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F. J. Ruiz Blasco(1) and J. L. Varona Malumbres(2)

(1) Departamento de Matemáticas,
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Resumen

Sea w un peso de Jacobi generalizado sobre el intervalo [−1, 1], es decir,
w(x) = h(x)(1 − x)α(1 + x)β

∏N
i=1 |x − xi|γi , con α, β, γi > −1 y ciertas

condiciones de continuidad sobre h. Mediante el uso de la teoŕıa de pesos
Ap, se puede demostrar la convergencia de la serie de Fourier de polinomios
ortonormales con respecto a w cuando γi ≥ 0 ∀i. En este trabajo obtenemos
acotaciones de las normas en Lp de los núcleos relativos a w, que permiten
extender el resultado de la convergencia en media al caso general.

Let w be a generalized Jacobi weight, that is,

w(x) = h(x)(1− x)α(1 + x)β

N∏
i=1

|x− xi|γi , x ∈ [−1, 1],

where:

(a) α, β, γi > −1, ti ∈ (−1, 1), ti 6= tj ∀i 6= j;

(b) h is a positive, continuous function on [−1, 1] and ω(h, δ)δ−1 ∈ L1(0, 2),
ω(h, δ) being the modulus of continuity of h.

This paper were published in “Polinomios Ortogonales y Aplicaciones” (Actas del VI Sim-
posium, Gijón, 1989), 168–178, Universidad de Oviedo, Gijón, 1990.
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Let dµ = w(x) dx on [−1, 1] and let Sn (n ≥ 0) be the n-th partial sum of the
Fourier series in the orthonormal polynomials with respect to dµ. The study of
the boundedness

(1) ‖Snf‖Lp(up dµ) ≤ C‖f‖Lp(vp dµ),

where

u(x) = (1− x)a(1 + x)b

N∏
i=1

|x− ti|gi

and

v(x) = (1− x)A(1 + x)B

N∏
i=1

|x− ti|Gi

was done by Badkov ([B]) in the case u = v by means of a direct estimation of the
kernels Kn(x, y) associated with the polynomials orthogonal with respect to dµ.
Later, Varona ([V]) considered the same problem, with u and v not necessarily
equal; his method consists of an appropriate use of the theory of Ap weights. He
found conditions for (1) which generalized those obtained for u = v by Badkov.
However, this result, which we state below, follows only in the case γi ≥ 0 ∀i:
Theorem 1. Let γi ≥ 0 ∀i and 1 < p < ∞. If the inequalities
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(6) A ≤ a, B ≤ b, Gi ≤ gi ∀i,

hold, then there exists C > 0 such that

‖Snf‖Lp(up dµ) ≤ C‖f‖Lp(vp dµ) ∀f ∈ Lp(vp dµ), ∀n ∈ N.

The objective of this paper is to eliminate the restriction γi ≥ 0, by studying
the norms of the kernels Kn(x, y). We are going to use the following notation:
{Pn(x)}, {kn} and {Kn(x, y)} will be, respectively, the orthonormal polynomials,
their leading coefficients and the kernels relatives to dµ; if c ∈ (−1, 1), {P c

n(x)},
{kc

n} and {Kc
n(x, y)} will be the corresponding to (x − c)2 dµ. Then, it is not

difficult to establish the following relations, ∀n ≥ 1:

(7) Kn(x, y) = (x− c)(y − c)Kc
n−1(x, y) +

Kn(x, c)Kn(c, y)

Kn(c, c)
,

(8) Kn(x, c) =
kn

kc
n

Pn(c)P c
n(x)−

kc
n−1

kn+1

Pn+1(c)P
c
n−1(x).

It can be also shown (see [MNT], theorems 10 and 11, and [R], page 212) that

(9) lim
n→∞

kn

kc
n

= lim
n→∞

kc
n−1

kn+1

=
1

2
.

If we define

d(x, n) = (1− x + n−2)−(2α+1)/4(1 + x + n−2)−(2β+1)/4

N∏
i=1

(|x− ti|+ n−1)−γi/2,

it is known ([B]) that there exists a constant C such that ∀x ∈ [−1, 1], ∀n,

(10) |Pn(x)| ≤ Cd(x, n).

There are also some well-known estimates for the kernels, one of them being
this ([N], page 4 and page 119, theorem 25): if c ∈ (−1, 1) and the factor |x− c| is
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present in w with an exponent γ, there exist some positive constants C1 and C2,
depending on c, such that, ∀n,

(11) C1n
γ+1 ≤ Kn(c, c) ≤ C2n

γ+1.

From now on, all constants will be denoted C, so by C we will mean a constant,
possibly different in each occurrence. Using (8), (9) and (10), we get the following
result:

Proposition 2. Let 1 < p < ∞, 1/p + 1/q = 1. Suppose the inequalities (4) and
(5) hold. Let −1 < c < 1 and let γ and g be the exponents of |x− c| in w and u,
respectively. Then, there exists a positive constant C such that, ∀n ≥ 0,

‖Kn(x, c)‖Lp(upw) ≤


Cn(γ+1)/q−g, if g < (γ + 1)(1/2− 1/p) + 1/2,

Cnγ/2(log n)1/p, if g = (γ + 1)(1/2− 1/p) + 1/2,

Cnγ/2, if (γ + 1)(1/2− 1/p) + 1/2 < g.

Proof. From (10) it follows that |Pn(c)| ≤ Cnγ/2. Since {P c
n} is the sequence

associated with (x− c)2 dµ, it also follows from (10) that

|P c
n(x)| ≤ C(|x− c|+ n−1)−1d(x, n).

Now, from (8) and (9) we get

(12) |Kn(x, c)| ≤ Cnγ/2(|x− c|+ n−1)−1d(x, n).

Let us take ε > 0 such that |ti − c| > ε ∀i for all ti 6= c. We can write

‖Kn(x, c)‖p
Lp(upw)

=

∫
|x−c|>ε

|Kn(x, c)|pu(x)pw(x) dx +

∫
|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx.

Using (12), for the first term we obtain∫
|x−c|>ε

|Kn(x, c)|pu(x)pw(x) dx

≤ Cnpγ/2

∫
|x−c|>ε

(|x− c|+ n−1)−pd(x, n)pu(x)pw(x) dx

≤ C1n
pγ/2

∫ 1

−1

d(x, n)pu(x)pw(x) dx.
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It is easy to deduce from (4) and (5) that this last integral is bounded by a constant
which does not depend on n, so

(13)

∫
|x−c|>ε

|Kn(x, c)|pu(x)pw(x) dx ≤ Cnpγ/2.

Let us take now the second term; since for |x−c| < ε there exists a constant C such
that, ∀n, d(x, n) ≤ C(|x− c| + n−1)−γ/2, u(x) ≤ C|x− c|g and w(x) ≤ C|x− c|γ,
we have ∫

|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx

≤ Cnpγ/2

∫
|x−c|<ε

(|x− c|+ n−1)−pd(x, n)pu(x)pw(x) dx

≤ C1n
pγ/2

∫
|x−c|<ε

(|x− c|+ n−1)−p(1+γ/2)|x− c|gp+γ dx

≤ C2n
pγ/2

∫ 1

0

(y + n−1)−p(1+γ/2)ygp+γ dy

= C2n
pγ/2+p(1+γ/2)−gp−γ−1

∫ 1

0

(ny + 1)−p(1+γ/2)(ny)gp+γn dy

= C2n
pγ/2+p(1+γ/2)−gp−γ−1

∫ n

0

(r + 1)−p(1+γ/2)rgp+γ dr.

Taking into account that p(1 + γ/2)− gp− γ− 1 = p[(γ + 1)(1/2− 1/p)− g + 1/2]
and there exist some constants C1 and C2 such that C1 ≤ r + 1 ≤ C2 on [0, 1] and
C1r ≤ r + 1 ≤ C2r on [1, n], we finally get the inequality

(14)

∫
|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx

≤ Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2]

∫ 1

0

rgp+γ dr

+ Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2]

∫ n

1

r−p[(γ+1)(1/2−1/p)−g+1/2]−1 dr.

Since (5) implies gp + γ > −1, the first term can be bounded in this way:

(15) Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2]

∫ 1

0

rgp+γ dr ≤ Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2].

Let us consider separately the three cases in the statement:
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(a) If g < (γ+1)(1/2−1/p)+1/2, then −p[(γ+1)(1/2−1/p)−g+1/2]−1 < −1;
so: ∫ n

1

r−p[(γ+1)(1/2−1/p)−g+1/2]−1 dr ≤ C.

In this case, (14) and (15) imply∫
|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx ≤ Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2].

Since p[(γ + 1)(1/2− 1/p)− g + 1/2] > 0, from this inequality and (13) we obtain

‖Kn(x, c)‖p
Lp(upw) ≤ Cnpγ/2+p[(γ+1)(1/2−1/p)−g+1/2]

= Cnp[(γ+1)(1−1/p)−g] = Cnp[(γ+1)/q−g],

as we had to prove.
(b) If (γ+1)(1/2−1/p)+1/2 < g, then −p[(γ+1)(1/2−1/p)−g+1/2]−1 > −1;

therefore: ∫ n

1

r−p[(γ+1)(1/2−1/p)−g+1/2]−1 dr ≤ Cn−p[(γ+1)(1/2−1/p)−g+1/2].

From (14) and (15), we get now
∫
|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx ≤ Cnpγ/2 and,

finally,
‖Kn(x, c)‖p

Lp(upw) ≤ Cnpγ/2.

(c) If g = (γ + 1)(1/2− 1/p) + 1/2,∫ n

1

r−p[(γ+1)(1/2−1/p)−g+1/2]−1 dr ≤ C log n;

hence, ∫
|x−c|<ε

|Kn(x, c)|pu(x)pw(x) dx ≤ Cnpγ/2 log n

and
‖Kn(x, c)‖p

Lp(upw) ≤ Cnpγ/2 log n.

This concludes the proof of the proposition.

Corollary 3. Let 1 < p < ∞, 1/p + 1/q = 1. Suppose the inequalities (2) and
(3) hold. Let −1 < c < 1 and let γ and G be the exponents of |x− c| in w and v,
respectively. Then, there exists a positive constant C such that, ∀n ≥ 0,

‖Kn(x, c)‖Lq(v−qw) ≤


Cnγ/2, if G < (γ + 1)(1/2− 1/p)− 1/2,

Cnγ/2(log n)1/q, if G = (γ + 1)(1/2− 1/p)− 1/2,

Cn(γ+1)/p+G, if (γ + 1)(1/2− 1/p)− 1/2 < G.
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Proof. Just apply proposition 2 to the weight v−1 and keep in mind the equality
1/2− 1/p = 1/q − 1/2.

The following result is just what we need to extend theorem 1 to the general
case γi > −1:

Corollary 4. Let 1 < p < ∞, 1/p + 1/q = 1. Suppose the inequalities (2), (3),
(4), (5) and (6) hold. Let −1 < c < 1. Then, there exists a positive constant C
such that, ∀n ≥ 0,

‖Kn(x, c)‖Lp(upw)‖Kn(x, c)‖Lq(v−qw) ≤ CKn(c, c).

Proof. It is a simple consequence of proposition 2, corollary 3 and the estimate (11).
The only thing we must do is to consider each case in these results separately.

Note. Although it will not be used in what follows, corollary 4 also holds when c =
±1. The proof is similar: starting from other expressions for Kn(x,±1), analogous
results to proposition 2 and corollary 3 can be obtained, and then corollary 4
follows.

We are now ready to extend theorem 1 to the general case γi > −1:

Theorem 5. Let 1 < p < ∞. If the inequalities
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A ≤ a, B ≤ b, Gi ≤ gi ∀i,

hold, then there exists C > 0 such that

‖Snf‖Lp(up dµ) ≤ C‖f‖Lp(vp dµ) ∀f ∈ Lp(vp dµ), ∀n ∈ N.
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Proof. By induction on the number of negative exponents γi. If γi ≥ 0 ∀i, the
result is true, as we saw before (theorem 1).

Suppose there exist k negative exponents γi, with k > 0, and the result is true
for k−1. Let c ∈ (−1, 1) be a point with a negative exponent γ. Let us remember
the formula (7):

Kn(x, y) = (x− c)(y − c)Kc
n−1(x, y) +

Kn(x, c)Kn(c, y)

Kn(c, c)
.

We define the operators

Tnf(x) =

∫ 1

−1

Kn(x, c)Kn(c, y)

Kn(c, c)
f(y)w(y) dy,

Rnf(x) =

∫ 1

−1

(x− c)(y − c)Kc
n−1(x, y)f(y)w(y) dy.

Then, Sn = Tn + Rn. We are going to study firstly the operators Tn:

Tnf(x) =

∫
Kn(x, c)Kn(c, c)

∫ 1

−1

Kn(c, y)f(y)w(y) dy,

thus

‖Tnf‖Lp(upw) ≤
∫ 1

−1
|Kn(c, y)|v(y)−1|f(y)|v(y)w(y) dy

Kn(c, c)
‖Kn(x, c)‖Lp(upw)

≤
‖Kn(x, c)‖Lp(upw)‖Kn(x, c)v(x)−1‖Lq(w)

Kn(c, c)
‖fv‖Lp(w)

=
‖Kn(x, c)‖Lp(upw)‖Kn(x, c)‖Lq(v−qw)

Kn(c, c)
‖f‖Lp(vpw).

From corollary 4 it follows now that ‖Tnf‖Lp(up dµ) ≤ C‖f‖Lp(vp dµ) ∀f ∈ Lp(vp dµ),
∀n ∈ N. So, we only have to proof the same bound for the operators Rn.

But, if we denote by Sc
n the partial sums of the Fourier series with respect to

the measure (x− c)2w(x) dx, it turns out that

Rnf(x) = (x− c)

∫ 1

−1

(y − c)Kc
n−1(x, y)f(y)w(y) dy = (x− c)Sc

n−1

(
f(y)

y − c
, x

)
,

whence

‖Rnf‖Lp(upw) ≤ C‖f‖Lp(vpw) ∀f ∈ Lp(vpw)

⇐⇒
∥∥(x− c)Sc

n−1

(
f(y)
y−c

, x
)∥∥

Lp(upw)
≤ C‖f‖Lp(vpw) ∀f ∈ Lp(vpw)

⇐⇒ ‖(x− c)Sc
n−1g(x)‖Lp(upw) ≤ C‖(x− c)g‖Lp(vpw) ∀g ∈ Lp(|x− c|pvpw)

⇐⇒ ‖Sc
n−1g‖Lp(|x−c|pupw) ≤ C‖g‖Lp(|x−c|pvpw) ∀g ∈ Lp(|x− c|pvpw)

⇐⇒ ‖Sc
n−1g‖Lp(ũp(x−c)2w) ≤ C‖g‖Lp(ṽp(x−c)2w) ∀g ∈ Lp(ṽp(x− c)2w),
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where ũ(x) = |x− c|1−2/pu(x) and ṽ(x) = |x− c|1−2/pv(x).
Therefore, we must prove the boundedness of the partial sums Sc

n with the
weights (ũ, ṽ). But the Fourier series we are considering now corresponds to the
Jacobi generalized weight (x − c)2w(x), which has only k − 1 negative exponents
γi, since on the point c the exponent is γ + 2 > 1. By hypothesis, the theorem
holds in this case and we only have to see that the conditions in the statement
hold for the weights (x− c)2w(x), |x− c|1−2/pu(x) and |x− c|1−2/pv(x).

Except for the point c, these weights have the same exponents as w, u and v;
thus, those conditions are the same and, therefore, they are satisfied. At the point
c, the exponents are, respectively,

γ + 2, g + 1− 2/p, G + 1− 2/p.

So, the inequalities we have to check are the following:

(G + 1− 2/p) + (γ + 2 + 1)(1/p− 1/2) < 1/2,

(G + 1− 2/p) + (γ + 2 + 1)(1/p− 1/2) < (γ + 2 + 1)/2,

(g + 1− 2/p) + (γ + 2 + 1)(1/p− 1/2) > −1/2,

(g + 1− 2/p) + (γ + 2 + 1)(1/p− 1/2) > −(γ + 2 + 1)/2,

G + 1− 2/p ≤ g + 1− 2/p.

It is easy to see that all of them are satisfied, from our hypothesis. Consequently,
we get

‖Sc
n−1g‖Lp(ũp(x−c)2w) ≤ C‖g‖Lp(ṽp(x−c)2w) ∀g ∈ Lp(ṽp(x− c)2w), ∀n ∈ N;

thus
‖Rnf‖Lp(upw) ≤ C‖f‖Lp(vpw) ∀f ∈ Lp(vpw), ∀n ∈ N.

And, finally,

‖Snf‖Lp(up dµ) ≤ C‖f‖Lp(vp dµ) ∀f ∈ Lp(vp dµ), ∀n ∈ N.

That is, the result is true for k negative exponents γi. By induction, it is true in
general and the theorem is proved.

Note. It can be shown that the converse is also valid, that is, the boundedness of
the partial sums Sn implies the five conditions of the theorem.
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