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Resumen

Sea w un peso de Jacobi generalizado sobre el intervalo [—1, 1], es decir,
w(x) = h(x)(1 — 2)*(1 + )8 Hf\il |x — ;|7 con a, B,y > —1 y ciertas
condiciones de continuidad sobre h. Mediante el uso de la teoria de pesos
Ap, se puede demostrar la convergencia de la serie de Fourier de polinomios
ortonormales con respecto a w cuando vy; > 0 Vi. En este trabajo obtenemos
acotaciones de las normas en LP de los nicleos relativos a w, que permiten
extender el resultado de la convergencia en media al caso general.

Let w be a generalized Jacobi weight, that is,

w(z) = h(z)(1—2)*(L+2)" [l — 2

=1

L x € [-1,1],

where:

(a) a,B,v > —1,t; € (=1,1), t; # t; Vi # j;

(b) h is a positive, continuous function on [—1,1] and w(h,8)d~! € L(0,2),
w(h,0) being the modulus of continuity of h.

This paper were published in “Polinomios Ortogonales y Aplicaciones” (Actas del VI Sim-
posium, Gijén, 1989), 168-178, Universidad de Oviedo, Gijén, 1990.



Let du = w(z)dx on [—1,1] and let S,, (n > 0) be the n-th partial sum of the
Fourier series in the orthonormal polynomials with respect to du. The study of
the boundedness

(1) 1S f Nl dny < CllFllor ays

where
N
u(@) =1 —a2)*"(L+2)" [[lo—tl”
i=1
and

G;

v(z) = (1 -2)*(1+2)" H |z — 1

was done by Badkov ([B]) in the case u = v by means of a direct estimation of the
kernels K, (z,y) associated with the polynomials orthogonal with respect to dpu.
Later, Varona ([V]) considered the same problem, with v and v not necessarily
equal; his method consists of an appropriate use of the theory of A, weights. He
found conditions for (1) which generalized those obtained for u = v by Badkov.
However, this result, which we state below, follows only in the case v; > 0 Vi:

Theorem 1. Let v; > 0 Vi and 1 < p < oo. If the inequalities
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(2) B+(5+1)(1—)—§><Z,
1 1 1 .
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( 1 1 1
1 1 1
(4) b+ (B+1) (]3—5) > =7
1 1 1 .
\gz"i‘(%"‘l) (5—5) >—§ Vi,




hold, then there exists C > 0 such that
HSanLP(updu) < CHfHLP(deu) Vf e LP(v"dp), VneN.

The objective of this paper is to eliminate the restriction v; > 0, by studying
the norms of the kernels K,(x,y). We are going to use the following notation:
{P,(x)}, {k,} and {K,(x,y)} will be, respectively, the orthonormal polynomials,
their leading coefficients and the kernels relatives to du; if ¢ € (—1,1), {PS(z)},
{k¢} and {K¢(z,y)} will be the corresponding to (z — ¢)*du. Then, it is not
difficult to establish the following relations, Vn > 1:

(7) Kn(2,y) = (z — o)y — o) K51 (2,9) + Ko
) Ko(o,6) = 1 PP = = Pua )P ).

It can be also shown (see [MNT], theorems 10 and 11, and [R], page 212) that

ky, k¢, 1
o Jim e =t =5
If we define
N
dlx,n)=(1—-z+ n—2)—(2a+1)/4(1 +or+ n—2)—(25+1)/4 H(|x — &+ n_l)_%ﬂ,
i=1

it is known ([B]) that there exists a constant C' such that Yz € [-1, 1], Vn,
(10) |P(x)] < Cd(z,n).

There are also some well-known estimates for the kernels, one of them being
this ([N], page 4 and page 119, theorem 25): if ¢ € (—1,1) and the factor |z —¢| is
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present in w with an exponent ~y, there exist some positive constants C; and Cs,
depending on ¢, such that, Vn,

(11) Cin"™ < K, (c,c) < Cyn™ ™.

From now on, all constants will be denoted C', so by C' we will mean a constant,
possibly different in each occurrence. Using (8), (9) and (10), we get the following
result:

Proposition 2. Let 1 < p < oo, 1/p+1/q = 1. Suppose the inequalities (4) and
(5) hold. Let —1 < ¢ <1 and let v and g be the exponents of |x — c| in w and u,
respectively. Then, there exists a positive constant C such that, ¥Yn > 0,

CnOtb/a—g, if g<(y+1)(1/2—1/p)+1/2,
| K (2, ) || oquewy <  Cn2(logn)YP, if g = (y+1)(1/2—1/p) + 1/2,
Cn/?, if (y+1)(1/2—1/p)+1/2<g.

Proof. From (10) it follows that |P,(c)|] < Cn?/2. Since {P¢} is the sequence
associated with (z — ¢)? dy, it also follows from (10) that

|[Pr(@)| < C(lz — | +n7 1) Hd(@,n).
Now, from (8) and (9) we get
(12) | K (z,¢)] < Cn?(|z — ¢| +n~ ) d(z, n).

Let us take € > 0 such that |t; — ¢| > ¢ Vi for all ¢; # ¢. We can write

15, )
_ / Ko (2, 0)Pula)Pw(z) do + / Ko (2, 0)Pula)Pw(z) da.
lx—c|>e

|x—c|<e

Using (12), for the first term we obtain
[ KaeoPuru) s
lx—c|>e
< Cnm/Q/ (|z — ¢| +n 1) Pd(z, n)Pu(z)Pw(z) dz
|z—c|>e

1
< ClanQ/ d(z,n)Pu(z)Pw(x) dz.
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It is easy to deduce from (4) and (5) that this last integral is bounded by a constant
which does not depend on n, so

(13) /_ N | K (2, ¢) |Pu(z)Pw(z) de < CnP/2,

Let us take now the second term; since for |z —c| < € there exists a constant C' such
that, Vn, d(z,n) < C(|lz — c| + n™) ™2 u(z) < Clz — ¢ and w(x) < Clz — ¢,
we have

[ e dPuru) s
|z—c|<e
< On? / (|2 — ¢ + Yy Pd(z, n)Pulz)Pw(z) de
lz—c|<e
< C«lnpv/2/ (Jo —c| + n—l)—p(1+v/2)|w _ C|gp+v dr
lz—c|<e
1
< C’gnm/Q/ (y_|_n—1)—p(1+v/2)ygp+v dy
0
1
— Can/2+p(1+v/2)—gp—v—1 / (ny + 1)—p(1+v/2) (ny)gpﬂn dy
0
= 02npw/2+p(1+v/2)fgpﬂfl /n<r + 1>fp(1+'y/2)7ngp+v dr.
0

Taking into account that p(1++/2) —gp—~v—1=pl(y+1)(1/2—1/p) —g+1/2]
and there exist some constants C; and Cy such that C; <r+1 < C5 on [0, 1] and
Cir <r+1 < Cyr on [1,n], we finally get the inequality

[ i opure) dr
|z—c|<e
1
14 py/2+p[(v+1)(1/2—1/p)—g+1/2] gp+y
(14) <Cn r dr
0

+ CpP/2Hplv D) (1/2=1/p)—g+1/2] /n Pl +1)(A/2=1/p)=g+1/2]=1 g,
1

Since (5) implies gp + v > —1, the first term can be bounded in this way:

1
(15) Cnm/2+p[(v+1)(1/21/p)g+1/2]/ rIPtY dp < Oppy/2Hel D (/2=1/p)—g+1/2]
0

Let us consider separately the three cases in the statement:



(a) If g < (y+1)(1/2—1/p)+1/2, then —p[(v+1)(1/2—1/p)—g+1/2]—1 < —1;

/ " /21 D g+ 1/2 1 g <
1
In this case, (14) and (15) imply

/ | K (, ¢)|Pu(x)Pw(z) do < CnpY/2Hpl(y+1)(1/2-1/p)—g+1/2]
|x—c|<e

Since p[(y+1)(1/2—1/p) — g+ 1/2] > 0, from this inequality and (13) we obtain
| K (2, €) ||1£p(upw) < Cpp/2telA1)(1/2-1/p)=g+1/2]

— OppPlO+H(A-1/p)—g] _ Cnp[(%l)/q—g]’

as we had to prove.
(b) If (v+1)(1/2=1/p)+1/2 < g, then —p[(v+1)(1/2—1/p) —g+1/2] -1 > —1;
therefore:

/ " PO /2P g+ /201 g < Ol (/2-1 )0 41/2]
1

From (14) and (15), we get now | K, (z,¢)[Pu(z)Pw(x) de < CnPY/? and,

finally,

z—c|<e |

1Ko, €)1y < Cr2,

LP(uPw

(c)Ifg=(v+1)(1/2-1/p) +1/2,

/ " P21 P g /21 g o C'log n;
1

hence,
/ | Ko (2, ¢) [Pu(z)Pw(z) de < CnP*logn
lz—c|<e
and
HKn(x> C) ng(upw) < CnP’Y/Q log n.
This concludes the proof of the proposition. O

Corollary 3. Let 1 < p < oo, 1/p+ 1/q = 1. Suppose the inequalities (2) and
(3) hold. Let —1 < ¢ <1 and let v and G be the exponents of |x — ¢| in w and v,
respectively. Then, there exists a positive constant C' such that, ¥Yn > 0,

Cn/?, if G<(y+1)(1/2—1/p)—1/2,
1 Kn(z, )l[Laq-ouwy < § C*(logn)/e, if G = (y+1)(1/2—1/p) - 1/2,
CnOF1/p+G if (v+1)(1/2-1/p)—1/2<G.



Proof. Just apply proposition 2 to the weight v~! and keep in mind the equality

1/2—1/p=1/q—1)2. O

The following result is just what we need to extend theorem 1 to the general
case y; > —1:

Corollary 4. Let 1 < p < oo, 1/p+1/q = 1. Suppose the inequalities (2), (3),
(4), (5) and (6) hold. Let —1 < ¢ < 1. Then, there ezists a positive constant C
such that, ¥n > 0,

1 (%, )| oy [ En (2, €) || ooy < CK(e, ).

Proof. 1t is a simple consequence of proposition 2, corollary 3 and the estimate (11).
The only thing we must do is to consider each case in these results separately. [J

Note. Although it will not be used in what follows, corollary 4 also holds when ¢ =
+1. The proof is similar: starting from other expressions for K, (x,+1), analogous
results to proposition 2 and corollary 3 can be obtained, and then corollary 4
follows.

We are now ready to extend theorem 1 to the general case v; > —1:

Theorem 5. Let 1 < p < co. If the inequalities

et [t
B+(ﬁ+1)<%—%)<i, B+(ﬁ+1>(}9—%)<%a
ERTSP A o Pt A B

(et (e )
b+(ﬁ+1)(%—%)>—i, b+(5+1)(%—%)>—$»
\gi+(%+1)(%—%) —% vi, \gi+(’y¢+1)<%—%)>—%;1 Vi,

ASCL, ng, Glggl VZ,
hold, then there exists C' > 0 such that

[SnfllLorawy < Clflle@rany  YVf € LP(vPdp), VneN.



Proof. By induction on the number of negative exponents ;. If v, > 0 Vi, the
result is true, as we saw before (theorem 1).

Suppose there exist k£ negative exponents ~;, with £ > 0, and the result is true
for k—1. Let ¢ € (—1,1) be a point with a negative exponent ~y. Let us remember
the formula (7):

Kn("E?y) = (3: - C)(y - C)Kz—l(ajay> +

We define the operators
' Ku(2,0)Ka(c,y)
— n 9 n ? d
| s ) du

Rof(x) = / (= = ) £ @)l dy

Then, S, =T, + R,,. We are going to study firstly the operators T,,:

/Kxc cc/Kcy Jw(y) dy,

1
Sy Ko, y)lo(y) " (y)|v(y)w(y) dy
Kn(c,c)
IIK (@, Lo o) | Kn (@, v (@) | L) 17l
K,(c,c) LP(w)
_ (@, O r e [ K (2, ) Lao-aw) Il
Kn(C, C) Lp(va).

From corollary 4 it follows now that |15, f|| e (uwr ap) < C|| fllze(wr aw V.f € LP(vP dp),
Vn € N. So, we only have to proof the same bound for the operators R,,.

But, if we denote by S¢ the partial sums of the Fourier series with respect to
the measure (z — ¢)?w(x) dz, it turns out that

Ruf(@) = (=) [ (=KL )l dy = (- 97, ( /) ) |

1 y—c

thus

HTanLP(qu) S HKn(zac)HLP(ul’w)

whence
[ B f || 2o urw) < CHfHLp(v”w) Vf € LP (v w)
= H V2, 0) || oy < CM ey VI € LP(0Pw)
— |(z— 0)55_1 (@) | rurwy < Cll(@ = )gllLr@rw) Vg € LP(|z — c[PvPw)
= 15519l cre—cpurw) < CligllLe(e—ciporwy Vg € LP(J2 — cPv"w)
= 1S5 19l r@r@—c2w) < Clgllir@r@-—crw Vg € LP(0"(z — ¢)*w),




where i(z) = |z — c|'"*/Pu(z) and ¥(x) = |z — c|'"*/Pu(x).

Therefore, we must prove the boundedness of the partial sums S with the
weights (@, 7). But the Fourier series we are considering now corresponds to the
Jacobi generalized weight (z — ¢)?w(x), which has only k¥ — 1 negative exponents
v;, since on the point ¢ the exponent is v 4+ 2 > 1. By hypothesis, the theorem
holds in this case and we only have to see that the conditions in the statement
hold for the weights (z — ¢)?w(x), |z — ¢|'~?/Pu(z) and |z — c|*~2/Pu(z).

Except for the point ¢, these weights have the same exponents as w, u and v;
thus, those conditions are the same and, therefore, they are satisfied. At the point
¢, the exponents are, respectively,

v+2,  g+1-2/p, G+1-2/p
So, the inequalities we have to check are the following:
(G+1=2/p)+(vy+2+1)(1/p—1/2) < 1/2,
(G+1-2/p)+(v+2+1)(1/p-1/2) <(y+2+1)/2,
(9+1=2/p)+(v+2+1)(1/p-1/2) > -1/2,
(g+1-2/p)+(r+2+1)(A/p—1/2)> —(v+2+1)/2,
G+1-2/p<g+1-2/p.

It is easy to see that all of them are satisfied, from our hypothesis. Consequently,
we get

15519\l 2o (ar (@—c)2e) < Cllgllp@p@—cyzwy Vg € LP(2P(x — ¢)*w), Vn e€N;

thus
| R f o urw) < Cllfllorwy  Vf € LP(vPw), Vn €N,

And, finally,
1S fllLeeawy < CllfllLeraw  Vf € LP(vPdp), Vn €N

That is, the result is true for k£ negative exponents v;. By induction, it is true in
general and the theorem is proved. O]

Note. It can be shown that the converse is also valid, that is, the boundedness of
the partial sums 5, implies the five conditions of the theorem.
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