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Abstract. We study dual integral equations associated with Hankel
transforms, that is, dual integral equations of Titchmarsh’s type. We
reformulate these equations giving a better description in terms of con-
tinuous operators on Lp spaces, and we solve them in these spaces. The
solution is given both as an operator described in terms of integrals and
as a series

∑∞
n=0 cnJµ+2n+1 which converges in the Lp-norm and almost

everywhere, where Jν denotes the Bessel function of order ν. Finally, we
study the uniqueness of the solution.

1. Introduction

In some physical problems related with potential and electromagnetic or
acoustic radiation theory, sometimes the unknown function satisfies an inte-
gral equation over part of the range (0,∞) and a different integral equation
over the rest of the range. These equations are known as dual integral
equations. An important case is the so-called dual integral equations of
Titchmarsh’s type:

(1)


∫ ∞

0

tβf(t)Jα(xt) dt = g(x) if 0 < x < 1,∫ ∞

0

f(t)Jα(xt) dt = 0 if x > 1,

where Jα stands for the Bessel function of order α (see [18] or [3, Ch. VII]),
g is a given function and f is the unknown function. For a function h,∫ ∞

0

h(t)Jα(xt)(xt)1/2 dt, x > 0,
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is usually known as the Hankel transform of h; so, the second equation in (1)
means that the Hankel transform of t−1/2f(t) is supported on [0, 1], and the
first one imposes a condition on the Hankel transform of tβ−1/2f(t).

There are different methods to solve these equations, most of them only
formal. For instance, they can be solved by using Mellin transforms or some
other integral transforms. Also, they can be reduced to Fredholm integral
equations. Usually, these methods allow to find the solution f as an explicit
expression with integrals; we can see some of them in the books [14, p. 337],
[10, § 12, p. 65], [7, § 5.11] and [3, p. 76]. Another method consists of solving
the equation as a series

∑∞
n=0 cnJµ+2n+1; see [15] and [16], the first one with

a large bibliography. But, as long as the authors know, it is only studied as
a formal method.

In this paper we pursuit a rigorous approach to solve dual integral equa-
tions. We reformulate (1) so as to obtain a better description in terms of
operators on Lp spaces, and we find the solution in these spaces. Also,
we identify the solution as a Fourier-Neumann series whose Lp and almost
everywhere convergence is studied.

The paper is organised as follows: in section 2 we state the dual integral
equation in a more convenient form and define some associated operators.
Section 3 collects some properties of Bessel functions and Jacobi polynomi-
als. We describe a solution to the dual integral equation in section 4, and
section 5 is devoted to the uniqueness of the solution. Sections 6 and 7
contain some of the proofs.

Throughout this paper, unless otherwise stated, we will use C to denote
a positive constant independent of f (and all other variables), which can
assume different values in different occurrences.

Also, for any function g defined on [0, 1], the extension given by g(x) = 0
at each x > 1 will be denoted by χ[0,1]g, with a small abuse of notation.
Strictly speaking, χ[0,1] could be understood either as a characteristic func-
tion or as an operator taking functions defined on [0, 1] to functions defined
on [0,∞).

2. The dual integral equation

Let us define, for α > −1, the integral operator Hα as

Hα(f, x) =
x−α/2

2

∫ ∞

0

f(t)Jα(
√

xt)tα/2 dt, x > 0,

for suitably integrable functions f . For instance, Hα is an isomorphism from
the Schwartz class

S+ = {f ∈ C∞((0,∞)) : ∀k, j ≥ 0, |tkf (j)(t)| < Ck,j}
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onto itself and H2
α is the identity map. This operator is a modified Hankel

transform. For α ≥ −1/2, 1 ≤ p ≤ 2, and 1/p + 1/p′ = 1, Hα extends to a
bounded operator from Lp([0,∞), xα dx) into Lp′([0,∞), xα dx), i.e.

‖Hαf‖Lp′ ([0,∞),xαdx) ≤ C‖f‖Lp([0,∞),xαdx), f ∈ Lp([0,∞), xα dx).

However, the Hankel transform does not extend to Lp([0,∞), xα dx) if 2 < p
(see [2, 12, 17]).

Another operator will be used: the multiplier of the Hankel transform
associated to χ[0,1], that is, the operator Mα given by Hα(Mαf) = χ[0,1]Hαf .
This multiplier plays an important role in the study of orthogonal Fourier
expansions (see [17] in connection with Fourier-Neumann series, and [11] for
Laguerre series).

Herz’s classical result determines the range of p such that Mα is a well
defined, bounded operator from Lp([0,∞), xα dx) into itself ([5]; see also [11,
17]):

Proposition 2.1. Let α ≥ −1/2 and 1 < p < ∞. Then

‖Mαf‖Lp([0,∞),xαdx) ≤ C‖f‖Lp([0,∞),xαdx) ⇐⇒ 4(α+1)
2α+3

< p < 4(α+1)
2α+1

.

For more general results on Hankel multipliers, see [12] and the references
therein.

In a dense subset of Lp([0,∞), xα dx) (for instance, S+)

Mαf = Hα(χ[0,1]Hαf)

and H2
α = Id. Whenever Hα is well defined, it follows that Hαf is supported

on [0, 1] if and only if Mαf = f .
Now, let us reformulate the dual integral equations. With a simple change

of notation, we can write (1) as

(2)


x−α/2

2

∫ ∞

0

tβf(t)Jα(
√

xt)tα/2 dt = g(x) if 0 < x < 1,

x−α/2

2

∫ ∞

0

f(t)Jα(
√

xt)tα/2 dt = 0 if x > 1.

The second equation in (2) means that supp(Hαf) ⊆ [0, 1]; in other words,
Mαf = f , provided that f belongs to a convenient Lp space.

The first equation in (2) can be read as Hα(tβf)χ[0,1] = χ[0,1]g. Under
certain conditions, Hα is an inversible operator. Then, we obtain the equiv-
alent equation Mα(tβf, x) = Hα(χ[0,1]g, x). It will be convenient to multiply
both sides by x−β, so we get x−βMα(tβf, x) = x−βHα(χ[0,1]g, x).

To sum up, we are interested in solving in Lp([0,∞), xα dx) the equation

(3)

{
x−βMα(tβf, x) = x−βHα(χ[0,1]g, x),

Mαf = f.
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In a strict sense, (2) and (3), are not exactly equivalent if we do not as-
sume that the functions belong to a convenient Lp space. However, it is
interesting to note that, for any practical physical application, the interpre-
tation of a dual integral equation and its solution as in (2) is equivalent to
its interpretation as in (3).

Together withHα and Mαf = Hα(χ[0,1]Hαf), let us consider the operators
Mα,β and Hα,β given by

Mα,βf = x−βMα(tβf),

Hα,βg = x−βHα(χ[0,1]g).

With this notation, the dual integral equation (3) can be written as

(4)

{
Mα,βf = Hα,βg,

Mαf = f.

Those operators are well defined, for instance, if f ∈ S+ and g ∈ C∞([0, 1]).
We see below that Mα,β is bounded with the Lp([0,∞), xα dx)-norm, under
some conditions on α, β, and p. Therefore, it extends to a bounded operator
on Lp([0,∞), xα dx). With a similar argument, Hα,β extends to a bounded
operator from Lp([0, 1], xα dx) into Lp([0,∞), xα dx).

Proposition 2.2. Let α ≥ −1/2, β ≥ 0 and 1 < p < ∞. Then

‖Mα,βf‖Lp([0,∞),xαdx) ≤ C‖f‖Lp([0,∞),xαdx) ⇐⇒ 4(α+1)
2α+4β+3

< p < 4(α+1)
2α+4β+1

.

Proof. We give only a sketch of the proof. It follows the proof for Mα

in [17]. Actually, this is a particular case of weighted versions of Herz’s
classical result (with power weights).

Let us take p0 = 4(α+1)
2α+4β+3

and p1 = 4(α+1)
2α+4β+1

. For each f ∈ S+, Fubini’s

theorem applies to Mα,βf = x−βHα(χ[0,1]Hα(tβf)), then Lommel’s formula∫ 1

0

Jα(yt)Jα(yx)y dy =
1

t2 − x2
(tJα+1(t)Jα(x)− xJα(t)Jα+1(x))

gives

Mα,β(f, x) = 1
2
x−α/2−β+1/2Jα+1(x

1/2)H(tα/2+βJα(t1/2)f(t), x)

− 1
2
x−α/2−βJα(x1/2)H(tα/2+β+1/2Jα+1(t

1/2)f(t), x)

= W1(f, x)−W2(f, x),

where H is the Hilbert transform H(f, x) =
∫∞

0
f(t)
x−t

dt. The Hilbert trans-

form is a bounded operator from Lp([0,∞), xλ dx) into itself if and only if
−1 < λ < p − 1. Fix 1 < p < ∞; then, by using the bound |Jα(x)| ≤
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Cx−1/2, it is easy to check that W1 and W2 are bounded operators on
Lp([0,∞), xα dx) if

p0 < p < 4(α+1)
2α+4β−1

(disregard the right hand side inequality if 2α + 4β − 1 ≤ 0) and

4(α+1)
2α+4β+5

< p < p1,

respectively. Then, Mα,β is bounded if p0 < p < p1.
In fact, p0 < p < p1 is a necessary condition for the boundedness of Mα,β.

By interpolation, we only need to observe that Mα,β is not bounded for
p = p0 (if p0 > 1) and p = p1. If p = p0 > 1, W2 is bounded; however, more
precise estimates for the Bessel functions near infinity and a clever election
of f show that W1 is not bounded. Then, Mα,β is not bounded. The case
of p = p1 is analogous. �

Regarding the Hankel transform Hα, we have the following theorem of
Rooney ([9, p. 1100], [6], after a change of notation):

Theorem 2.3 (Rooney). Let α > −1, 1 < p ≤ q < ∞, max{1
p
, 1 − 1

q
} ≤

ν < α + 3
2
. Then( ∫ ∞

0

|x−ν/2+α/2+3/4Hα(h, x)|q dx

x

)1/q

≤ C
( ∫ ∞

0

|xν/2+α/2+1/4h(x)|p dx

x

)1/p

.

The boundedness of Hα,β follows as a consequence:

Proposition 2.4. Let α ≥ −1/2, β ≥ 0, 1 < p < ∞ and assume

2(α + 1)

α + β + 1
≤ p <

α + 1

β
.

Then ‖Hα,βg‖Lp([0,∞),xαdx) ≤ C‖g‖Lp([0,1],xαdx).

Proof. Take ν = 2β + α + 3
2
− 2(α+1)

p
and p = q. It is easy to see that we

can apply Theorem 2.3 and get

‖Hα,βg‖Lp([0,∞),xαdx) = ‖x−β+(α+1)/pHα(χ[0,1]g)‖Lp([0,∞), dx
x

)

≤ C‖xβ+(α+1)(1−1/p)χ[0,1]g‖Lp([0,∞), dx
x

)

= C‖xβ+(α+1)(1−2/p)χ[0,1]g‖Lp([0,∞),xαdx)

≤ C‖g‖Lp([0,1],xαdx),

where the last inequality follows from β + (α + 1)(1− 2/p) ≥ 0. �

Then, our dual integral equation (4) is well posed and the question we try
to solve is the following: given any g ∈ Lp([0, 1], xα dx), is there a (unique)
solution f ∈ Lp([0,∞), xα dx)?
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3. Bessel functions and Jacobi polynomials

If α > −1, the Bessel functions satisfy the orthogonality relation∫ ∞

0

Jα+2n+1(x)Jα+2m+1(x)
dx

x
=

δnm

2(2n + α + 1)
, n, m = 0, 1, 2, . . .

After a change of variable, the system {jα
n}∞n=0 given by

jα
n (x) =

√
α + 2n + 1Jα+2n+1(

√
x)x−α/2−1/2

is orthonormal on L2([0,∞), xα dx). There is a tight relation between Bessel

functions and Jacobi polynomials P
(α,β)
n and the following lemma is relevant

for our purposes; the first part was proved in [1] and the second part will
be proved in section 6. Of course, these formulas hold in Lebesgue spaces,
that is, almost everywhere.

Lemma 3.1. Let α, β > −1 with α + β > −1. Then

(5) Hα(jα+β
n , x) = 2−β

√
α+β+2n+1 Γ(n+1)

Γ(β+n+1)
(1− x)βP (α,β)

n (1− 2x)χ[0,1](x).

Assume further β < 1. Then

(6) χ[0,1](x)Hα(tβjα+β
n , x) = 2β

√
α+β+2n+1 Γ(α+β+n+1)

Γ(α+n+1)
P (α,β)

n (1− 2x)χ[0,1](x).

In particular, supp(Hα(jα+β
n )) ⊆ [0, 1]. However, note that (6) refers only

to the Hankel transform of tβjα+β
n at x ∈ [0, 1]; nothing is claimed for x > 1.

The Jacobi polynomials {P (α,β)
n (x)}∞n=0 of order α, β (see [3, Ch. X] or [13,

Ch. IV]) are orthogonal on [−1, 1] with respect to the weight (1−x)α(1+x)β,
α, β > −1.

After a change of variable, the system {P (α,β)
n (1 − 2x)}∞n=0 is orthogonal

on [0, 1] with respect to the weight xα(1 − x)β, α, β > −1. To be precise,
the orthogonality relation for these polynomials is∫ 1

0

P (α,β)
n (1− 2x)P (α,β)

m (1− 2x)xα(1− x)β dx = h(α,β)
n δnm

with

h(α,β)
n =

Γ(α + n + 1)Γ(β + n + 1)

(α + β + 2n + 1)Γ(α + β + n + 1)n!
.

Let us take

(7) p(α,β)
n (x) = (h(α,β)

n )−1/2P (α,β)
n (1− 2x), n = 0, 1, 2, . . .

This is an orthonormal system on [0, 1] with respect to the weight w(x) =
xα(1− x)β. For any suitable function g defined on [0, 1], its Fourier-Jacobi
series is the formal expansion

g ∼
∞∑

n=0

an(g)p(α,β)
n , an(g) =

∫ 1

0

g(x)p(α,β)
n (x)xα(1− x)β dx.
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The following result by Muckenhoupt gives conditions for the uniform
boundedness and the mean convergence of Sng (actually, both are equiva-
lent, by the Banach-Steinhaus theorem):

Theorem 3.2 (Muckenhoupt [8]). Assume that α > −1, β > −1, 1 < p <
∞ and let Sng denote the nth partial sum of the Jacobi polynomial series
for g with parameters α and β. Assume that∣∣∣∣a + (α + 1)

(1

p
− 1

2

)∣∣∣∣ < min

{
1

4
,
α + 1

2

}
,∣∣∣∣b + (β + 1)

(1

p
− 1

2

)∣∣∣∣ < min

{
1

4
,
β + 1

2

}
.

Then, there exists a constant C such that

‖xa(1− x)bSng‖Lp([0,1],xα(1−x)β dx) ≤ C‖xa(1− x)bg‖Lp([0,1],xα(1−x)β dx)

for every n ∈ N, and

lim
n
‖xa(1− x)b(Sng − g)‖Lp([0,1],xα(1−x)β dx) = 0

for every g with ‖xa(1− x)bg‖Lp([0,1],xα(1−x)β dx) < ∞.

For our purposes, we will only need the following:

Corollary 3.3. Let α ≥ −1/2, β ≥ 0, 1 < p < ∞ and

max

{
4(α + 1)

2α + 3
,

4

2β + 3

}
< p < min

{
4(α + 1)

2α + 1
,

4

2β + 1

}
.

Then,

lim
n→∞

Sng = g

in the Lp([0, 1], xα dx)-norm, for any g ∈ Lp([0, 1], xα dx).

Proof. Take a = 0 and b = −β/p in the previous result. �

The scheme we use to solve the dual equation (4) goes as follows: expand

g as a Fourier-Jacobi series, that is, g =
∑∞

n=0 anp
(α,β)
n ; then, the solution is

f =
∑∞

n=0 bnj
α+β
n , where bn is explicitely given in terms of an and the series

converges both in Lp and almost everywhere.
Series of the form

∑∞
n=0 cnJµ+n are usually known as Neumann series.

Thus, we are describing the solution of the dual integral equation as a
Fourier-Neumann series.

The operator that takes g into f will be proved to be bounded on Lp. It
can also be written in terms of integral operators.
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4. Main results: The solution of the equation

In this section we introduce the operator Lα,β and state some of its prop-
erties. This operator solves the dual integral equation (4).

Let g a suitable function on [0, 1]. We define Lα,βg by

Lα,β(g, x) =
1

2β+1Γ(β)

∫ 1

0

Jα+β(
√

xt)

(xt)α/2+β/2

∫ t

0

g(u)(t− u)β−1uα du dt, x > 0,

if β > 0 and Lα,0g = Hα(χ[0,1]g). Our first result states that Lα,β is a
bounded operator from Lp([0, 1], xα dx) into Lp([0,∞), xα dx):

Theorem 4.1. Let α ≥ −1/2, β ≥ 0, 1 < p < ∞ and

2(2α + 3)

2(α + β) + 3
≤ p < ∞.

Then

‖Lα,βg‖Lp([0,∞),xαdx) ≤ C‖g‖Lp([0,1],xαdx), g ∈ Lp([0, 1], xα dx).

In what follows, we write P ↑ ≤ Q with the meaning P < Q. In this way,
we have

max{A, B↑} ≤ M ⇐⇒ A ≤ M and B < M.

This will keep the notation a bit shorter.

Corollary 4.2. Let α ≥ −1/2, β ≥ 0, 1 < p < ∞ and assume

max

{
2(2α + 3)

2(α + β) + 3
,
(4(α + 1)

2α + 3

)↑}
≤ p < min

{
4(α + 1)

2α + 1
,

4

2β + 1

}
.

Then, for any g ∈ Lp([0, 1], xα dx), we have

g =
∞∑

n=0

an(g)p(α,β)
n , an(g) =

∫ 1

0

g(x)p(α,β)
n (x)xα(1− x)β dx

in the Lp([0, 1], xα dx)-norm and

Lα,βg =
∞∑

n=0

bnj
α+β
n , bn = 2−β Γ(α+n+1)1/2(n!)1/2

Γ(α+β+n+1)1/2Γ(β+n+1)1/2 an(g)

in the Lp([0,∞), xα dx)-norm and almost everywhere.

For the proof of Theorem 4.1 and Corollary 4.2, see section 7.
Before going on, let us write Lemma 3.1 in terms of Mα, Mα,β, and Hα,β.

It is clear from (5) that Hαjα+β
n is supported on [0, 1], so that

(8) Mα(jα+β
n ) = jα+β

n .
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And, taking (7) into account, (6) reads as

Mα,β(jα+β
n ) = x−βMα(tβjα+β

n ) = x−βHα(χ[0,1]Hα(tβjα+β
n ))(9)

= x−βHα(χ[0,1]dnp
(α,β)
n ) = dnHα,βp(α,β)

n

with dn = 2β Γ(α+β+n+1)1/2Γ(β+n+1)1/2

Γ(α+n+1)1/2(n!)1/2 .

Our main result is the following:

Theorem 4.3. Let α ≥ −1/2, 0 ≤ β < 1, 1 < p < ∞ and

max

{
2(2α + 3)

2(α + β) + 3
,
(4(α + 1)

2α + 3

)↑}
≤ p < min

{
4(α + 1)

2α + 4β + 1
,

4

2β + 1

}
.

For each g ∈ Lp([0, 1], xα dx), f = Lα,βg is a solution in Lp([0,∞), xα dx)
of the dual integral equation{

Mα,βf = Hα,βg,

Mαf = f.

Proof. Let g ∈ Lp([0, 1], xα dx) and f = Lα,βg. It is easy to see that we can
apply Propositions 2.1, 2.2 and 2.4. Since Lα,β is bounded (by Theorem 4.1),
Corollary 4.2 and (9) give

Mα,βf = lim
n→∞

Mα,β

( n∑
k=0

bkj
α+β
k

)
= lim

n→∞
Hα,β

( n∑
k=0

bkdkp
(α,β)
k

)
= Hα,βg,

while Corollary 4.2 and (8) yield

Mαf = lim
n→∞

Mα

( n∑
k=0

bkj
α+β
k

)
= lim

n→∞

n∑
k=0

bkj
α+β
k = f. �

5. Uniqueness of the solution

Let us consider the Lp subspaces

Bp,α,β = span{jα+β
n (x)}∞n=0 (closure in Lp([0,∞), xα dx)),

Ep,α = {f ∈ Lp([0,∞), xα dx) : Mαf = f} .

The following results about the mean convergence of Fourier-Neumann series
were proved in [1]:

Theorem 5.1. Let α > −1, α + β > −1, 4/3 < p < 4, and

max

{
−α + β + 1

2
,−1

4

}
< (α + 1)

(
1

2
− 1

p

)
+

β

2
<

1

4
.
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Then, for any f ∈ Bp,α,β there exists a unique expansion

f =
∞∑

n=0

bn(f)jα+β
n

which holds in the Lp([0,∞), xα dx)-norm. This expansion also holds almost
everywhere.

Theorem 5.2. Let α ≥ −1/2, β > −1/2, 4/3 < p with

−1

4
< (α + 1)

(
1

2
− 1

p

)
<

1

4
.

If p < 2, assume further

−1

4
< (α + 1)

(
1

2
− 1

p

)
− |β|

2
.

Then Bp,α,β = Ep,α.

Using these results, we can prove

Theorem 5.3. Let α ≥ −1/2, 0 ≤ β < 1, 1 < p < ∞ and

max

{
2(2α + 3)

2(α + β) + 3
,
( 4(α + 1)

2α− 2β + 3

)↑}
≤ p < min

{
4(α + 1)

2α + 4β + 1
,

4

2β + 1

}
.

Then, f = Lα,βg is the unique solution in Lp([0,∞), xα dx) of the dual
equation {

Mα,βf = Hα,βg,

Mαf = f.

Proof. It is not difficult to check that, under the hypothesis of this theorem,
we can deduce the ones of Theorems 5.1 and 5.2 and Theorem 4.3. For
instance, 4

3
< p follows from

4

3
< max

{
2(2α + 3)

2(α + β) + 3
,

4(α + 1)

2α− 2β + 3

}
.

Indeed, if this inequality failed we would have

2(2α + 3)

2(α + β) + 3
≤ 4

3
,

4(α + 1)

2α− 2β + 3
≤ 4

3
,

which yield 2α + 3 ≤ 4β and α + 2β ≤ 0, respectively. Then α ≤ −3/4,
which contradicts α ≥ −1/2.

According to Theorem 4.3, Lα,βg is a solution of the dual equation. Let
us see that it is unique. Let f be a solution, that is, f ∈ Lp([0,∞), xα dx),
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Mαf = f and Mα,βf = Hα,βg. In particular, f ∈ Ep,α. By Theorems 5.2
and 5.1, we can expand f as a Fourier-Neumann series

f =
∞∑

n=0

bn(f)jα+β
n

which converges in the Lp([0,∞), xα dx)-norm. Proving that each bn(f) is
uniquely determined will suffice.

From (9) and the fact that Mα,β is a continuous (bounded) operator in
Lp, we get

Hα,βg = Mα,βf =
∞∑

n=0

bn(f)dnHα,βp(α,β)
n .

Our assumptions on α, β, and p, togehter with the estimates

Jα(x) = O(xα), x → 0+, and Jα(x) = O(x−1/2), x →∞,

yield xβjα+β
k ∈ Lp′([0,∞), xα dx), where 1/p + 1/p′ = 1. Hence, the map

h 7→
∫∞

0
xβjα+β

k (x)h(x)xα dx is a continuous operator from Lp([0,∞), xα dx)
into R. Then,∫ ∞

0

xβjα+β
k (x)Hα,β(g, x)xα dx

=
∞∑

n=0

bn(f)dn

∫ ∞

0

xβjα+β
k (x)Hα,β(p(α,β)

n , x)xα dx.

Now, recall the multiplication formula for the Hankel transform, which is
valid for h1, h2 ∈ L2([0,∞), xα dx):∫ ∞

0

h1(x)Hα(h2, x)xα dx =

∫ ∞

0

Hα(h1, x)h2(x)xα dx.

Indeed, in S+ this follows from Fubini’s theorem, then it extends to the
whole L2([0,∞), xα dx) by continuity.

Thus, the definition of Hα,β, together with (5) and the orthogonality of
Jacobi polynomials, yield∫ ∞

0

xβjα+β
k (x)Hα,β(p(α,β)

n , x)xα dx =

∫ ∞

0

jα+β
k (x)Hα(χ[0,1]p

(α,β)
n , x)xα dx

= rk

∫ 1

0

(1− x)βp
(α,β)
k (x)p(α,β)

n (x)xα dx = rkδkn

with a constant rk 6= 0 (actually, rk = 1/dk, where dk comes from (9), as
before). Therefore,∫ ∞

0

xβjα+β
n (x)Hα,βg(x)xα dx = bn(f). �
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6. Proof of Lemma 3.1

As we already mentioned, the first part of Lemma 3.1 was proved in [1],
so we only prove now the second part. Let 2F1 denote, as usual, the hyper-
geometric function. We use the formula∫ ∞

0

t−λJµ(at)Jν(bt) dt

=
2−λΓ( 1

2
(µ+ν−λ+1))bν

aν−λ+1Γ(ν+1)Γ( 1
2
(λ+µ−ν+1)) 2F1

(
µ+ν−λ+1

2
, ν−λ−µ+1

2
; ν + 1; b2

a2

)
, 0 < b < a,

valid when µ + ν − λ > −1 and λ > −1 (see [4, 8.11 (9), p. 48] or [18,
13.4 (2), p. 401]). Take a = 1 and x = b2, with parameters λ = −β,
µ = α +β +2n+1 and ν = α. Then, for β < 1, α +β > −1, and 0 < x < 1
we get, after a change of variable,

x−α/2

2

∫ ∞

0

yβjα+β
n (y)Jα(

√
xy)yα/2 dy

= 2β
√

α+β+2n+1 Γ(α+β+n+1)
Γ(α+1)Γ(n+1) 2F1(α + β + n + 1,−n; α + 1; x).

Taking into account that

P (α,β)
n (x) = Γ(α+n+1)

Γ(α+1)Γ(n+1) 2F1(α + β + n + 1,−n; α + 1; 1−x
2

)

whenever α, β > −1 and −1 < x < 1, it follows

x−α/2

2

∫ ∞

0

yβjα+β
n (y)Jα(

√
xy)yα/2 dy

= 2β
√

α+β+2n+1 Γ(α+β+n+1)
Γ(α+n+1)

P (α,β)
n (1− 2x),

if x ∈ (0, 1). We have not finished yet, because this integral must be under-
stood as an improper Riemann integral, not a Lebesgue integral. In other
words, this means

lim
R→∞

Hα(tβjα+β
n χ[0,R], x) = 2β

√
α+β+2n+1 Γ(α+β+n+1)

Γ(α+n+1)
P (α,β)

n (1− 2x),

pointwisely on (0, 1). Now, Hα is a bounded operator, so that

lim
R→∞

Hα(tβjα+β
n χ[0,R]) = Hα(tβjα+β

n )

in the Lp-norm. It follows that

Hα(tβjα+β
n , x) = 2β

√
α+β+2n+1 Γ(α+β+n+1)

Γ(α+n+1)
P (α,β)

n (1− 2x),

almost everywhere on [0, 1].
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7. Proof of Theorem 4.1 and Corollary 4.2

Lemma 7.1. Let α ≥ −1/2, β ≥ 0, and 1 < p < ∞, with 2(2α+3)
2(α+β)+3

≤ p.

Then

‖Hα+β(χ[0,1]h)‖Lp([0,∞),xα dx) ≤ C‖h‖Lp([0,1],xα dx), h ∈ Lp([0, 1], xα dx).

Proof. Take ν = α + β + 3
2
− 2α+1

p
. Then

‖Hα+β(χ[0,1]h)‖Lp([0,∞),xα dx) = ‖x−ν/2+(α+β)/2+3/4Hα+β(χ[0,1]h)‖
Lp([0,∞),

dx
x

)
.

With our assumptions on α, β, and p we can apply Theorem 2.3 and get

‖Hα+β(χ[0,1]h)‖Lp([0,∞),xα dx) ≤ C‖xν/2+(α+β)/2+1/4χ[0,1]h‖
Lp([0,∞),

dx
x

)

= C‖xα+β+1−2(α+1)/ph‖Lp([0,1],xα dx).

The easy observation that α + β + 1− 2α+1
p
≥ 0 finishes the proof. �

Proof of Theorem 4.1. Lemma 7.1 proves Theorem 4.1 in the case β = 0,
since Lα,0g = Hα(χ[0,1]g). Now, observe that Lα,βg = 2−βHα+β(χ[0,1]Iα,βg)
if β > 0, where

Iα,β(g, x) =
x−(α+β)

Γ(β)

∫ x

0

g(t)(x− t)β−1tα dt, 0 < x < 1

is the Erdélyi-Kober operator. It is well known that this operator is bounded
in Lp([0, 1], xα dx) if α > −1, β > 0, and 1 < p < ∞. Indeed, after a change
of variable we obtain

Iα,β(g, x) =
1

Γ(β)

∫ 1

0

(1− z)β−1zαg(xz) dz

and, by Minkowski’s integral inequality,

‖Iα,βg‖Lp([0,1],xαdx) ≤
1

Γ(β)

∫ 1

0

(1− z)β−1zα‖g(xz)‖Lp([0,1],xαdx) dz

≤ ‖g‖Lp([0,1],xαdx)
1

Γ(β)

∫ 1

0

(1− z)β−1zα−(α+1)/p dz

= C‖g‖Lp([0,1],xαdx),

where we have used that ‖g(xz)‖Lp([0,1],xαdx) ≤ z−(α+1)/p‖g‖Lp([0,1],xαdx) and∫ 1

0

(1− z)β−1zα−(α+1)/p dz = B(β, (α + 1)(1− 1/p)) < ∞.

Thus, Iα,β is bounded and again Lemma 7.1 proves the theorem. �
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Proof of Corollary 4.2. Let g ∈ Lp([0, 1], xα dx). Under our assumptions on
α, β, and p, it is easy to check that we can apply Corollary 3.3. Therefore,

g =
∞∑

n=0

an(g)p(α,β)
n , an(g) =

∫ 1

0

g(x)p(α,β)
n (x)xα(1− x)β dx,

in the Lp([0, 1], xα dx)-norm. By Theorem 4.1, Lα,β is a continuous (i.e.
bounded) operator from Lp([0, 1], xα dx) into Lp([0,∞), xα dx). Then,

Lα,βg =
∞∑

n=0

an(g)Lα,βp(α,β)
n ,

where the convergence holds in the Lp-norm. Now, consider the following
formula (see [4, 13.1 (43), p. 191]):

Iα,β(P (α,β)
n (1− 2t), x) = Γ(α+n+1)

Γ(α+β+n+1)
P (α+β,0)

n (1− 2x).

Lemma 3.1 (with parameters α + β and 0 instead of α and β, respectively)

gives Hα+β(jα+β
n , x) =

√
α + β + 2n + 1P

(α+β,0)
n (1− 2x)χ[0,1](x), so that

(10) Hα+β(χ[0,1]P
(α+β,0)
n (1− 2t)) = (α + β + 2n + 1)−1/2jα+β

n

(since H2
α+β = Id in L2). Thus,

(11) Lα,β(P (α,β)
n (1− 2t)) = 2−β Γ(α + n + 1)√

α + β + 2n + 1Γ(α + β + n + 1)
jα+β
n

if β > 0. In the case β = 0, (10) and Lα,0g = Hα(χ[0,1]g) give (11), as well.

In terms of the normalised polynomials p
(α,β)
n , this means

Lα,βp(α,β)
n = 2−β Γ(α+n+1)1/2(n!)1/2

Γ(α+β+n+1)1/2Γ(β+n+1)1/2 j
α+β
n ,

so that

Lα,βg =
∞∑

n=0

an(g)2−β Γ(α+n+1)1/2(n!)1/2

Γ(α+β+n+1)1/2Γ(β+n+1)1/2 j
α+β
n

in the Lp-norm and, by Theorem 5.1, almost everywhere. �
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