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ABSTRACT. Discrete Morse theory is an efficient method which allows one to study the
topology of discrete objects. The instrumental tool in the algebraic setting of this theory is
the notion of admissible discrete vector field. In this paper, we present a formally verified
implementation of an algorithm in charge of building an admissible discrete vector field
from a digital image. Such a program will play a key role to analyze biomedical images.

INTRODUCTION

Symbolic manipulation is a field of Computer Science which consists of two branches:
Computer Algebra and Mechanized Reasoning based on computational logic. The Calcule-
mus initiative [2]| set out the challenge of merging these two lines of symbolic computation
through the integration of Computer Algebra (computation) and Mechanized Reasoning
(deduction) systems.

In this paper, we present a particularization of this integration to the scope of Algebraic
Digital Topology. In this discipline the use of homological methods to analyze digital images
has been broadly applied, see, for instance, [12]. In our case, we introduce the implemen-
tation of an algorithm removing some elements from a digital image but keeping the same
homological information. The integration of computation and deduction stems from the
fact that the correctness of our implementation has been formally verified by means of an
interactive Proof Assistant.

The feasibility of applying our programs in real situations has been tested through the
study of some biomedical images. In those examples, and thanks to our programs, the
computational times are dramatically reduced.

1. THE REDUCTION ALGORITHM

The task of extracting homological information from a digital image can be accomplished
through matrix operations (rank, diagonalization, ...) of some matrices, called boundary
(or incidence) matrices, associated with the image. A detailed description of the procedure
to obtain boundary matrices from an image can be seen in [9].

However, in some cases those matrices are so huge that makes direct computations im-
practical. Therefore, a method to reduce the size of the matrices but preserving homology is
appealing. Our reduction process is based on Discrete Morse Theory [5]; namely, we work in
the algebraic setting presented in [13]. There, an algorithm (from now on, called RS’s algo-
rithm; RS stands for Romero—Sergeraert) to construct an admissible discrete vector field is
explained. Roughly speaking, an admissible discrete vector field, associated with an image,
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is a recipe which indicates both the “useless” elements of the image (in the sense, that they
can be removed without changing its homology) and the critical ones (those whose removal
modifies the homology).

The input of the RS algorithm is a boundary matrix and its output is an admissible
discrete vector field. From the boundary matrix and the vector field, a new matrix (smaller
than the original one) can be obtained. The importance of this new matrix is twofold: on
the one hand, we can obtain the same homological information from the two matrices (this
was proved in [13, Theorem 19]); and, on the other hand, the new matrix is much smaller
than the original one (in addition, in most of the cases it is null or empty). Therefore, we
can use the matrix produced by the RS algorithm to obtain information about the digital
image in a much faster way than using the boundary matrix.

It is not the aim of this paper to provide a detailed description of the RS algorithm;
on the contrary, we provide some details about our implementation of that algorithm, its
corresponding verification and its use to handle huge images.

2. FrROM COMPUTATION TO DEDUCTION THROUGH TESTING

The development of a formally certified implementation of the RS algorithm has followed
the methodology presented in [11]. Firstly, we implement a version of our programs in
Haskell [10], a lazy functional programming language. Subsequently, we intensively test
our implementation using QuickCheck [3], a tool which allows one to automatically test
properties about programs implemented in Haskell. Finally, we verify the correctness of our
programs using the COQ interactive Proof Assistant [4] and its SSREFLECT library [6].

The choice of Hagkell to implement our programs was because both the code and the
way of working is similar to the ones of the CoQ formal proof management system. In this
programming language, we have defined the functions gen_adm_dvf and matrixReduced

which implement, respectively, the RS algorithm and the reduction process (the latter
function invokes the former one to generate an admissible discrete vector field from a matrix
and, subsequently, obtains a reduced matrix).

The usage of QuickCheck can be considered as a good starting point towards the formal
verification of our programs. On the one hand, a specification of the properties which must
be satisfied by our programs is given (a necessary step in the formalization process). On
the other hand, before trying a formal verification of our programs (a quite difficult task)
we are testing them, a process which can be useful in order to detect bugs. Let us present
an example: using a Haskell function called admissible we have specified the admissibility
property; now, we can test whether gen_adm_dvf satisfies such property.

> quickCheck M -> admissible (gen_adm_dvf M)
+ + + 0K, passed 100 tests.

The above display must be read as follows. In the first line we state that given a matrix M,
the output of gen_adm_dvf fulfills the specification of the property called admissible. The
second line, which is the result produced by QuickCheck when evaluating the statement of
the first line, means that QuickCheck has generated 100 random values for M, checking that
the property was true for all these cases.

After testing our programs, and as final step to confirm their reliability, we can undertake
the challenge of formally certify their correctness. To this aim, we must translate both the
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FIGURE 1. Synapses extraction from three images of a neuron

programs and the properties from Haskell to C0Q, a task which is quite direct since these
two systems are close. Then, we have to prove lemmas like the following one.

Lemma admissibility_gen_adm_dvf: forall M, admissible (gen_adm_dvf M)

In particular, the above lemma states the admissibility property for gen_adm_dvf. This
lemma and the one stating that gen_adm_dvf constructs a discrete vector field have been
proved in CoQ; thereby, our implementation of the RS algorithm is correct.

3. APPLICATION TO BIOMEDICAL IMAGES

Biomedical images are a suitable benchmark for testing our programs. On the one hand,
the amount of information included in this kind of images is usually huge; then, a process
able to reduce those images but keeping the homological properties can be really useful. On
the other hand, software systems dealing with biomedical images must be trustworthy; this
is our case since we have formally verified the correctness of our programs.

As an example, we can consider the problem of counting the number of synapses in a
neuron. Synapses [1] are the points of connection between neurons and are related to the
computational capabilities of the brain. Therefore, the treatment of neurological diseases,
such as Alzheimer, may take advantage of procedures modifying the number of synapses.

Up to now, the study of the synaptic density evolution of neurons was a time-consuming
task since it was performed, mainly, manually. To overcome this issue, an automatic method
was presented in [8]. Briefly speaking, such process can be split into two parts. Firstly, from
three images of a neuron (the neuron with two antibody markers and the structure of the
neuron), a monochromatic image is obtained, see Figure 1'. In such an image, each connected
component represents a synapse. 30, the problem of measuring the number of synapses is
translated into a question of counting the connected components of a monochromatic image.

In the context of Algebraic Digital Topology, this issue can be tackled by means of the
computation of the homology group in degree 0 of the monochromatic image. This task can
be performed in CoQ through the formally verified programs which were presented in [7].
Nevertheless, such programs are not able to handle images like the one of the right side of

IThe same images with higher resolution can be seen in http://www.unirioja.es/cu/joheras/synapses/
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Figure 1 due to its huge size (it is worth remarking that CoqQ is a Proof Assistant tool and
not a Computer Algebra system). In order to overcome this drawback, we can integrate our
reduction programs with the ones presented in [7]. Using this approach, we can successfully
compute the homology in just 25 seconds, an impressive time for an execution inside CoOQ.

4. CONCLUSIONS AND FURTHER WORK

A formally verified implementation of the RS algorithm has been presented. Thanks
to the integration of this tool with the certified programs devoted to obtain homological
properties from digital images, we are able to deal with some biomedical images inside COQ.

Some formalization issues remain as further work; namely, we have to verify the correct-
ness of the function matrixReduced; that is to say, given a matrix M, the result produced by
(matrixReduced M) is a matrix homologically equivalent to M. Another open research line
is the use of our certified programs in the study of more complex biomedical problems. For
instance, in the detection of the structure of a neuron, a problem which seems to involve
the computation of homology groups in higher degrees.
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