X →M , we have

(δ � f)(x) =
∑
n∈S

δ(n)f(ϕ(n, x)) = 1 · f(ϕ(1, x)) = f(x).

Since we assume a complete valuation and norm, the criterion of absolute con-
vergence holds. This leads to the following considerations: given an R-valued arith-
metical function α on S, the valuation on R defines the real-valued non-negative
arithmetical function |α| on S by |α|(n) = |α(n)|. In general, let us call a real-
valued non-negative arithmetical function w a weight and denote the set of weights
by WS . It satisfies the following properties:

(1) It is closed under Dirichlet convolution.
(2) For any R-valued arithmetical functions α, β, we have |α ∗ β| ≤ |α| ∗ |β|.
(3) Given a weight w, we have w ∈ A(S,R)∗ if and only if w(1) > 0. Note

however, that w−1 ∈ WS if and only if w = kδ for some k > 0, where δ is
the (real-valued) delta function at 1.

(4) For w,w1, w2 ∈WS , if w1 ≤ w2, then w ∗ w1 ≤ w ∗ w2.
(5) If v, w ∈WS then v(1)w ≤ v ∗ w.

Definition 4. For a weight w, let Lϕ(X,w) denote the set of functions f : X →M
for which ∑

n∈S
w(n) ‖f(ϕ(n, x))‖ <∞ ∀x ∈ X.

Note that we do not require uniform convergence in x, although in practice this
may be more convenient. Absolute convergence states that α � f is defined for
f ∈ Lϕ(X, |α|). Clearly, for a given weight w, the space Lϕ(X,w) is an R-submodule
of the set of all functions f : X →M , and the comparison test holds: if w1, w2 ∈WS

with w1 ≤ w2, then Lϕ(X,w2) ⊆ Lϕ(X,w1). Furthermore, if ϕ : S → E(X) is an
S-flow on X, τ : X → Y is a homeomorphism, and ψ : S → E(Y ) is the S-flow on
Y conjugate to ϕ under τ , then f ∈ Lϕ(X,w) if and only if f ◦ τ−1 ∈ Lψ(Y,w).

The following lemma is useful as a criterion for determining the order of growth
of ϕ-convolutions. Note its resemblance to a cancellation property.

Lemma 1. Let α ∈ A(S,R) and v, w ∈ WS, with |α| ≤ w. If f ∈ Lϕ(X,w) ∩
Lϕ(X,w ∗ v), then g = α�ϕ f ∈ Lϕ(X, v).
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Proof. Clearly g = α � f is defined and satisfies ‖g(y)‖ ≤
∑

n∈S w(n) ‖f(ϕ(n, y))‖.
Since all summands are positive, we may reorder:∑

m∈S
v(m) ‖g(ϕ(m,x))‖ ≤

∑
m∈S

v(m)
∑
n∈S

w(n) ‖f(ϕ(n, ϕ(m,x)))‖

=
∑
m,n∈S

v(m)w(n) ‖f(ϕ(nm, x))‖

=
∑
l∈S

∑
mn=l

v(m)w(n) ‖f(ϕ(l, x))‖

=
∑
l∈S

(w ∗ v)(l) ‖f(ϕ(l, x))‖ <∞. �

Removing the absolute values we get the following “mixed associative property”
of Dirichlet and ϕ-convolution, which forms the basis of the inversion principle.

Theorem 1. Let α, β ∈ A and f : X → M . If f ∈ Lϕ(X, |β|) ∩ Lϕ(X, |α| ∗ |β|),
then f ∈ Lϕ(X, |α ∗ β|) and β � f ∈ Lϕ(X, |α|), with

α� (β � f) = (α ∗ β)� f.

Proof. Let us check first that all parts of this equation are defined. Since |α ∗ β| ≤
|α| ∗ |β|, we have f ∈ Lϕ(X, |α ∗β|) and hence the convolution (α ∗β)� f is defined.
Next, since f ∈ Lϕ(X, |β|), the convolution β � f is defined and, by Lemma 1,
β � f ∈ Lϕ(X, |α|) so that α� (β � f) is defined. That they are equal follows from
reordering just as in the lemma:

(α� (β � f))(x) =
∑
n∈S

α(n)(β � f)(ϕn(x)) =
∑
n∈S

α(n)
∑
m∈S

β(m)f(ϕm(ϕn(x)))

=
∑
n,m∈S

α(n)β(m)f(ϕmn(x)) =
∑
l∈S

(∑
mn=l

α(n)β(m)
)
f(ϕl(x))

=
∑
l∈S

(α ∗ β)(l)f(ϕl(x)) = ((α ∗ β)� f)(x).

The reordering is justified by the absolute convergence of the intermediate double
sum: ∑

n,m∈S
|α(n)β(m)| ‖f(ϕnm(x))‖ =

∑
l∈S

∑
nm=l

|α(n)| |β(m)| ‖f(ϕl(x))‖

=
∑
l∈S

(|α| ∗ |β|)(l) ‖f(ϕl(x))‖ <∞. �

Remark 3. Note that it is necessary to assume hypotheses that imply β � f is
defined. Taking α = 0 would make the double sum trivially convergent regardless
of whether the series defining β � f converged or not.

Given that f ∈ Lϕ(X, |β|), the convergence of the double sum, i.e., the condition
f ∈ Lϕ(X, |α| ∗ |β|), implies by Lemma 1 that β � f ∈ Lϕ(X, |α|), and hence the
first two equalities in the above proof hold.

Remark 4. If we denote the transform by Tαf = α� f , then Theorem 1 says that
TαTβ = Tα∗β on appropriate functions. Clearly also Tα + Tβ = Tα+β. Thus, T
represents the ring A(S,R) in spaces of functions X →M .

Next, let us discuss inversion.
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Theorem 2. Let α ∈ A(S,R)∗ have inverse α−1. If f ∈ Lϕ(X, |α|) ∩ Lϕ(X, |α| ∗
|α−1|), then g = α � f ∈ Lϕ(X, |α−1|) and f = α−1 � g. Conversely, if g ∈
Lϕ(X, |α−1|) ∩ Lϕ(X, |α| ∗ |α−1|), then f = α−1 � g ∈ Lϕ(X, |α|) and g = α� f .

Proof. Immediate from Theorem 1. �

The following special case is the general Möbius inversion formula for a flow.

Theorem 3. Let α ∈ A(S,R) be nonzero and completely multiplicative, and ϕ an
S-flow on X. Let d be the divisor function on the arithmetical semigroup S. If
f ∈ Lϕ(X, d|α|), then the transform

g(x) =
∑
n∈S

α(n)f(ϕ(n, x)) (2)

is defined, and the inversion formula

f(x) =
∑
n∈S

µ(n)α(n)g(ϕ(n, x)) (3)

holds. Conversely, if g ∈ Lϕ(X, d|α|), then (3) is defined and (2) holds.

Proof. Since α is completely multiplicative, α−1 = µα. Now, |α| is completely
multiplicative and non-negative, hence

|α| ∗ |α−1| = |α| ∗ |µ||α| = |α|(|1| ∗ |µ|) = |α|2ω ≤ |α|d,
where ω(n) counts the number of distinct prime factors of n. Thus

|α−1| = |µ| |α| ≤ |α| ≤ |α|2ω = |α| ∗ |α−1| ≤ d|α|
and therefore

Lϕ(X, d|α|) ⊆ Lϕ(X, |α| ∗ |α−1|) ⊆ Lϕ(X, |α|) ⊆ Lϕ(X, |α−1|).
The result now follows from Theorem 2. �

A straightforward modification of the proof in [13, § 18.1] shows that in any arith-
metical semigroup, d(n) = O(N(n)δ) for every δ > 0. Given the irregular variation
of d, it is more practical to try to determine convergence by weighing against the
norm function. Thus, when studying the “α-Möbius transform” of Theorem 3, we
might consider one of the subspaces Lϕ(X, |α|Nδ) ⊆ Lϕ(X, d|α|) with δ > 0. The
functions in Lϕ(X, |α|Nδ) are such that when weighted by α, they decay “at infinity”
along the flow as the −δth power of the norm:

∃ cδ(x) > 0 : |α(n)| ‖f(ϕ(n, x))‖ ≤ cδ(x)
N(n)δ

∀x ∈ X, n ∈ S,

where cδ(x) is independent of n ∈ S. As remarked before, we do not require unifor-
mity in x. The next result estimates the growth of the Möbius transform.

Theorem 4. If α ∈ A is a nonzero completely multiplicative arithmetical function
and f ∈ Lϕ(X, |α|N2δ) for some δ > 0, then both α � f and α−1 � f are defined
and belong to Lϕ(X, |α|Nδ).

Proof. First note that since |α−1| = |µα| ≤ |α|, we have

Lϕ(X, |α|) ∩ Lϕ(X, |α| ∗ w) ⊆ Lϕ(X, |α−1|) ∩ Lϕ(X, |α−1| ∗ w)

for any weight w ∈WS . This inclusion and Lemma 1 imply that for f ∈ Lϕ(X, |α|)∩
Lϕ(X, |α| ∗ w), both α� f and α−1 � f are defined and belong to Lϕ(X,w). Since
Lϕ(X, |α|N2δ) ⊆ Lϕ(X, d|α|) ⊆ Lϕ(X, |α|), it suffices to show that Lϕ(X, |α|N2δ) ⊆
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Lϕ(X, |α| ∗ |α|Nδ) for any δ > 0. Now, |α| ∗ |α|Nδ = |α|(1 ∗Nδ), so the inclusion
follows from the estimate (1 ∗Nδ)(n) =

∑
m|n N(m)δ ≤ d(n)N(n)δ ≤ cδN(n)2δ. �

Next, consider the space

Lϕ(X, |α|) =
⋂
δ>0

Lϕ(X, |α|Nδ).

These functions decay at infinity along the flow, faster than any power of the norm.
For most “interesting” arithmetical semigroups, including the classical number-
theoretic ones, we have

∑
n∈S N(n)−k < ∞ for k � 0. This condition implies that

Lϕ(X, |α|) is in fact equal to the space of functions with such decay. Theorem 4
immediately implies the following result:

Corollary 5. If α ∈ A is nonzero and completely multiplicative and f ∈ Lϕ(X, |α|),
then both α� f and α−1 � f are defined and again belong to Lϕ(X, |α|).

In other words, Lϕ(X, |α|) is closed under both the α-Möbius transform and the
α−1-Möbius transform. This is analogous to what happens with the classical Fourier
transform and the space of rapidly decreasing functions.

Remark 5. If X is a topological space, we may consider functions f : X → M
whose support Z is such that for each x ∈ X there are only finitely many n ∈ S
with ϕ(n, x) ∈ Z. Equivalently, the point ϕn(x) of the orbit of x escapes Z as
N(n)→∞. Thus there is a bound ν(x) such that N(n) > ν(x) implies ϕn(x) /∈ Z,
and then the sum defining the convolution α � f is finite:

∑
n∈S α(n) f(ϕn(x)) =∑

N(n)≤ν(x) α(n) f(ϕn(x)). Such a finiteness condition will be satisfied for functions
with compact support if for fixed x ∈ X, the point ϕn(x) “escapes to infinity”, i.e.,
escapes any fixed compact set, as N(n)→∞. This is satisfied for the flows x/n and
nx on (0,+∞). In fact, in these examples, compact support is stronger than what
is needed.

4. Sums Over Primes

The transform Tαf = α � f involves summation over all elements n ∈ S. We
might ask what can be said about the operator

Pαf(x) =
∑
p∈P

α(p) f(ϕ(p, x)). (4)

A moment’s thought shows it is not invertible. However, a function α : P → R
has a unique extension to a completely multiplicative function on S, which we may
continue to denote by α. Then the operator Pα is the same as Tαβ − I, where I is
the identity operator and β is the arithmetical function such that β(1) = 1, β(p) = 1
for primes p, and β(s) = 0 in all other cases. From this point of view, we can study
Pα by studying Tαβ = I + Pα.

On the other hand, Pα can also be studied in its own right, applying the tech-
niques of analytic functional calculus to obtain series expansions of Tαβ-transforms
in terms of the iterates of Pα, which we may call “P -expansions.” Namely, if
F (T ) =

∑∞
r=0 arT

r ∈ R[[T ]], then an operator F (Pα) will be defined on functions
f for which the r-fold iterates P rαf are defined and satisfy

∑∞
r=0 |ar|‖P rαf(x)‖ <∞.

On suitable functions, (FG)(Pα) = F (Pα)G(Pα), and thus if F ∈ R[[T ]]∗, with
G = 1/F , we will get an inversion relation

g = G(Pα)f ⇐⇒ f = F (Pα)g.
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Now by induction one formally has, for any arithmetical functions α1, . . . , αr,

Pα1Pα2 · · ·Pαrf(x) =
∑

(p1,p2,...,pr)∈Pr

α1(p1) · · ·αr(pr)f(ϕ(p1 · · · pr, x)) (5)

and therefore

P rαf(x) =
∑

(p1,p2,...,pr)∈Pr

α(p1) · · ·α(pr)f(ϕ(p1 · · · pr, x)). (6)

If α is completely multiplicative, then one may gather terms by the value of Ω(n),
the total number of prime factors of n, counted with multiplicity, to obtain

P rαf(x) =
∑

Ω(n)=r

B(n)α(n) f(ϕ(n, x)), (7)

where B(n) is the number of different decompositions of n into primes, counting
order. B(n) corresponds to the multinomial coefficient counting the number of
different vectors of length r = Ω(n) formed from k = ω(n) different objects (the
primes p dividing n), each appearing with a prescribed multiplicity, namely vp(n),
the valuation of n at p. One has

B(n) =
Ω(n)!∏
p∈P vp(n)!

=

(∑
p∈P vp(n)

)
!∏

p∈P vp(n)!
∈ [1,Ω(n)!]. (8)

Hence, for completely multiplicative α, we formally obtain

F (Pα)f =
∞∑
r=0

arP
r
αf =

∞∑
r=0

ar
∑

Ω(n)=r

B(n)α(n) f ◦ ϕn

=
∑
n∈S

aΩ(n)B(n)α(n) f ◦ ϕn = TaΩBαf,

(9)

which we may call the P -expansion of the convolution transform T . Let us briefly
consider the problem of convergence.

Lemma 2. Let w : S → [0,+∞) satisfy w(p1) · · ·w(pr) ≤ w(p1 · · · pr) for all primes
pi. Given α : S → R with |α| ≤ w, and f ∈ Lϕ(X,w), the series defining the iterates
P rαf(x) are absolutely convergent for all r ≥ 0 and we have the estimates

‖P rαf(x)‖ ≤
∑

Ω(n)=r

∑
(p1,...,pr)∈Pr

p1···pr=n

w(p1) · · ·w(pr) ‖f(φ(n, x))‖

≤
∑

Ω(n)=r

B(n)w(n) ‖f(ϕ(n, x))‖ ≤ r!
∑

Ω(n)=r

w(n) ‖f(ϕ(n, x))‖ <∞.

Proof. Induction on r. �

Examples of weights w satisfying the hypotheses of Lemma 2 include completely
multiplicative w, e.g. w = |α| for completely multiplicative α, but also functions
such as w(n) = B(n) or, over N, the function w(n) = 2n, which are far from being
completely multiplicative.
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Corollary 6. If α is completely multiplicative and f ∈ Lϕ(X,B|α|), then

(I − Pα)−1f(x) =
∞∑
r=0

P rαf(x) =
∑
n∈S

B(n)α(n)f(ϕn(x)) = TBαf(x),

(I + Pα)−1f(x) =
∞∑
r=0

(−1)rP rαf(x) =
∑
n∈S

(−1)Ω(n)B(n)α(n)f(ϕn(x))

= TBλαf(x),

(10)

where λ(n) = (−1)Ω(n) is the Liouville function.

Proof. Consider the operator F (Pα) corresponding to F (T ) = 1±T . Its inverse will
be G(Pα), given by the geometric series G(T ) =

∑∞
r=0(±T )r. If f ∈ Lϕ(X,B|α|),

then by Lemma 2, the iterates P rαf are all defined and satisfy
∑∞

r=0 ‖P rαf(x)‖ ≤∑
n∈S B(n)|α(n)| ‖f(ϕ(n, x))‖ < ∞. It is straightforward to check that this also

implies the absolute convergence of all the series involved in defining both g =
F (Pα)f = f ±Pαf as well as the inverse transform G(Pα)g, and guarantees that the
inversion formula f = G(Pα)g holds. In addition, if α is completely multiplicative,
the formal P -expansions (9) are true operator equalities. �

The Liouville function λ is completely multiplicative. The inversion relation given
by the functional calculus is equivalent to that for the transform T , namely

T−1
Bα = TB−1α = I − Pα, T−1

Bλα = TB−1λα = I + Pα.

We can deduce from the first relation that the inverse of B is B−1(1) = 1, B−1(p) =
−1 if p is prime and B−1(n) = 0 if n is composite, for example by applying the
formula in the case X = S with the product flow, to the delta functions δa for
a ∈ S (see below for a full description of the notation). This can also be proved
formally in A by expanding (δ − 1P)−1 in a geometric series, where 1P denotes the
characteristic function of the primes, revealing the arithmetical formula behind (10).
Thus B−1λ = B−1µ is the function we called β at the beginning of this section. Note
that Pα−1 = Pαµ = −Pα since µ = −1 on primes. Hence also TBλα = (I − Pαµ)−1

and TBα = (I + Pαµ)−1, with the corresponding P -expansions valid for the same f
since |αµ| ≤ |α|.

5. Applications

We now turn to a survey of interesting applications of inversion formulas, old
and new, from the point of view of flows on arithmetical semigroups S. Let us
establish some notation and review frequently used properties. ι will denote the
identity function in various contexts. For a ∈ S, δa is the delta function at a, that
is, δa(a) = 1 and δa(n) = 0 if n 6= a. We write δ = δ1, which is the convolution unit.
Recall that δa ∗ δb = δab (a 7→ δa embeds S in the monoid ring R[S]). In general
f ∗ δa(n) is 0 unless a|n, in which case it is f(n/a). For a subset A ⊆ S, 1A is the
characteristic function of A, that is, 1A = 1 on A and 1A = 0 on the complement
S \A. Thus δa = 1{a} and 1 = 1S . One has 1A ∗ δa = 1aA where aA = {ax : x ∈ A}.
For a ∈ S, let 〈a〉 = {ak : k ≥ 0} be the submonoid of S generated by a. By unique
factorization, 〈a〉 is infinite, isomorphic to Z+, for a 6= 1.
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Example 1 (The classical inversion formulas). The Möbius inversion formula most
often receiving that name is the relation g = 1 ∗ f , f = µ ∗ g in A(N, R):

g(m) =
∑
n|m

f(n) ⇐⇒ f(m) =
∑
n|m

µ(n)g
(m
n

)
. (11)

It may also be deduced from the case S = N, X = R+, ϕ(x, n) = x/n, α = 1 of (3),

g(x) =
∞∑
n=1

f
(x
n

)
⇐⇒ f(x) =

∞∑
n=1

µ(n)g
(x
n

)
. (12)

Remark 5 is relevant here. Since under the flow x/n, the orbit of any x > 0 has
limit 0, functions with support bounded away from 0 yield finite sums. Thus (11)
follows from (12) by restricting to functions on R+ with support in N.

As mentioned in the Introduction, the most commonly encountered N-flows on R
or R+, nx, x/n, xn, x1/n, are all conjugate. For example, nx and x/n are conjugate
via h(x) = 1/x and nx and xn are conjugate via h(x) = exp(x).

These examples may all be considered as variants of the action π of the semigroup
(R, ·, 1) on itself by multiplication, πa(x) = ax, pulled back to N by a completely
multiplicative arithmetical function α : N→ R and conjugated by a real function h,
resulting in the flow h(α(n)h−1(x)). Taking α(n) = nb for b ∈ R∗ results in the flow
nbx and its exponential conjugate xn

b
, which for b = 1,−1 comprise the classical

ones above.
Cesàro [6] noted similar variations of the flow on X = R given by ϕ(n, x) =

x + b logα(n), which is the logarithmic conjugate of the flow nbx pulled back by a
completely multiplicative function α. These do not form part of the usual repertoire
of classical inversion formulas.

Example 2 (Flows on arithmetical functions). If we give the commutative ring R
the trivial valuation, the ring A = A(S,R) of R-valued arithmetical functions on S
becomes a complete normed R-algebra, and we can take M = A as R-module. An
example of an S-flow on A is ϕs(f) = δs ∗ f. Thus if α ∈ A and Φ : A → A, we
have α�ϕ Φ : A→ A defined by (α�ϕ Φ)(g) =

∑
s∈S α(s) Φ(δs ∗ g). Convergence is

“formal”, with respect to the order function on A. Now, any function f ∈ A defines
a function f∗ : A→ A by f∗(g) = f ∗ g (this is the regular representation). Thus

(α�ϕ f∗)(g) =
∑
s∈S

α(s) f ∗ δs ∗ g =
(∑
s∈S

α(s) f ∗ δs
)
∗ g

and hence for functions f ∈ A, the ϕ-convolution restricts to the action α � f =∑
s∈S α(s) f ∗ δs, which is exactly α ∗ f , given that (f ∗ δs)(x) = 0 unless s|x, when

it is f(x/s). This justifies calling � a convolution operation, as well as generalizing
the comment made in Example 1.

Example 3 (Multiplicative inversion formulas). The multiplicative version of (11),
g(m) =

∏
n|m f(n) if and only if f(m) =

∏
n|m g(n)µ(m/n), makes sense in a “mul-

tiplicative” abelian group M considered as a Z-module. For example, in M = C∗
or, when computing the nth cyclotomic polynomial, in the multiplicative group
M = Q(z)∗, yielding Φm(z) =

∏
n|m(zn − 1)µ(m/n).

In general, using the exponential notation mr instead of the additive notation rm
for the R-module M will give us formulas involving infinite products of the form∏
n∈S f(ϕ(n, x))α(n). When there is an exponential map, such as for exp : C→ C∗,
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we can relate the convergence of such infinite products to infinite sums (see for
instance Möbius’ product expansion of the complex exponential in Example 9).

Example 4 (Iterative flows). Let β be a nonnegative completely additive function
(i.e. β(nm) = β(n) +β(m)), and h : X → X any function. Then the iterates of h by
β define a flow ϕ(n, x) = h◦β(n)(x). If h is invertible, we may drop the requirement
that β be nonnegative. Using Ω(n) we have ϕ1 = ι and ϕp = h for all primes p. Thus
this is the general type of prime-independent flow, where the functions ϕp do not
depend on p. The corresponding transform is (α� f)(x) =

∑
n∈S α(n) f(h◦Ω(n)(x)).

Such a sum, when absolutely convergent, may be grouped according to the value of
Ω(n), dividing it into other (infinite) sums, as in Section 4.

Example 5 (Dirichlet series). For R = C with the usual absolute value, taking
α(n) = N(n)−s (s ∈ C) in Theorem 3 gives parametric families of Dirichlet series
over the arithmetical semigroup S. If ∆ > 0 is such that

∑
n∈S N(n)−σ <∞ for σ >

∆, and f : X → C is such that |f(ϕ(n, x))| ≤ ck(x)N(n)k for some real k and ck(x) ≥
0, then the Dirichlet series Df (x, s) = (N−s� f)(x) =

∑
n∈S N(n)−s f(ϕ(n, x)) will

converge absolutely for Re(s) > k + ∆.
The well-known property that the pointwise product of the Dirichlet series of

two arithmetical functions is the Dirichlet series of their convolution generalizes as
follows: for f : X → M and a fixed x ∈ X, the map n 7→ f(ϕ(n, x)) defines an
arithmetical function fx : S →M . The ϕ-convolution of α with f is

(α� f)(x) = 〈α, fx〉

where 〈 , 〉 is the pairing between R and M -valued functions given by

〈 , 〉 : A(S,R)× A(S,M)→M, 〈α, f〉 =
∑
n∈S

α(n)f(n), (13)

defined whenever this sum is convergent. If M is a complete normed R-algebra with
product denoted by · and α : S → R is completely multiplicative, then for functions
f, g ∈ Lϕ(X, |α|) we have

(α� f)(x) · (α� g)(x) =
∑
n∈S

α(n)fx(n) ·
∑
m∈S

α(m)gx(m) =
∑
l∈S

α(l)(fx ∗ gx)(l)

where the right-hand side converges absolutely. Equivalently,

〈α, fx〉 · 〈α, gx〉 = 〈α, fx ∗ gx〉. (14)

When X = S and the flow is the action π of S on itself by left multiplication,
π(s, t) = st, then we are considering arithmetical functions f : S →M , and we have
fx(n) = f(nx), so that f1 = f and (14) at x = 1 reduces to 〈α, f〉 · 〈α, g〉 = 〈α, f ∗g〉.
For S = N, R = M = C and α(n) = n−s, we recover the classical property, which is
the source of many interesting identities involving the Riemann zeta function.

An example of inversion of such parametric Dirichlet series is the transform pair
g(x) =

∑
n≤x1/s n−s f(n−sx), f(x) =

∑
n≤x1/s µ(n)n−s g(n−sx) and its variants

using other completely multiplicative functions ([19, § 6.3, pp. 222–223]). A different
kind arises from the N-flow on X = [−1, 1] given by conjugating multiplication by the
cosine. One obtains the Chebyshev polynomials, ϕn(x) = cos(n arccosx) = Tn(x).
The transform pair

g(x) =
∞∑
n=1

n−sf(Tn(x)), f(x) =
∞∑
n=1

µ(n)n−sg(Tn(x))
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has been studied first, to our knowledge, in [11]. A simple condition guaranteeing
convergence for Re(s) > 1 is the boundedness of f and g. Chebyshev [8] himself
studied inversion of Fourier series, which we mention in Example 10.

Example 6 (One prime). If S = 〈p〉 = {pn : n ≥ 0}, it is isomorphic to (Z+,+, 0).
The ring of arithmetical functions A(S,R) is isomorphic to the ring of formal power
series R[[T ]], where α : S → R corresponds to F =

∑∞
n=0 α(pn)Tn. Thus Dirichlet

convolution in A is the standard Cauchy product of series, and α−1 corresponds
to 1/F . A flow is determined by choosing any function h : X → X and declaring
ϕp = h. Then ϕpn is the n-fold iterate of h, which we will denote by h◦n. The
inversion formula then is

g(x) =
∞∑
n=0

an f(h◦n(x)), f(x) =
∞∑
n=0

bn f(h◦n(x)) (15)

where
∑

n anT
n ·
∑

n bnT
n = 1. This is quite close to Möbius’ original idea (see

also Example 9). Furthermore, a completely multiplicative arithmetical function α
corresponds to a sequence of the form an = an, i.e. to the series F = (1 − aT )−1,
and since the Möbius function of S is µ(1) = 1, µ(p) = −1 and µ(pn) = 0 for
n > 1, inversion amounts to recovering f from g as a telescoping series: f(x) =
g(x)− ag(h(x)). For example, (11) in Z+, where the “divisors” of n are the integers
0 ≤ k ≤ n, is g(n) =

∑n
k=0 f(k), f(n) = g(n)− g(n− 1).

The case h(x) = bx for X = R and b 6= 0,±1, where h◦n(x) = bnx, is mentioned in
[15] as a special case of another formula. In general, h can have finite (compositional)
order m. The transform

∑
n anρ

nf(h◦n(x)) where |ρ| < 1, an is periodic of period
m, and h has order m, corresponds to a series of the form F = (1− ρmTm)−1P (T )
where P is a polynomial of degree less than m. If the mth roots of unity act on
X, the inversion formula for an = 1, h(x) = ωx, where ωm = 1, is equivalent to
g(x) =

∑m−1
n=0 ρ

nf(ωnx) and f(x) = (1− ρm)−1 (g(x)− ρg(ωx)) .
These convolutions have long been used to generate “pathological” functions. For

example, f(x) =
∑∞

n=1 b
n cos(πanx) is Weierstrass’ nowhere differentiable function.

Similarly, h(x) = xb, when this makes sense in X, gives h◦n(x) = xb
n
. For X = C

the transform g(z) =
∑∞

n=0 f(z2n
), f(z) = g(z)−g(z2) for f(z) = z is familiar as an

example of a power series whose natural boundary is the unit circle. What makes
both these examples work are the density of orbits under the flow.

For any finite or countable set P of primes, we have the analogous interpretation
with formal power series in the same number of indeterminates. Classifying flows
is more complicated since each prime can act via a different self-map of X, as long
as they commute. Nevertheless, this interpretation provides a universal algebraic
model of Möbius inversion (see also Examples 8 and 11).

Example 7 (The Iseki and Tatuzawa inversion formula). The following inversion
formula due to K. Iseki and T. Tatuzawa, is used to prove Selberg’s asymptotic
formula, which is a central point in the Erdős-Selberg elementary proof of the prime
number theorem ([7, Ch. 1, p. 3] or [1, § 4.11, Th. 4.17]):

g(x) =
∑
n≤x

f
(x
n

)
log(x) =⇒ f(x) log(x) +

∑
n≤x

f
(x
n

)
Λ(n) =

∑
n≤x

µ(n)g
(x
n

)
where supp(f) ⊆ [1,+∞) and Λ(n) =

∑
d|n µ(d) log n

d = µ ∗ log(n). Theorem 1
provides a quick proof of this. Simply observe that for the N-flow ϕ(n, x) = x/n on
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R+ we have g = log�f + 1� (log ·f), where · denotes the pointwise product. Then

µ� g = µ� (log�f) + µ� (1� (log ·f)) = (µ ∗ log)� f + (µ ∗ 1)� (log ·f)

= Λ� f + δ � (log ·f) = Λ� f + log ·f,

which is the Iseki-Tatuzawa formula.

Example 8 (Direct sums). The finite or countably infinite algebraic direct sum
of arithmetical semigroups is again an arithmetical semigroup. Indeed, let {Si}∞i=1
be a family of arithmetical semigroups, where Si has unit 1i, primes Pi, norm Ni

and degree map ∂i. Identify S =
⊕

i Si with the space of sequences s = (si) such
that si = 1i for all i � 0. Define the primes P of S to be the sequences s such
that for some j, sj = pj ∈ Pj and si = 1i for all i 6= j. Then it is easy to check
that S has unique factorization into primes. Furthermore, if δi = minpi∈Pi ∂i(pi)
then ∂(s) =

∑∞
i=1 iδ

−1
i ∂i(si) defines a degree map on S as in the remark following

Definition 1. Note that in the simpler case of finite direct sums, equivalent with direct
products, one can take as norm N on S the product of the norms N(s) =

∏
i Ni(si).

Regarding Si as embedded in S, the different Si are coprime. Thus, a multiplica-
tive (respectively, completely multiplicative) arithmetical function α : S → R is a
product of the form α(s) =

∏
i αi(si), where αi : Si → R is multiplicative (com-

pletely multiplicative). In particular, the Möbius function µ of S is µ(s) =
∏
i µi(si),

where µi is the Möbius function of Si. For arithmetical functions which are products,
α =

∏
i αi, β =

∏
i βi, one can easily check that α ∗ β =

∏
i(αi ∗ βi).

Similarly, the coprimality of the Si in S implies that an S-flow ϕ on X is of the
form ϕs = ϕ

(1)
s1 ◦ ϕ

(2)
s2 ◦ · · · ◦ ϕ

(i)
si ◦ · · · , where ϕ(i) is an Si-flow on X, and the self-

mappings ϕ(i)
si commute for all i, si. The composition is finite since ϕ(i)

si = ϕ
(i)
1i

is the
identity for i� 0. We shall say that ϕ is the direct sum of the flows ϕ(i) and write
ϕ = ⊕iϕ(i).

Given an arithmetical semigroup S and an S-flow ϕ on S, on the finite direct
product Sr we have the direct product flow ϕ×r = ϕ × · · · × ϕ of r copies of ϕ.
If {αi}ri=1 is a collection of arithmetical functions on S, their product

∏
i αi is an

arithmetical function on Sr and one has, gathering by product s1 · · · sr = s,

r∏
i=1

αi �ϕ×r f = (α1 ∗ · · · ∗ αr)�ϕ f. (16)

Extending this to countably infinite sums requires defining convolutions ∗∞i=1αi.
Whereas the product

∏∞
i=1 αi(si) is actually finite for s = (si)∞i=1, the sums defin-

ing such infinite convolutions are infinite since there are infinitely many (si) whose
product is a given s. Apart from this added difficulty, needing extra convergence
hypotheses, (16) extends to the countable case.

An example of an inversion formula arising from the direct product N × N is
the transform pair g(x) =

∑∞
m,n=1 f(nαmβx), f(x) =

∑∞
m,n=1 µ(m)µ(n) g(nαmβx),

where α, β > 0. This is found in [21] along with many other such formulas which
fit into our framework, providing examples where one needs to consider different
semigroups (in this case direct products) in order to properly understand them.

As an illustration of the methods we have described, let us show how to derive
formulas (8)–(13) in [21] (denoted here by (viii)–(xiii), respectively). They use the
product flow ϕ(n, x) = nx, and are all of the type in (16), namely, they “collapse”
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to the one-variable case:

g(x) =
∞∑
n=1

(−1)n+1f(nx), f(x) =
∞∑
k=1

∞∑
r=1

µ(k)2r−1g(2r−1kx); (viii)

f(x) =
∞∑
n=1

∞∑
m=1

∞∑
k=0

µ(n)(−1)m+12kf(2kmnx); (ix)

g(x) =
∞∑
k=0

f(2kx), f(x) =
∞∑
n=1

∞∑
m=1

µ(n)(−1)m+1 1
mn

g(mnx); (x)

f(x) =
∞∑
n=1

µ(n)
n

g(nx), g(x) =
∞∑
m=1

∞∑
k=0

(−1)m+1 1
m
f(2kmx); (xi)

g(x) =
∞∑
k=0

2kf(2kx), f(x) =
∞∑
n=1

∞∑
m=1

µ(n)(−1)m+1g(mnx); (xii)

f(x) =
∞∑
n=1

µ(n)g(nx), g(x) =
∞∑
m=1

∞∑
k=0

(−1)m+12kf(2kmx). (xiii)

We begin by listing some convolutional identities satisfied by ε(n) = (−1)n+1 (with
notation as declared at the beginning of this section). First, ε = 1 − 2 · 12N =
1 ∗ (δ − 2δ2) so that ε−1 = µ ∗ (δ − 2δ2)−1. Expanding in a geometric series shows
(δ − 2δ2)−1 =

∑∞
`=0 2`δ∗`2 =

∑∞
`=0 2`δ2` = ι · 1〈2〉. Hence ε−1 = µ ∗ ι1〈2〉. Now,

for any arithmetical function f , and n = 2rk with r ≥ 0 and k odd, we have
f ∗(δ−2δ2)(n) = f(n) if n is odd and f(n)−2f(n/2) if n is even, and (f ∗ι1〈2〉)(n) =∑r

s=0 2r−sf(2sk). From these observations we deduce that ε−1(n) = µ(n) if n is odd
and 2r−1µ(n) if n is even, and any number of similar relations. One we shall need
later is ι ∗ ε(n) = (σ ∗ (δ − 2δ2))(n) = σ(n) − 2σ(n/2) = σ(k). Similar ones include
(1 ∗ ε)(n) = (1− r)d(k) and (ι ∗ ε−1)(n) = φ(n) for odd n and (r + 2)φ(n) for even
n, where φ is Euler’s function.

Let us see how the formulas all follow from the relation ε ∗ µ ∗ ι1〈2〉 = δ. In
our notation, (viii) says g = ε � f , and by (16), f = (µ ∗ ι1〈2〉) � g. (ix) states
(ε∗µ∗ι1〈2〉)�f = δ�f = f . (x) says g = 1〈2〉�f and by (16), f = ((µ∗ε)·(1/ι))�g.
This follows from ((µ ∗ ε) · (1/ι))−1 = (δ− 2δ2)−1 · (1/ι) = ι1〈2〉 · (1/ι) = 1〈2〉. In this
case also f(x) = g(x)− g(2x) as in Example 6, or directly from µ ∗ ε = δ− 2δ2. (xi)
is g(x) =

∑
m

∑
n(ε(m)/m) · 1〈2〉(n)f(mnx), so by (16), g = ((ε/ι) ∗ 1〈2〉) � f and

the formula follows from ((ε/ι) ∗ 1〈2〉)−1 = ((ε ∗ ι1〈2〉)/ι)−1 = (ε ∗ ι1〈2〉)−1/ι = µ/ι.
(xii) says g = ι1〈2〉 � f and by (16), f = (µ ∗ ε)� g. Finally, (xiii) is f = µ� g and
by (16), g = (ε ∗ ι1〈2〉)� f .

Example 9 (Formal Power Series). Let R be any commutative domain, with the
trivial valuation, M = R[[x]] the algebra of formal power series over R, which is
complete with respect to the norm ‖F‖ = e− ordx(F ), and X = m the maximal ideal,
m = xM . As in Example 2, a series F ∈ M may be identified with a function
F∗ : X = m → M , in this case given by formal composition: F∗(Φ) = F (Φ) for
Φ ∈ m. A special class of N-flows ϕ on m are those given for primes p by ϕp = Φp∗
for commuting series Φp ∈ m. For example, the exponential flow ϕn(Ψ) = Ψn is
given by Φp = xp and the product flow ϕn(Ψ) = nΨ is given by Φp = px. We
can then use the identification of series with functions to define the generalized
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convolution of α : N→ R and F ∈M ; namely, as a function on m, it is

(α� F∗)(Ψ) =
∞∑
n=1

α(n)F∗(ϕn(Ψ)) =
∞∑
n=1

α(n) (F (Φn))∗(Ψ) (Ψ ∈ m),

which is the function corresponding to the formal power series
∑∞

n=1 α(n)F (Φn),
assuming this converges in the formal topology, which essentially means either
α(n) = 0 for all n� 0 or F ∈ m and Φn → 0, as is the case for the exponential flow.
Thus one can consider the relation G(x) =

∑∞
n=1 α(n)F (xn) as G = α� F .

A nice application, from Möbius’ original paper [17], is the inversion of the loga-
rithm over C, − log(1−z) =

∑∞
n=1 n

−1zn to obtain z = −
∑∞

n=1 n
−1µ(n) log(1−zn).

Exponentiating yields ez =
∏∞
n=1(1−zn)−µ(n)/n. These are all convergent for |z| < 1.

Substituting z = p−s, where p is prime and Re(s) > 1, gives ep
−s

=
∏∞
n=1(1 −

p−ns)−µ(n)/n. Using the product expansion of the Riemann zeta function and taking
logarithms then gives a formula for the “prime zeta function” due to Glaisher:∑

p

1
ps

=
∞∑
n=1

µ(n)
n

log ζ(ns) (Re s > 1).

Another useful example is the theory of Lambert series. Here we consider L =
x

1−x =
∑∞

n=1 x
n, thus L = 1� I, where now I denotes the identity series I(x) = x.

The Lambert series of α is
∑∞

n=1 α(n)L(xn), which is precisely the convolution
α� L with respect to the exponential flow. We shall denote Ln = L(xn). The basic
relationship expressing a Lambert series in powers of x, namely, identities of the form
α�L = β� I, is succinctly given by Theorem 1 as α� (1� I) = (α∗1)� I = β� I,
equivalent to α ∗ 1 = β, the standard relation.

Let us show how Theorem 1 gives quick unified proofs of some elliptic function
identities (in Lambert series form) used to derive Jacobi’s formulas on representa-
tions as sums of four squares. We have the pair of identities, due to Ramanujan
([12, § 3.7 and 3.8] or [13, § 20.11–12]):

∞∑
n=1

Ln(1 + Ln) =
∞∑
n=1

nLn,

∞∑
n=1

(−1)n+1Ln(1 + Ln) =
∞∑
n=1

(2n− 1)L2n−1.

Since L(1 + L) = ι � I, the first identity follows from 1 � (ι � I) = (1 ∗ ι) � I =
ι� (1� I) = ι�L. The second states that ε� (ι� I) = ιχ�L where ε(n) = (−1)n+1

and χ is the Dirichlet character modulo 2, i.e. the characteristic function of the odd
positive integers. This is equivalent to ε ∗ ι = ιχ ∗ 1. The right hand side evaluated
at n is obviously the sum of the odd divisors of n, which we denote by σ′(n). In
Example 8, we proved that the left hand side is also equal to σ′. Similarly, Jacobi’s
identity ([12, § 3.7 and 3.8])

∞∑
n=1

nxn

1 + (−x)n
=

∑
n6≡0 mod 4

nLn

can be proved by setting L∗ = x(1 + x)−1 = ε � I. The left side is ιχ � L + ι(1 −
χ)� L∗ = (ιχ ∗ 1 + (ι− ιχ) ∗ ε)� I and since ε = 2χ− 1 and ε ∗ ι = ιχ ∗ 1 = σ′, this
reduces to (3σ′−2χσ)� I. The right hand side is α�L = (α∗1)� I for α(n) = 0 if
4|n and 1 otherwise. Thus (α ∗ 1)(n) is the sum of the divisors of n not divisible by
4, which we denote by σ′′. Jacobi’s identity then reduces to 3σ′ − 2χσ = σ′′, which
is easily verified by considering odd and even n separately.
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Example 10 (Möbius Inversion of Fourier Series). Let S = N, R = M = C and X =
R/Z, represented by [0, 1]. Let e(x) = e2πix. The Fourier series of an arithmetical
function α : N → C is α̂ = α � e where the flow is ϕ(n, x) = nx. However, the
natural setting for Fourier series is the additive semigroup Z+, since ex(n) = e(nx)
satisfies ex(n+m) = ex(n)ex(m) and, in the notation of Example 5, α̂(x) = 〈ex, α0〉,
hence by (14), α̂ · β̂ = α̂~ β where ~ denotes convolution on Z+, (α ~ β)(n) =∑

l+m=n α(l)β(m). One can also extend this to the additive group Z, i.e. α, β can be
“doubly infinite” sequences Z→ C, but then care must be taken with convergence,
as Z is no longer an arithmetical semigroup and the sum defining the convolution
is infinite. The interplay between the multiplicative and additive structures on N is
expressed by Theorem 1, which says in this case that

α� β̂ = α� (β � e) = (α ∗ β)� e = α̂ ∗ β

where ∗ continues to denote multiplicative convolution. Thus δ̂ = e and Möbius
inversion expresses the exponential as e = α−1 � α̂.

Analogous results hold for q-expansions, taking q = e2πiz and z ∈ X = {z ∈ C :
Im z > 0}. For instance, using the notation of Example 9, since 1̂(z) = L(q), the
q-Lambert series of a function α is α � 1̂, which is the Fourier transform of α ∗ 1.
Thus, the relation e = µ � 1̂ is the well-known expansion q =

∑∞
n=1 µ(n)L(qn), as

an analytic function. The formal result dates at least as far back as Möbius [17].
Recently, in [10] Möbius inversion of the Fourier transform on the n-dimensional

torus is studied and related to lattice problems in physics. Chebyshev [8] originally
considered Möbius inversion of the Fourier series of the square and triangular waves,
obtaining the value of some arithmetical sums. Much later, the Fourier series of the
square wave was used in [18] to prove there are more quadratic residues than non-
residues between 1 and (p − 1)/2 when p ≡ 3 mod 4. Thinking along these lines,
we have obtained a curious factorization for the real part of a Dirichlet L-series.
Namely, let S and T denote the period 1 extensions from [0, 1) to R of the functions
S = 1(0,1/2) − 1(1/2,1) and T (x) = 4x 1[0,1/4) + (2 − 4x) 1[1/4,3/4) + (4x − 4) 1[3/4,1).
Their Fourier series are

S(x) =
4
π

∑
odd n

sin(2πnx)
n

=
4
π
ρχ2 � sin(2πx),

T (x) =
8
π2

∞∑
n=0

(−1)n
sin(2π(2n+ 1)x)

(2n+ 1)2
=

8
π2

ρ2χ4 � sin(2πx),
(17)

where ρ(n) = 1/n, χ2(n) = χ4(n) = 0 if n is even and χ2(n) = 1, χ4(n) =
(−1)(n−1)/2 if n is odd. χ2 and χ4 are Dirichlet characters. Inverting gives

sin(2πx) =
π

4

∞∑
n=1

µχ2(n)
n

S(nx) =
π2

8

∞∑
n=1

µχ4(n)
n2

T (nx). (18)

Substituting rational values x = k/m yields sums reminiscent of Dirichlet L-series.
However, χ2(n)S(n/m) is only a Dirichlet character modulo m for m = 3, 4, 6, 8
(complete multiplicativity fails in all other cases), and T (n/m) is not constant in
absolute value. There is a relation with Dirichlet L-series, but it is not quite so
straightforward. Let us illustrate what happens for m = 5. Denote the Dirichlet
series of f : N → C by Df (s). Letting λ = sin 2π

5 =
√

((5 +
√

5)/8) and λ∗ =
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sin 4π
5 =

√
((5−

√
5)/8), by substituting x = 1/5, 2/5 in (17) and (18), one obtains

Dα(1) =
2π
5
λ∗, Dα∗(1) =

2π
5
λ, Dµα(1) =

4
π
λ, Dµα∗(1) =

4
π
λ∗,

Dβ(2) =
π2

25
(4λ∗ + 3λ), Dβ∗(2) =

π2

25
(4λ− 3λ∗),

Dµβ(2) =
20
π2
λ, Dµβ∗(2) =

20
π2
λ∗,

(19)

where α, α∗, β, β∗ are the arithmetical functions given by α(n) = α∗(n) = 0 if
gcd(n, 10) > 1, β(n) = β∗(n) = 0 if gcd(n, 20) > 1, and

α(n) =
(

1 3 −3 −1
1 −1 1 −1

)
mod 10, α∗(n) =

(
1 3 −3 −1
1 1 −1 −1

)
mod 10,

β(n) =
(
±1 ±3 ±7 ±9
2 1 −1 −2

)
mod 20, β∗(n) =

(
±1 ±3 ±7 ±9
1 −2 2 −1

)
mod 20,

with residue classes on the first row and the corresponding values on the sec-
ond. These are clearly not multiplicative, although α(n)α∗(n) =

(
n
5

)
ε10(n) and

β(n)β∗(n) = 2
(
n
5

)
ε10(n), where

(
n
5

)
is the Kronecker symbol and ε10 is the princi-

pal character modulo 10. The explanation of (19) lies in the convolution properties
of these functions. By factoring modulo 10 one can show that for any arithmetical
function f one has (fα ∗ fα∗)(n) = 0 unless n ≡ ±1 mod 10, in which case it is
respectively ±(f ∗ f)(n). In terms of the Dirichlet character

ξ(n) =
(

0 1 2 3 4
0 1 i −i −1

)
mod 5

(which satisfies ξ(n)2 =
(
n
5

)
), this means that if f is real-valued, then

fα ∗ fα∗ = (f ∗ f) · Re(ξε10) = Re((f ∗ f) · ξε10) = Re(fξε10 ∗ fξε10),

which translates into the following identity of Dirichlet series

Dfα(s) ·Dfα∗(s) = ReDfξε10(s)2 (s ∈ R) (20)

when these series are convergent. Thus{
Dα(s) ·Dα∗(s) = ReL(ξε10, s)2,

Dµα(s) ·Dµα∗(s) = ReL(ξε10, s)−2
(s ∈ R, s ≥ 1), (21)

which may be verified for s = 1 using (19) and computing L(ξε10, 1)2 = π2(2−i)
10
√

5
.

Similar (though lengthier) computations yield

Dfβ(s) ·Dfβ∗(s) =
1
2

Re(4 + 3i)Dfχ(s)2 (s ∈ R)
Dβ(s) ·Dβ∗(s) =

1
2

Re(4 + 3i)L(χ, s)2,

Dµβ(s) ·Dµβ∗(s) =
1
2

Re(4 + 3i)L(χ, s)−2
(s ∈ R, s ≥ 1)

(22)

for the Dirichlet character χ modulo 20 given by

χ(n) =
(
±1 ±3 ±7 ±9
1 i −i −1

)
which may be verified for s = 2 using (19) and L(χ, 2) = π2

25 (2− i)(λ+ iλ∗).
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Example 11 (Prime sums in the monoid of words). Let W (Σ) denote the free
monoid over a set Σ, realized as the set of finite “words” or “strings” in the “alpha-
bet” Σ, that is, finite sequences of elements of Σ, with product given by juxtaposition
and neutral element the null string or empty word ∅. Its abelianization W (Σ)ab is
the free abelian monoid over Σ, which is isomorphic to the direct sum of |Σ| copies
of (Z+,+, 0). The abelianization homomorphism is the map that counts letter fre-
quencies, namely for a word w we let fw(s) = ords(w) be the number of times the
letter s ∈ Σ appears in w.

If Σ is countable, W (Σ)ab is an arithmetical semigroup with set of primes equal
to Σ, the letters. Using this model, we may also think of W (Σ)ab as the set of
sequences f : Σ → Z+ with f(s) = 0 for all but finitely many s ∈ Σ, representing
the possible letter frequencies. The primes are the delta functions δs, s ∈ Σ. Unique
factorization is the representation f =

∑
s f(s)δs. The Möbius function µ is 0 on

words with a repeated letter and (−1)`(w) otherwise, where `(w) denotes the length
of a word. Equivalently, on frequencies, µ(f) = 0 if some f(s) > 1 and otherwise
µ(f) = (−1)|f| where |f| =

∑
s f(s). Clearly |fw| =

∑
s ords(w) = Ω(w) = `(w). Note

however that if Σ is infinite, |f| is not a degree map in the sense of Definition 1,
since it does not satisfy the finiteness condition. Indeed |δs| = 1 for all s. Instead,
we need a weighted degree such as ∂f =

∑∞
i=1 if(si), if Σ = {si}∞i=1 (see Example 8).

Let M be any commutative monoid, written multiplicatively. Any function a :
Σ → M extends uniquely to a homomorphism A : W (Σ) → M. For a word
w = (s1, . . . , s`) of length ` ≥ 1, we have A(w) = a(s1) · · · a(s`), and A(∅) = 1. In
terms of frequencies, A(f) =

∏
s a(s)f(s). Since M is abelian, A factors through the

abelianization W (Σ)ab.
Now, suppose ψ is anM-flow on a spaceX, which we will denote by ψ(t, x) = t⊗x.

Pulling back via A gives the flow ϕ(w, x) = A(w)⊗x of W (Σ)ab on X. Consider the
“sum over primes” operator Pα of Section 4, for the arithmetical semigroup W (Σ)ab

and an arithmetical function α : W (Σ)ab → R. Since the primes of W (Σ)ab are the
elements of Σ, the transform pair (10) for I + Pα is

g(x) = (I + Pα)f(x) = f(x) +
∑
s∈Σ

α(s) f(a(s)⊗ w),

f(x) = (I + Pα)−1g(x) =
∞∑
`=0

(−1)`P `αg(x)
(23)

where we have, by (6),

P `αg(x) =
∑

(s1,...,s`)∈Σ`

α(s1) · · ·α(s`) g((a(s1) · · · a(s`))⊗ x). (24)

Note also that an arbitrary function α : Σ → R is a function on the primes of
W (Σ)ab and hence has a unique completely multiplicative extension to an arith-
metical function on W (Σ)ab. Hence we do not lose much generality if we suppose
α to be completely multiplicative. In that case grouping words by length, i.e. by
the value of Ω(w), as in (7), which for frequencies means grouping by the degree |f|,
results in the expression

P `αg(x) =
∑
|f|=`

|f|!
f!
α(f) g(A(f)⊗ x) (25)

where f! =
∏
s f(s)!. Recall then (10), namely (I + Pα)−1 = TBλα where λ = (−1)Ω.
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This example was inspired by the following inversion formula from [15]:

g(x) =
∞∑
n=1

f(anx) ⇐⇒ f(x) = g(x/a1) +
∞∑
n=1

gn(x/an+1
1 ),

gn(x) = (−1)n
∞∑

m1=2

· · ·
∞∑

mn=2

g(am1 · · · amnx),

(26)

where {an} ⊂ R∗ is any sequence with an 6= am for n 6= m. Reindexed and normal-
ized with a0 = 1, it is the case Σ = N,M = R∗, ψ(t, x) = tx, α = 1 of (23), with
g` = (−1)`P `1g.

It may happen that Σ = S is itself an arithmetical semigroup, and a : S →M is
a monoid homomorphism. In that case the map π sending a word w = (s1, . . . , s`)
to the S-product s1 · · · s` ∈ S is a monoid homomorphism π : W (S)ab → S, and the
extension A factors through it: A = a ◦ π. The restriction of the flow ϕ to S is a
flow of S on X. However, now a(1) = 1, hence all words of the form w = (1, . . . , 1)
and any length act as the identity. Thus

∑
`(−1)`α(1)`g(x) is a subseries of the

total series
∑

`(−1)`P `αg(x), which makes absolute convergence impossible when
|α(1)| ≥ 1, except in the trivial case f = g = 0. This happens for completely
multiplicative functions α. One way to restore non-triviality is to eliminate the
redundancy A(∅) = a(1) = 1. We may do this by considering the set Σ = S \ {1}
and applying (23) to Σ instead of S (compare this to (26) with the summations over
integers greater than or equal to 2). Assuming only α(1) = 1,

(I + Pα)f(x) = f(x) +
∑
s∈Σ

α(s) f(a(s)⊗ x) =
∑
s∈S

α(s)f(a(s)⊗ x) = Tαf(x)

where Pα is the operator with respect to W (Σ)ab but Tα is the operator with respect
to S and the restricted flow ϕ(s, x) = a(s)⊗ x. Its inversion formula must then be
T−1
α = Tα−1 . Thus the method of P -expansions detailed in Section 4 yields the same

inversion formulas as in Section 3.
Actually, to fully prove the equivalence, we need to be able to recover the inversion

formula via P -expansions. This can be done as follows. Since a is a homomorphism,
we can group words w with the same S-product together in (24), which becomes
P `g(x) =

∑
s∈S
(∑

s1···s`=s,si 6=1 α(s1) · · ·α(s`)
)
g(a(s) ⊗ x). The inner sum, without

the restrictions si 6= 1, would be the `-fold convolution α∗`. With the restrictions,
by the inclusion-exclusion formula, since α(1) = 1, it is

∑`
k=0(−1)k

(
`
k

)
α∗(`−k) =

(α−δ)∗` (this is also easily checked directly by observing that
∏`
i=0(α(si)−δ(si)) = 0

unless all si 6= 1, in which case it is
∏`
i=0 α(si)). Hence g`(x) = (−1)`P `g(x) =∑

s∈S(δ − α)∗`(s) g(a(s)⊗ x) and so inversion reduces to exchanging sums: f(x) =∑∞
`=0

∑
s∈S(δ−α)∗`(s) g(a(s)⊗x) =

∑
s∈S

∑∞
`=0(δ−α)∗`(s) g(a(s)⊗x) =

∑
s∈S(δ−

(δ − α))−1(s) g(a(s) ⊗ x) =
∑

s∈S α
−1(s) g(a(s) ⊗ x) provided, as usual, that the

appropriate convergence conditions hold.

Remark 6. Grouping words w = (s1, . . . , s`) with equal S-product π(w) is stronger
than grouping by letter frequencies as in (25). This is so due to choosing Σ =
S \ {1}, which makes these elements primes in W (Σ)ab, whereas S retains its own
primes P. If we choose Σ = PS , the primes of the arithmetical semigroup S, then
W (Σ)ab is isomorphic to S via the map π. Indeed, this statement is equivalent
to unique factorization in S. Hence this example is also universal, in the sense
that W ab represents any arithmetical semigroup. Note however that the specific
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arithmetic information carried by S is lost in this more abstract point of view,
especially the enumeration and distribution data on primes contained in the norm
or degree functions, which is precisely the object of study in abstract analytic number
theory.
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