
The misfortunes of a trio of mathematicians using
Computer Algebra Systems.
Can we trust in them?∗,†

Antonio J. Durán1, Mario Pérez2 and Juan L. Varona3

1Departamento de Análisis Matemático, Universidad de Sevilla, 41080 Sevilla, Spain

email: duran@us.es

2Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

email: mperez@unizar.es

3Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

email: jvarona@unirioja.es

Abstract

Computer algebra systems are a great help for mathematical research, but sometimes
unexpected errors in the software can also badly affect it. As an example, we show how we
have detected an error in Mathematica when computing determinants of matrices with integer
entries; not only does it compute the determinants incorrectly, but it also produces different
results if one evaluates the same determinant twice.

Mathematics Subject Classification (2010): 68W30.

Introduction

Nowadays, mathematicians often use a computer algebra system as an aid in their mathematical
research; they do the thinking and leave the tedious calculations to the computer. Everybody
“knows” that computers perform this work better than people. But, of course, we must trust in
the results derived via these powerful computer algebra systems. First of all, let us clarify that this
paper is not, in any way, a comparison between different computer algebra systems, but a sample
of the current state of art of what mathematicians can expect when they use this kind of software.
Although our example deals with a concrete system, we are sure that similar situations may occur
with other programs.

∗Partially supported by grants MTM2012-36732-C03-02, MTM2012-36732-C03-03 (Ministerio de Economı́a y
Competitividad), FQM-262, FQM-4643, FQM-7276 (Junta de Andalućıa) and Feder Funds (European Union).
†This paper has been published in Notices Amer. Math. Soc. 61 (2014), 1249–1252.

1

duran@us.es
mperez@unizar.es
jvarona@unirioja.es


We are currently using Mathematica to find examples and counterexamples of some mathemat-
ical results that we are working out, with the aim of finding the correct hypotheses and eventually
constructing a mathematical proof. Our goal was to improve some results by Karlin and Szegő [4]
related to orthogonal polynomials on the real line. The details are not important; this is just an
example of the use of a computer algebra system by a typical research mathematician, but let us
explain it briefly. It is not necessary to completely understand the mathematics, just to realize that
it is typical mathematical research using computer algebra as a tool.

Our starting point is a discrete positive measure on the real line, µ =
∑

n≥0Mnδan (where δa
denotes the Dirac delta at a, and an < an+1), having a sequence of orthogonal polynomials {Pn}n≥0

(where Pn has degree n and positive leading coefficient). Karlin and Szegő considered in 1961
(see [4]) the l × l Casorati determinants

det


Pn(ak) Pn(ak+1) . . . Pn(ak+l−1)
Pn+1(ak) Pn+1(ak+1) . . . Pn+1(ak+l−1)

...
...

...
...

Pn+l−1(ak) Pn+l−1(ak+1) . . . Pn+l−1(ak+l−1)

 , n, k ≥ 0. (1)

They proved that, under the assumption that l is even, these determinants are positive for all
nonnegative integers n, k. Notice that the set of indices {n, n+ 1, . . . , n+ l− 1} for the polynomials
Pn consists of consecutive nonnegative integers. We are working out an extension of this remarkable
result for more general sets of indices F than those formed by consecutive nonnegative integers. We
have some conjectures which we want to prove or disprove.

We have not been able to prove our conjectures yet and, as far as we can see, this task seems to
be rather difficult. On the other hand, just in case our conjectures are wrong, we have been trying
to find counterexamples with the help of our computer algebra system. Eventually we hope these
experiments can shed some light on the problem, as well.

We have then proceeded to construct orthogonal polynomials with respect to discrete positive
measures (involving only a finite number of Dirac deltas, which is actually not a restriction for our
conjectures) by means of their moments. Fixing a set of indices F = {f1, . . . , fl}, fi < fi+1, for the
polynomials Pn, we have evaluated the determinants

det


Pf1(ak) Pf1(ak+1) . . . Pf1(ak+l)
Pf2(ak) Pf2(ak+1) . . . Pf2(ak+l)

...
...

...
...

Pfl(ak) Pfl(ak+1) . . . Pfl(ak+l)

 (2)

for a large range of k, looking for some negative value.
To avoid the usual problems with floating point arithmetic (rounding, truncating, instability),

we construct all our examples with integers. By taking integers as the values of an and the mass
points Mn of the measure, and using a suitable normalization of the orthogonal polynomials Pn,
only integers are involved in (2). Thus the computations should be routine for a computer algebra
system, and one should be able to completely trust in the results. We have also introduced random
parameters (also integers, of course) to easily perform many experiments.

With the help of Mathematica, one of us found some counterexamples to our conjectures. Fortu-
nately, another one of us was using Maple and, when checking those supposed counterexamples, he

2



found that they were not counterexamples at all. After revising our algorithms from scratch, we con-
cluded that either the computations performed with Mathematica or the computations performed
with Maple had to be wrong. Things started to become clear when the colleague using Mathe-
matica also found some “counterexamples” to the above mentioned result of Karlin and Szegő for
the case in (1) and, even more dramatically, his algorithm yielded different outputs given the same
inputs. Our conclusion was that Mathematica was computing incorrectly. However, our mathemat-
ical problem (and our algorithm) was too complicated to convince anybody that Mathematica was
making mistakes when calculating with integers.

Isolating the error

In attempting to isolate the computational problem, we finally realized that, in some circumstances,
Mathematica (version 9.0.1 at that time) makes some strange mistakes when computing determi-
nants whose entries are large integers. Errors do not always occur, only in some cases. Even worse,
given the same matrix, the determinant function can give different values! This resembles the
well-known Pentium division bug discovered by Thomas Nicely in 1994, which only affected certain
kinds of numbers. But it seems Mathematica is a black box even darker that the internals of a
microprocessor, so it is difficult to try to understand what kinds of numbers are affected by the
Mathematica bug that we are describing.

Instead, we have devised a method to easily generate matrices with large integer entries whose
determinants are clearly erroneously evaluated by Mathematica. This method can be described
without referring to the mathematical problem which motivates it. As the error does not always
arise, we develop a procedure to randomly generate these matrices. First, we generate a random
14× 14 matrix whose entries are integers between −99 and 99,

basicMatrix = Table[Table[RandomInteger[{-99, 99}], {i, 1, 14}], {j, 1, 14}]

To obtain larger integers, we multiply every column by some power of 10. This is equivalent to
multiplying by a diagonal matrix; for instance, we take

powersMatrix = DiagonalMatrix[{10^123, 10^152, 10^185, 10^220, 10^397,

10^449, 10^503, 10^563, 10^979, 10^1059, 10^1143, 10^1229, 10^1319, 10^1412}]

To avoid getting only integers ending in many zeroes, we add a small random matrix given by

smallMatrix = Table[Table[RandomInteger[{-999, 999}], {i, 1, 14}], {j, 1, 14}]

Then, we take

bigMatrix = basicMatrix.powersMatrix+smallMatrix

(in Mathematica notation, the dot . is used to denote the product of matrices). Now, we compute
the determinant twice:

a = Det[bigMatrix];

b = Det[bigMatrix];

3



Surprisingly, we quite often find that a and b contain different values! This is easily observed by
checking whether a==b, which quite often returns False, or by visually comparing their numerical
approximations N[a] and N[b].

Let us see an instance of a real execution of these procedures: with

basicMatrix =



−32 69 89 −60 −83 −22 −14 −58 85 56 −65 −30 −86 −9
6 99 11 57 47 −42 −48 −65 25 50 −70 −3 −90 31

78 38 12 64 −67 −4 −52 −65 19 71 38 −17 51 −3
−93 30 89 22 13 48 −73 93 11 −97 −49 61 −25 −4
54 −22 54 −53 −52 64 19 1 81 −72 −11 50 0 −81
65 −58 3 57 19 77 76 −57 −80 22 93 −85 67 58
29 −58 47 87 3 −6 −81 5 98 86 −98 51 −62 −66
93 −77 16 −64 48 84 97 75 89 63 34 −98 −94 19
45 −99 3 −57 32 60 74 4 69 98 −40 −69 −28 −26

−13 51 −99 −2 48 71 −81 −32 78 27 −28 −22 22 94
11 72 −74 86 79 −58 −89 80 70 55 −49 51 −42 66

−72 53 49 −46 17 −22 −48 −40 −28 −85 88 −30 74 32
−92 −22 −90 67 −25 −28 −91 −8 32 −41 10 6 85 21
47 −73 −30 −60 99 9 −86 −70 84 55 19 69 11 −84


and

smallMatrix =



528 853 −547 −323 393 −916 −11 −976 279 −665 906 −277 103 −485
878 910 −306 −260 575 −765 −32 94 254 276 −156 625 −8 −566

−357 451 −475 327 −84 237 647 505 −137 363 −808 332 222 −998
−76 26 −778 505 942 −561 −350 698 −532 −507 −78 −758 346 −545

−358 18 −229 −880 −955 −346 550 −958 867 −541 −962 646 932 168
192 233 620 955 −877 281 357 −226 −820 513 −882 536 −237 877

−234 −71 −831 880 −135 −249 −427 737 664 298 −552 −1 −712 −691
80 748 684 332 730 −111 −643 102 −242 −82 −28 585 207 −986

967 1 −494 633 891 −907 −586 129 688 150 −501 −298 704 −68
406 −944 −533 −827 615 907 −443 −350 700 −878 706 1 800 120
33 −328 −543 583 −443 −635 904 −745 −398 −110 751 660 474 255

−537 −311 829 28 175 182 −930 258 −808 −399 −43 −68 −553 421
−373 −447 −252 −619 −418 764 994 −543 −37 −845 30 −704 147 −534
638 −33 932 −335 −75 −676 −934 239 210 665 414 −803 564 −805



we got N[a] = −3.263388173990166 ·109768 and N[b] = −8.158470434975415 ·109768 and, executing
the same program repeatedly, other values different from these. None of these values is the correct
one, because the determinant of bigMatrix is, approximately, 1.95124219131987 · 109762.

We have found this erroneous behavior in Mathematica version 8 (released on November 15,
2010) up to version 9.0.1 (the latest version when the above mentioned experiments were done and
the first version when this manuscript was submitted), both under Mac and Windows. It seems
that it does not affect versions 6 and 7, at least in the same range of numbers.

We reported the bug on October 7, 2013 (reference CASE:303438), receiving a kind answer from
Wolfram Research Inc.:

It does appear there is a serious mistake on the determinant operation you mentioned. I
have forwarded an incident report to our developers with the information you provided.

We are always interested in improving Mathematica, and I want to thank you for bring-
ing this issue to our attention. If you run into any other behavior problems, or have any
additional questions, please don’t hesitate to contact us.

By June 2014, nothing had changed. We had received similar replies in the past, when one of
us reported other bugs (for instance, but not limited to, some of those explained in [2]), none of
which were fixed in the next release. So, all we could do was wait.

4



In June 29, 2014, Mathematica version 10 was released, and we1 quickly tried to check if the
problem had been fixed. In the web page http://www.wolfram.com/mathematica/new-in-10/

nothing is mentioned regarding the correction of errors, and we have received no additional feedback
on our bug report.

The bug is still present in this new release. Actually, the short description of the previous
section based on random matrices no longer shows the bug, but it still has consequences on our
experiments with integer matrices as in (2). We have found examples of matrices of polynomials with
integer coefficients evaluated at integers whose determinants are wrongly computed by Mathematica
version 10. Again, when the same determinant is evaluated twice, different answers are quite often
obtained. For the sake of brevity, we do not include these examples here, but if the reader2 is
interested, some notebooks that clearly show the bug in Mathematica 10, to which Mathematica 7
seems to be immune, can be downloaded at http://www.unirioja.es/cu/jvarona/downloads/

notebooksDetM10M7.zip

Other examples of wrong computations

Of course, there are many more examples of wrong computations done by a computer algebra
package. Many of them can be found in internet forums or distribution lists.

One typical example with Mathematica is the computation of a real integral that generates a
complex result, which is clearly impossible. For instance, in Mathematica notation (and where // N

serves to show the numerical value after computing the integral in a symbolic way), we get that

Integrate[Sqrt[(2t)^2 + (4 - 3t^2)^2], {t, 0, 2}] // N

is 0.881679 + 1.17073i, although (2t)2 + (4− 3t2)2 > 0 for 0 ≤ t ≤ 2.
Another example of a wrong computation of an integral is

Integrate[Exp[-p*t]*(Sinh[t])^3, {t, 0, Infinity}]

In this case, Mathematica provides the answer 6/(9− 10p2 + p4) conditioned to 0 < Re(p) < 1 and
Im(p) = 0. This is obviously wrong because, for real p, the integral is convergent only when p > 3.
Let us also consider the following integral (we thank one of the reviewers for this example):

Integrate[Integrate[Abs[Exp[2*Pi*I*x] + Exp[2*Pi*I*y]], {x, 0, 1}], {y, 0, 1}]

Both Mathematica and Maple return zero as the answer to this calculation. Yet this cannot be
correct, because the integrand is clearly positive and nonzero in the indicated region.

Finally, let us see an example which is not an integral, but rather involves the Wigner 3-j
symbols which appear in quantum mechanics. Mathematica asserts that

ThreeJSymbol[{r, 0}, {s+1, 0}, {s, 0}]

is 0, but it computes

ThreeJSymbol[{1, 0}, {2, 0}, {1, 0}]

1And the reviewers of the first version of this paper.
2Or the vendors of Mathematica.

5

http://www.wolfram.com/mathematica/new-in-10/
http://www.unirioja.es/cu/jvarona/downloads/notebooksDetM10M7.zip
http://www.unirioja.es/cu/jvarona/downloads/notebooksDetM10M7.zip


as
√

2/15, which is a contradiction.
Nowadays, we cannot avoid this kind of problem, and we must be aware of them. Any math-

ematical study that reports computational results should dedicate some effort to explaining why
the authors have faith in the results. For instance, verifying that the computation was performed
in two different ways (with two different systems, both numerically and symbolically,. . . ) and the
results agreed.

At the same time, while mathematicians must be aware of the potential problems with computer
algebra systems, developers should collaborate to avoid them, and this is far from being the actual
situation. Many researchers experience considerable frustration in dealing with such problems.
Often there is no clear way to communicate such difficulties, and if one does persist in contacting
the vendor, one often receives no feedback or follow-up response. This clearly should be improved.

In addition, if a researcher with programming expertise tries to understand what is happening,
another problem arises: not all mathematical software packages are open so that one can “look
under the hood”, and this complicates our efforts to figure out what is going on when a wrong
computation appears.

Conclusions

We have been using Mathematica as a tool in our mathematical research. All our computations
with Mathematica were symbolic, involving only integers (large integers, about 10 thousand digits
long) and polynomials (with degree 60 at most), so no numerical rounding or instability can arise in
them, and we completely trusted the results generated by Mathematica. However, we have obtained
completely erroneous results. Perhaps someone may think that this was an esoteric error, without
real relevance, because large integers do not appear in real life. This is not the case, because large
integers are commonly used, for instance, in cryptography, where everything should work without
serious errors. We have also briefly pointed out some other wrong computations that are clear to
any mathematician. How then can we trust in computer algebra systems?

We know that it is very difficult to avoid errors in non-trivial programs, and a considerable
effort is necessary to check them. Commercial computer algebra systems are black boxes and their
algorithms are opaque to the users (and of course, also the source code), which certainly does
not contribute to avoiding errors. This makes it difficult to apply modern techniques of software
verification to these kinds of systems (as an example of verification in the context of an open source
computer algebra system, see [5]). Moreover, lists of known bugs of computer algebra systems should
be made available to the users; this is standard in free software, but an anathema for commercial
packages.

Having made this criticism, let us stress that software systems have proved very useful to research
mathematicians. Some well-known instances are the proof of the four-color problem by Kenneth
Appel and Wolfgang Haken [1] and the Kepler conjecture by Thomas Hales [3]; less well-known is the
recent success of the mathematical software Kenzo in detecting an error in a published mathematical
theorem (see [6]). Software bugs should not prevent us from continuing this mutually beneficial
relationship in the future. However, for the time being, when dealing with a problem whose answer
cannot be easily verified without a computer, it is highly advisable to perform the computations
with at least two computer algebra systems.

6



References

[1] K. Appel and W. Haken, The solution of the four-color-map problem, Sci. Amer. 237 (1977),
108–121.

[2] Ó. Ciaurri and J. L. Varona, How reliable are computer calculations? (Spanish), Gac. R.
Soc. Mat. Esp. 9 (2006), 483–514.

[3] T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185.

[4] S. Karlin and G. Szegő, On certain determinants whose elements are orthogonal polynomi-
als, J. Analyse Math. 8 (1960/1961), 1–157.

[5] L. Lambán, J. Rubio, F. J. Mart́ın-Mateos and J. L. Ruiz-Reina, Verifying the bridge
between Simplicial Topology and Algebra: the Eilenberg-Zilber algorithm, Log. J. IGPL 22
(2014), 39–65.

[6] A. Romero and J. Rubio, Homotopy groups of suspended classifying spaces: an experimental
approach, Math. Comp. 82 (2013), 2237–2244.

7


