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Motivation

Motivation

Peculiarity: the last three images are obtained from a stack
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Persistent Homology Intuitive Idea

Intuitive idea

Figure: La Seine à la Grande-Jatte. Seurat, Georges
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Persistent Homology Intuitive Idea

Key ideas

Persistence key ideas:

Provide an abstract framework to:

Measure scales on topological features
Order topological features in term of importance/noise

How long is a topological feature persistent?

As long as it refuses to die . . .

Roughly speaking:

Homology detects topological features (connected
components, holes, and so on)
Persistent homology describes the evolution of topological
features looking at consecutive thresholds
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Persistent Homology History

History

Biogeometry project of Edelsbrunner

C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for

Bettin numbers of simplicial complexes on the 3-sphere. Computer Aided

Geometry Design 12 (1995):771–784.

Work of Frosini, Ferri and collaborators

P. Frosini and C. Landi. Size theory as a topological tool for computer

vision. Pattern Recognition and Image Analysis 9 (1999):596–603.

Doctoral thesis of Robins

V. Robins. Toward computing homology from finite approximations.

Topology Proceedings 24 (1999):503–532.
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Persistent Homology Notions

Simplicial Complexes

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V .

Definition

Let α and β be simplices over V , we say α is a face of β if α is a subset of β.

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made
of the simplices of cardinality n + 1.

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 9/39



Persistent Homology Notions

Simplicial Complexes

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V .

Definition

Let α and β be simplices over V , we say α is a face of β if α is a subset of β.

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made
of the simplices of cardinality n + 1.

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 9/39



Persistent Homology Notions

Simplicial Complexes

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V .

Definition

Let α and β be simplices over V , we say α is a face of β if α is a subset of β.

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made
of the simplices of cardinality n + 1.

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 9/39



Persistent Homology Notions

An example

0

1

2

3 4

5

6

V = (0, 1, 2, 3, 4, 5, 6)
K = {∅, (0), (1), (2), (3), (4), (5), (6),
(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6),
(0, 1, 2), (4, 5, 6)}
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Persistent Homology Notions

Chain Complexes

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq )q∈Z where:

For every q ∈ Z, the component Cq is an R-module, the chain group of degree q

For every q ∈ Z, the component dq is a module morphism dq : Cq → Cq−1, the differential map

For every q ∈ Z, the composition dq dq+1 is null: dq dq+1 = 0

Definition

Let K be an (ordered abstract) simplicial complex. Let n ≥ 1 and 0 ≤ i ≤ n be two integers n and i. Then the
face operator ∂n

i is the linear map ∂n
i : Sn(K)→ Sn−1(K) defined by:

∂
n
i ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn).

The i-th vertex of the simplex is removed, so that an (n − 1)-simplex is obtained.

Definition

Let K be a simplicial complex. Then the chain complex C∗(K) canonically associated with K is defined as follows.
The chain group Cn(K) is the free Z module generated by the n-simplices of K. In addition, let (v0, . . . , vn−1)
be a n-simplex of K, the differential of this simplex is defined as:

dn :=
n∑

i=0

(−1)i
∂

n
i
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Persistent Homology Notions

Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Given a chain complex C∗ = (Cq , dq)q∈Z:

dq−1 ◦ dq = 0⇒ Bq ⊆ Zq

Every boundary is a cycle

The converse is not generally true

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn
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Persistent Homology Notions

Filtration of a Simplicial Complex

Definition

A subcomplex of K is a subset L ⊆ K that is also a simplicial complex.

Definition

A filtration of a simplicial complex K is a nested subsequence of complexes

K 0 ⊆ K 1 ⊆ . . . ⊆ K m = K
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Persistent Homology Notions

An example
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Persistent Homology Notions

Persistence Complexes

Definition

A persistence complex C is a family of chain complexes {C i
∗}i≥0 over a field together

with chain maps f i : C i
∗ → C i+1

∗

A filtered complex K with inclusion maps for the simplices becomes a persistence
complex

.

d0
3

��

.

d1
3

��

.

d2
3

��
C 0

2

f 0
//

d0
2

��

C 1
2

f 1
//

d1
2

��

C 2
2

f 2
//

d2
2

��

. . .

C 0
1

f 0
//

d0
1

��

C 1
1

f 1
//

d1
1

��

C 2
1

f 2
//

d2
1

��

. . .

C 0
0

f 0
// C 1

0

f 1
// C 2

0

f 2
// . . .
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Persistent Homology Notions

Persistent Homology groups

Definition

If C = {C i
∗}i≥0 is a persistence complex:

B i
q = im d i

q+1 ⊆ C i
q

Z i
q = ker d i

q ⊆ C i
q

Definition

Let C = {C i
∗}i≥0 be a persistence complex associated with a filtration. The

p-persistent kth homology group of C is:

H i,p
k =

Z i
k

B i+p
k ∩ Z i

k

Definition

The p-persistent k-th Betti number βi,p
k is the rank of H i,p

k
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Persistent Homology Notions

Persistent Homology groups

Persistence complex associated with a filtered complex K with inclusion maps
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Persistent Homology Notions

Persistence: Interpretation

Captures the birth and death times of homology classes of the filtration as it grows

Definition

Let K 0 ⊆ K 1 ⊆ . . . ⊆ K m = K be a filtration.
A homology class α is born at K i if it is not in the image of the map induced by the
inclusion K i−1 ⊆ K i .

If α is born at K i it dies entering K j if the image of the map induced by K i−1 ⊆ K j−1

does not contain the image of α but the image of the map induced by K i−1 ⊆ K j

does.

H1

H1,0
f 2
1

H2

H1,1 f 3
2

h

H3

H1,2

f 4
3

H4

h ∈ H2 is born in H2, and dies entering H4
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Persistent Homology Notions

Barcodes

Definition

A P-interval is a half-open interval [i , j), which is also represented by its endpoints
(i , j) ∈ Z× (Z ∪∞)

Relation between P-intervals and persistence:

A class that is born in H i and never dies is represented as (i ,∞)

A class that is born in H i and dies entering in H j is represented as (i , j)

Definition

Finite multisets of P-intervals are plotted as disjoint unions of intervals, called
barcodes.
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Persistent Homology Notions

Example
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Persistent Homology Notions

Application: Point-Cloud datasets

Construct a filtration from the point-cloud dataset :

Cech Complexes

Vietoris-Rips Complexes

Voronoi Diagram and the Delaunay Complex

Alpha Complexes

. . .

Idea of proximity

G. Singh et. al. Topological analysis of population activity in visual cortex.

Journal of Vision 8:8(2008).

http://www.journalofvision.org/content/8/8/11.full
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The concrete problem
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The concrete problem

Dendritic spines

Dendritic spines (or spines):

A small membranous extrusion of the dendrites that contains the molecules and

organelles involved in the postsynaptic processing of the synaptic information

Related to learning and memory

Associated with Alzheimer’s and Parkinson’s diseases, autism, mental

retardation and fragile X Syndrome

The dendrites of a single neuron can contain hundreds to thousands of spines
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The concrete problem

The problem

Goal:

Automatic measurement and classification of spines of a neuron

First step:

Detect the region of interest (the dendrites)

Main problem: noise

salt-and-pepper

non-relevant biological elements
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Using Persistent Homology in our problem
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Using Persistent Homology in our problem

Getting the images

Optical sectioning:

Produces clear images of a focal planes deep within a thick sample

Reduces the need for thin sectioning

Allows the three dimensional reconstruction of a sample from images captured
at different focal planes

http://loci.wisc.edu/files/loci/8OpticalSectionB.swf

Procedure:

1 Get a stack of images using optical sectioning

2 Obtain its maximum intensity projection
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Using Persistent Homology in our problem

Example

Stack of images:

Important feature: the neuron persists in all the slices
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Using Persistent Homology in our problem

Example

Z-projection:
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Using Persistent Homology in our problem Our method

Our method

Our method:

1 Reduce salt-and-pepper noise

2 Dismiss irrelevant elements as astrocytes, dendrites of other
neurons, and so on
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Using Persistent Homology in our problem Our method: Reducing salt-and-pepper noise

Our method: Reducing salt-and-pepper noise

Salt-and-pepper noise:

Produced when captured the image from the microscope

Solution:

1 Low-pass filter:

Decrease the disparity between pixel values by averaging nearby

pixels

uniform, Gaussian, median, maximum, minimum, mean, and so on

In our case (after experimentation): median filter with a radius of

10 pixels

2 Threshold:

Discrimination of pixels depending on their intensity

A binary image is obtained

In our case (after experimentation): Huang’s method
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Using Persistent Homology in our problem Our method: Reducing salt-and-pepper noise

Our method: Reducing salt-and-pepper noise

Original image:
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Using Persistent Homology in our problem Our method: Reducing salt-and-pepper noise

Our method: Reducing salt-and-pepper noise

After low-pass filter:

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 30/39
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Our method: Reducing salt-and-pepper noise

After threshold:
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Using Persistent Homology in our problem Our method: Reducing salt-and-pepper noise

Our method: Reducing salt-and-pepper noise

Undesirable elements:
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Using Persistent Homology in our problem Our method: Reducing salt-and-pepper noise

Our method: Reducing salt-and-pepper noise

Preprocessing is applied to all the slices of the stack:
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Using Persistent Homology in our problem Our method: Dismiss irrelevant elements

Simplicial Complexes from Digital Images

A monochromatic image D:

set of black pixels

a subimage of D is a subset L ⊆ D
a filtration of an image D is a nested subsequence of images

D0 ⊆ D1 ⊆ . . . ⊆ Dm = D

a filtration of an image induces a filtration of simplicial
complexes
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Using Persistent Homology in our problem Our method: Dismiss irrelevant elements

A filtration of the Z-projection

Let us construct a filtration from the processed Z-projection:

1 D = Dm is the processed Z-projection

2 Dm−1 consists of the connected components of Dm such that
its intersection with the first slide is not empty

3 Dm−2 consists of the connected components of Dm−1 such
that its intersection with the second slide is not empty

4 . . .
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Using Persistent Homology in our problem Our method: Dismiss irrelevant elements

A filtration of the Z-projection

⊆
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⊆

D1

⊆

D2

⊆

D3

⊆

D4

⊆

D5

⊆

D6

⊆

D7

D8

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 34/39



Using Persistent Homology in our problem Our method: Dismiss irrelevant elements

A filtration of the Z-projection

Remember: the neuron persists in all the slices

D0 D1 D2 D3 D4 D5 D6 D7 D8

x0

x1

x2

x3

x0

x1

x2

x3

.

.

.

The components of the neuron persist all the life of the filtration
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Using Persistent Homology in our problem Our method: Dismiss irrelevant elements

Final result
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Conclusions and Further work

Conclusions and Further work

Conclusions:

Method to detect neuronal structure based on persistent
homology

Further work:

Implementation of an ImageJ plug-in

Intensive testing

Software verification?

Measurement and classification of spines

Persistent Homology ↔ Discrete Morse Theory
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Conclusions and Further work
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Seminario de Informática Mirian Andrés

March 20, 2012

∗
Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath, n. 243847

J. Heras, G. Mata and J. Rubio Neuronal structure detection using Persistent Homology 39/39


	Motivation
	Persistent Homology
	Intuitive Idea
	History
	Notions

	The concrete problem
	Using Persistent Homology in our problem
	Our method
	Our method: Reducing salt-and-pepper noise
	Our method: Dismiss irrelevant elements

	Conclusions and Further work

