
A customizable GUI through an OMDoc
documents repository?

Jónathan Heras, Vico Pascual, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain).

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es

Abstract. Kenzo is a Symbolic Computation System devoted to Alge-
braic Topology. In some previous works we presented a framework wrap-
ping Kenzo providing a mediated access to Kenzo making its use easier.
In this work, a particular client of this framework is presented, namely a
Graphical User Interface. By means of an OMDoc documents repository,
this Graphical User Interface is totally customizable. Besides, it allows
Kenzo to interoperate with other systems, namely with the ACL2 Theo-
rem Prover. In this way, representation, computation and deduction are
integrated in a same system.

1 Introduction

Kenzo [2] is a Common Lisp system, devoted to Symbolic Computation in Alge-
braic Topology. It was developed in 1997 under the direction of F. Sergeraert, and
has been successful, in the sense that it has been capable of computing homology
groups unreachable by any other means. Having detected the accessibility and
usability as two weak points in Kenzo (implying difficulties in increasing the
number of users of the system), several proposals have been studied to interop-
erate with Kenzo (since the original user interface is Common Lisp itself, the
search for other ways of interaction seems mandatory to extend the use of the
system).

In this work, a customizable Graphical User Interface (GUI) for Kenzo is
introduced. This GUI is gathering in a single system representation, computation
and deduction.

2 Antecedents

In [6] we introduced a framework wrapping Kenzo whose architecture is based
on the MicroKernel pattern [3]. The MicroKernel design consists of two layers.
The first one manages the input of requests and the output of results, converting
OpenMath objects from/to the internal representation in the system by means of

? Partially supported by Universidad de La Rioja, project API08/08, and Ministerio
de Educación y Ciencia, project MTM2006-06513.



a Phrasebook. The second one deals with the validation of requests. For instance,
among other issues, the validation layer is in charge of controlling the input
specifications of the constructors. Besides, it validates that the request, an XML
data, is well-formed and it makes sure that the computations asked for Kenzo
are mathematically correct, avoiding in this way some possible execution errors.
This layer was called Intelligent System in [6], where more details about the
functionality of this layer were described. A layer wrapping Kenzo executes the
computations and returns the results to the input/output layer. A simplified
diagram of this architecture appears in Figure 1.

Fig. 1. Simplified diagram of the architecture.

Based on Figure 1, we can also see the execution flow of a calculation in
our system. When the user asks for a computation the Phrasebook converts
the OpenMath Object into the internal representation of the system. Then the
intelligent system is in charge of validating the request. Finally, if the request
is right, the Kenzo layer computes it and returns the result to the Phrasebook
which converts it into an OpenMath object. In other case, that is, the request
is not right, the Intelligent System informs to the Input/Output module the
reasons why it is not possible to carry out the calculation asked for.

Moreover, in order to make the interaction with this framework easier, both
a distinguished client, to be precise a Graphical User Interface (GUI) together
an OMDoc documents repository (see [7]) have been developed. This repository
provides different kinds of documents. These documents can be loaded as new
modules and allow us to customize dynamically the GUI.

3 From an empty GUI to a meaningful GUI

We have based on [5] to define our GUI, where a proposal for the declarative
programming of user interfaces with the aim of abstracting the ingredients for
high-level UI programming was presented. To be precise, three constituents are
distinguished: structure, functionality and layout.

The structure of our GUI is provided by XUL (XML User Interface [9], it
is Mozilla’s XML-based user interface language that lets us build feature rich
cross-platform applications defining all the elements of a UI), functionality has
been programmed in Allegro Common Lisp and the default layout has been used,
although we could have used a style sheet to customize our application. Thus, we
have all the ingredients to extend our empty GUI. A video demonstration of our
application can be downloaded from http://www.unirioja.es/cu/joheras/
mathui-kenzo-interface.zip.

http://www.unirioja.es/cu/joheras/mathui-kenzo-interface.zip
http://www.unirioja.es/cu/joheras/mathui-kenzo-interface.zip


In [7] an OMDoc documents repository to customize our GUI was presented.
OMDoc [11] format is an open markup language for mathematical documents
and the knowledge encapsulated in them. We have used different OMDoc sub-
languages and modules in order to specify the different ingredients needed to
customize the GUI. This repository contains OMDoc documents with different
aims. Some of them are devoted to give an algebraic specification of the different
mathematical structures which Kenzo works with. Others supply the functions
to build these mathematical structures in our system (abstracting the ones of
Kenzo), and, in this way, they make up a Kenzo wrapper. With respect to the
GUI, some OMDoc documents contain the graphical elements and others con-
tain their event handlers. And finally, on the one hand, the necessary code to
interact with other systems is embedded in other OMDoc documents considered
as interpreters from Kenzo to the specific system. On the other hand, the in-
terface of the interaction with other systems has been defined in other OMDoc
documents.

The first time the application is loaded, the main toolbar is organized into
two menus: File and Help. The user can configure the interface using the OMDoc
Repository. When the user exits the application, its configuration is saved for
future sessions.

In this empty GUI, the File menu has the following options: Add Module,
Delete Module, and Exit. Each module is associated to a kind of mathematical
structures Kenzo works with. The goal of the Add Module option consists in
loading the functionality related to that kind of mathematical structure.

So, the first user task consists in selecting the necessary modules in order to
add to the GUI the required functionality. Each module has got associated one
OMDoc document of the OMDoc Repository, which is included in the folder of
the GUI and which links all the OMDoc documents needed. In an analogous
way, the modules can be unloaded from the Delete Module option.

As can be seen in the GUI, it also has three tabs: Main, Session and Com-
puting that are useful when a module is loaded.

In the following subsections how representation, deduction and calculation
are integrated in a same system is explained.

3.1 Representation in the system

The Kenzo system encodes its objects by means of instances of CLOS (Common
Lisp Object System) classes. As this internal representation can not be exported
to other systems, we have provided Kenzo objects with an external represen-
tation, namely an OpenMath representation [1]. To this task several OMDoc
Content Dictionaries, containing the semantics of the mathematical structures
used, have been developed. In addition, a stylesheet has been provided to render
the OpenMath Objects using mathematical notation in the system.

For instance, we are going to consider the next scenario. Firstly, we load
the spaces the system works with, that are Chain Complexes, Simplicial Sets,
Simplicial Groups and Abelian Simplicial Groups. This adds to the main toolbar



new menus, one for each kind of spaces (see Figure 2), and to the File menu two
new options.

Fig. 2. The Main tab with an example of session.

Each option allows us to build spaces of its associated classes in two different
ways. The first one from scratch (for instance, in the case of Simplicial Sets is
possible to build spheres, Moore spaces and so on). The second one consists in
constructing spaces from other ones (again in the Simplicial Sets, it is possible
to build cartesian products, suspensions, and so on).

The Main tab is separated into three areas. On the left side, a list with the
spaces already constructed during the current session is maintained. When a
space is selected (the one denoted by SG 3 in Figure 2), its description is dis-
played in the right area using OpenMath, and just below the usual mathematical
notation of the space can be seen.

When the Session tab is focused, a similar screen to Figure 3 is shown. The
objects built during the current session, in an ordered way, are rendered. Note
that the calculations are not rendered in this tab.

The options added to the File menu, Save Session and Load Session, are re-
lated to a particular session. When saving a session a file is produced containing
the spaces built in that session. These session files are saved using the Open-
Math format following the rules defined in the corresponding OMDoc Content
Dictionaries and can be rendered in different browsers. These session files can be
loaded, from the Load Session option, and allow to reproduce the saved sessions.

In addition, the control of the input specifications on the constructors of
spaces, included in our framework in [6] as an “intelligent enhancement” with
respect to the Kenzo system, is exploited by our GUI as client of our framework.

3.2 Computation through the Kenzo kernel in the system

Up to now, we have not explained how our system uses Kenzo to carry out
computations. To this task, we must load the Computing OMDoc module and



Fig. 3. The Session tab with an example of session.

so a new menu with the options to compute homology and homotopy groups
and a new option, Save Computing, in the File menu are added to the GUI.

At this moment our system allows the user to compute homology and ho-
motopy groups, the last option is not included in a direct way in the Kenzo
system but it includes all the necessary machinery to compute some homotopy
groups. The Kenzo Layer chains methods in order to provide the user with the
computation of some homotopy groups, more details in [6].

The computations in the current session are displayed into the Computing
tab, as can be seen in Figure 4.

Fig. 4. The Computing tab with some computations.

The option Save Computing of the File menu works in a similar way to Save
Session but instead of saving the spaces built during the current session, it saves
the computations also using OpenMath format.



3.3 Deduction by means of ACL2 in the system

Finally, we have also tackled the task of interoperating with other systems. To
be precise, we have focused on the interaction with the ACL2 Theorem Prover
[10]. As we said in the Introduction, some Kenzo computations are unreachable
by any other means so we are interested in integrating Kenzo with Theorem
Provers in order to increase the reliability of the Kenzo system.

In this case, the needed OMDoc documents to customize the GUI by adding
both a new tab page and a new menu to interoperate with ACL2, as can be
seen in Figure 5, and the interpreter which is able to translate from the OM-
Doc content dictionary into an ACL2 encapsulate (an ACL2 tool to introduce
new function symbols), have been developed. The new tab page contains two
areas and one button: the ACL2 instructions will be written in the first area,
the button will send the instructions to ACL2, and finally the second area will
show the ACL2 result. In addition, a new menu in charge of converting from
OMDoc Content Dictionaries to encapsulates has been added (based on the in-
terpreter). Note that the encapsulate corresponding to simplicial sets is written
(dynamically, from the corresponding content dictionary) into the left area and
the ACL2 answer after evaluating it, appears in the right zone.

Fig. 5. The ACL2 tab with a Simplicial Sets encapsulate.

3.4 Gathering all the pieces

Consider the following scenario where we want to customize our GUI in or-
der to work with simplicial sets, including the interaction with the ACL2
system. For simplicial sets, an OMDoc content dictionary defining their
mathematical structure (SS-definition), the logic to interact with Kenzo
(SS-Kenzo-functionality) and the presentation for the GUI (SS-GUI) are
available in separate OMDoc documents. With respect to ACL2, an interpreter
(ACL2-interpreter) which is able to translate from an OMDoc content dictio-
nary (in particular, simplicial sets content dictionary) into an ACL2 encapsulate



can be found. An OMDoc document to customize the GUI (ACL2-GUI) allowing
the ACL2 system to interact with our system has been developed. The relations
among the components and their role in the workflow of our system customiza-
tion in this example is shown in Figure 6.

Fig. 6. Workflow diagram.

4 Conclusions

In this paper we have reported on a customizable GUI by means of an OMDoc
documents repository for a framework wrapping the Kenzo system. This GUI,
together with our framework, not only provides a friendly front-end but also
a mediated access to Kenzo and the interaction with other systems, like the
ACL2 Theorem Prover. This allows us, to a limited extent, to integrate, in a
same system interaction (i.e. representation), computation (through the Kenzo
kernel) and deduction (by means of ACL2).

Once the ACL2 and the Kenzo systems are integrated in a same GUI, much
more work is needed to implement more interesting interactions. For instance,
the encapsulates should be the basis for more complex theorem proving inside
the system. As an example, let us consider the construction of a sphere in Kenzo.
The GUI should generate an ACL2 script stating that this concrete (Common
Lisp) object is a (functional) instance of the encapsulate simplicial-set, that
is, the sphere is really a Simplicial Set. ACL2 very likely will not be able to prove
those statements automatically, and some user interaction will be needed. Then,
both the interface and the OMDoc documents should be enriched to cope with
the user actions, allowing the system to recover, in further sessions, the full proof
script, and then automating the verification of each construction generated in
the system.

Other prototypes can be developed in order to integrate our system with
different mathematical systems (for instance, GAP [4] has already been con-
nected with Kenzo through OpenMath in [12]). In this sense, we have thought
in customizing our GUI, in the same way as done for ACL2, with the aim of



integrating it with GAP. We claim that our architecture is enough modular to
allow us to carry out this task in a non difficult way. In this sense, we think
that general issues of this architecture can be applied to integrate any Symbolic
Computation System with any Theorem Prover.

Moreover, in spite of working in a correct way the architecture presented in
Figure 1 presents some drawbacks. In particular, if the system receives two re-
quests, the second one must wait until the first one is finished. In addition, Kenzo
computations used to be very time and space consuming (requiring, typically sev-
eral days of CPU time on powerful dedicated computing servers); therefore to
store these results in a persistent way would be useful to avoid recalculations.
This possibility was not considered in our previous proposal. Now, we are fo-
cussing on solving these problems, but this only affects the MicroKernel part,
not the Phrasebook nor the GUI, making transparent the changes to the users.

In a different line, a Web User Interface (WUI) for our framework can be
developed. By using XUL again, its structure is already defined; developing its
functionality is future work.

References

1. Buswell S., Caprotti O., Carlisle D.P., Dewar M.C., Gaëtano M., Kohlhase M.
OpenMath Version 2.0, 2004. http://www.openmath.org/.

2. Dousson X., Sergeraert F., Siret Y., The Kenzo program, Institut Fourier, Grenoble,
1999. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

3. Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

4. GAP - Groups, Algorithms, Programming - a System for Computational Discrete
Algebra. http://www.gap-system.org/.

5. Hanus M., Kluß C., Declarative Programming of User Interfaces, PADL 2009, Lec-
tures Notes in Computer Science, 5418 (2009) 16–30.

6. Heras J., Pascual V., Rubio J., Mediated Access to Symbolic Computation Systems,
MKM 2008, Lectures Notes in Artificial Intelligence, 5144 (2008) 446–461.

7. Heras J., Pascual V., Rubio J., Using Open Mathematical Documents to interface
Computer Algebra and Proof Assistant systems. To appear in Proceedings MKM
2009, Lecture Notes in Artificial Intelligence 5625.

8. Hilton P. J., Wylie S., Homology Theory, Cambridge University Press, (1967).
9. Hyatt D. et al., XML User Interface Language (XUL) 1.0

http://www.mozilla.org/projects/xul/.
10. Kaufmann M., Manolios P., Moore J., Computer-Aided Reasoning: An Approach.

Kluwer Academic Press, Boston (2000).
11. Kohlhase M., OMDoc – An open markup format for mathematical documents [Ver-

sion 1.2], Springer Verlag (2006).
12. Romero A., Ellis G., Rubio J., Interoperating between Computer Algebra systems:

computing homology of groups with Kenzo and GAP. To appear in Proceedings of
ISSAC 2009.

http://www.openmath.org/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www.gap-system.org/
http://www.mozilla.org/projects/xul/

