
Efficient Certification of Complexity Proofs
Formalizing the Perron–Frobenius Theorem

(Invited Talk Paper)

Jose Divasón
Universidad de La Rioja

Spain
jose.divasonm@unirioja.es

Sebastiaan Joosten
University of Twente

the Netherlands
s.j.c.joosten@utwente.nl

Ondřej Kunčar
Technical University of Munich

Germany
kuncar@in.tum.de

René Thiemann
University of Innsbruck

Austria
rene.thiemann@uibk.ac.at

Akihisa Yamada
National Institute of Informatics

Japan
akihisa.yamada@uibk.ac.at

Abstract
Matrix interpretations are widely used in automated com-
plexity analysis. Certifying such analyses boils down to de-
termining the growth rate of An for a fixed non-negative
rational matrix A. A direct solution for this task involves the
computation of all eigenvalues of A, which often leads to
expensive algebraic number computations.
In this work we formalize the Perron–Frobenius theo-

rem. We utilize the theorem to avoid most of the algebraic
numbers needed for certifying complexity analysis, so that
our new algorithm only needs the rational arithmetic when
certifying complexity proofs that existing tools can find. To
cover the theorem in its full extent, we establish a connection
between two different Isabelle/HOL libraries on matrices, en-
abling an easy exchange of theorems between both libraries.
This connection crucially relies on the transfer mechanism in
combination with local type definitions, being a non-trivial
case study for these Isabelle tools.

CCS Concepts • Theory of computation → Algebraic
complexity theory; Logic and verification;

Keywords Complexity, Isabelle/HOL, Multivariate Analy-
sis, Spectral Radius

ACM Reference Format:
Jose Divasón, Sebastiaan Joosten, Ondřej Kunčar, René Thiemann,
and Akihisa Yamada. 2018. Efficient Certification of Complexity
Proofs: Formalizing the Perron–Frobenius Theorem (Invited Talk
Paper). In Proceedings of 7th ACM SIGPLAN International Conference

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5586-5/18/01.
https://doi.org/10.1145/3167103

on Certified Programs and Proofs (CPP’18).ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3167103

1 Introduction
CeTA [17] is an Isabelle-formalized certifier which validates
various kinds of proofs generated by untrusted program ana-
lyzers. One of the supported proofs is complexity proofs for
term rewrite systems as generated by analyzers like AProVE,
CaT, or TcT [1, 5, 21].
Although the most crucial information is contained in

the proof (e.g., a measure function), a certain amount of
computation is always left for the certifier, e.g., to verify that
the measure decreases in every rewrite step.
This work aims at reducing the amount of computation

in validating complexity proofs that use matrix interpreta-
tions [3]—a special kind of measure function where the do-
main consists of vectors. Matrix interpretations are an im-
portant technique for complexity analysis, for instance in
the years 2015–2017 of the Termination Competition [6], at
least 30 % of the machine readable complexity proofs contain
matrix interpretations.

Example 1.1. Consider the following implementation of
insertion sort.

sort(Cons(x, xs)) → insort(x, sort(xs))

sort(Nil) → Nil

insort(x,Cons(y, ys)) → Cons(x,Cons(y, ys)) | x ≤ y

insort(x,Cons(y, ys)) → Cons(y, insort(x, ys)) | x ≰ y

insort(x,Nil) → Cons(x,Nil)

The complexity analyzer TcT claims the runtime complex-
ity of this example to be O (n2), using the following matrix

2

https://doi.org/10.1145/3167103
https://doi.org/10.1145/3167103

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

interpretation as a proof.

[[sort]](xs) =


3 3 0
0 0 1
0 0 1


· xs

[[insort]](x, xs) =


1 1 2
0 0 1
0 0 1


· xs +



2
1
2



[[Cons]](x, xs) =


1 1 0
0 0 1
0 0 1

︸ ︷︷ ︸
A

· xs +


0
1
2



[[Nil]] =


1
0
2


It is easy to validate that this interpretation proves termina-
tion, i.e., that in every rewrite step from s to t the measure
decreases: a vector [[s]] is larger than [[t]] if there is a strict
decrease of the first entry and a weak decrease elsewhere.
For instance, to validate the strict decrease of the first rule
for sort, the following computation is performed.

[[sort(Cons(x, xs))]] =


3 3 3
0 0 1
0 0 1


· [[xs]] +



3
2
2



>
≥

≥



3 3 3
0 0 1
0 0 1


· [[xs]] +



2
1
2


= [[insort(x, sort(xs))]]

It remains to validate that this matrix interpretation en-
sures the O (n2) runtime of sort, i.e., that the entries of the
vector [[sort(Cons(x1, . . .Cons(xn ,Nil)))]] are in O (n2). We
have

[[sort(Cons(x1, . . .Cons(xn ,Nil)))]] =


3 3 0
0 0 1
0 0 1



*.
,
An



1
0
2


+

∑
i<n

Ai


0
1
2



+/
-
∈ O (n · An)

where A is the coefficient matrix of Cons. Thus, it remains
to validate An ∈ O (n).

As illustrated above, the certification of complexity proofs
with matrix interpretations boils down to determining the
growth rate of matrix powers An . There is a conceptually
simple algorithm for this task.
We illustrate Algorithm 1 with the help of Figure 1a. In

order to guarantee polynomial growth rate, in step 3 we
ensure that there is no eigenvalue outside the unit circle
(gray). In order to determine the degree of the polynomial
we consider eigenvalues on the unit circle (black) and check
their Jordan blocks in step 4. Eigenvalues strictly within the
unit circle can be ignored (white).
Algorithm 1 works well on Example 1.1: it determines

the two eigenvalues 0 and 1 and computes the set of Jordan

Algorithm 1: Certifying An ∈ O (nd).
Input: Matrix A and degree d .
Output: Accept or assertion failure.

1 Compute all eigenvalues λ1, . . . , λn of A, i.e., all complex
roots of the characteristic polynomial of A

2 Let ρA be the spectral radius of A, i.e.,
ρA = max{|λ1 |, . . . , |λn |}

3 Assert ρA ≤ 1.
4 For each eigenvalue of λi with |λi | = 1, and for each

Jordan block of A and λi with size s , assert s ≤ d + 1.
5 Accept

blocks for eigenvalue 1, which contains only the size-two

Jordan block
[
1 1
0 1

]
in this case. Hence, one can deduceAn ∈

O (n) and thus, the complexity analysis by TcT is validated.
Unfortunately, it is not always the case that Algorithm 1

works well as it requires expensive irrational arithmetic as
we will see in the following example.

Example 1.2. Consider the matrix A defined as

A =
1
2



2 0 0 0
0 0 0 1
0 1 0 1
0 0 1 1



.

The characteristic polynomial is

χA =
(x − 1) (8x3 − 4x2 − 2x − 1)

8

so the eigenvalues λ1, . . . , λ4 ofA, indicated in Figure 1b, are
precisely the roots of χA.
Using our formalized algebraic number library [18], for

step 1 we can compute them precisely as follows:

λ1 = 1
λ2 = (root #1 of f1)
λ3 = (root #1 of f2) + (root #1 of f3)i
λ4 = (root #1 of f2) + (root #2 of f3)i

Here, (root #k of f) denotes the k-th greatest real root of
polynomial f , and the polynomials f1, . . . , f4 are defined as
follows:

f1 (x) = 8x3 − 4x2 − 2x − 1

f2 (x) = 32x3 − 16x2 + 1

f3 (x) = 1024x6 + 512x4 + 64x2 − 11

f4 (x) = 64x6 + 16x4 + 4x2 − 1

3

Efficient Certification of Complexity Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��
��	
���
�
��

(a) relevant areas

��

�

�

��

�

�

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��

��	
���
�
��

(b) eigenvalues of Example 1.2

Figure 1. Illustration of Algorithm 1

For step 2 we further compute

|λ1 | = 1
|λ2 | = |(root #1 of f1) | = (root #1 of f1)

|λ3 | =
√
(root #1 of f2)2 + (root #1 of f3)2

= (root #2 of f4)

|λ4 | =
√
(root #1 of f2)2 + (root #2 of f3)2

= (root #2 of f4)

and since |λ2 | < 1 and |λ3 | = |λ4 | < 1, we get ρA = 1.

We continue to step 4. Omitting details, it turns out that
the (only) Jordan block for λ1 has size s = 1, so the algorithm
accepts for any d since 1 ≤ d + 1.

In this work, we formalize and utilize the Perron–Frobenius
theorem [4, 15] to modify Algorithm 1 to avoid the explicit
computation of all eigenvalues, and moreover reduce the
number of considered eigenvalues, so that the gray and black
area in Figure 1a are significantly reduced.
The basic version of the Perron–Frobenius theorem is

stated as follows:

Theorem 1.3 (Perron–Frobenius, basic version). For a non-
negative real matrix A, the spectral radius ρA is an eigenvalue
of A.

A simple consequence is that step 3 of Algorithm 1 can be
replaced by only checking that there are no real eigenvalues
above 1. Graphically this means that we can switch from
Figure 1a to Figure 2a, significantly reducing the gray area.
Based on further results of Perron–Frobenius for irre-

ducible matrices, we arrive at the following key theorem
for certifying complexity proofs.

Theorem 1.4. For a non-negative real matrix A, the charac-
teristic polynomial χA can be factored into

χA = f ·
∏
k ∈K

(xk − ρkA)

for some polynomial f and non-empty multiset K where all
complex roots of f have a norm strictly less than ρA.

Theorem 1.4 permits us to reduce the black circle in Fig-
ure 1a to a finite number of points, namely to the roots of
unity up to a certain degree, determined by the dimension k
of the input matrix. Figure 2b shows the roots of unity up to
degree 5, labeled by the smallest k at which our algorithm
has to consider the point; it suffices to consider only the
(potential) eigenvalue 1 for matrices of dimension up to 4,
{1,−1} for dimension 5, {1,−1, 1+i

√
3

2 ,
1−i
√
3

2 } for dimension
6 and 7, and so on. So, in Example 1.2 our improved certifi-
cation algorithm only requires rational number arithmetic
instead of algebraic number computations.

The paper is structured as follows.
We present some preliminaries on linear algebra in Sec-

tion 2. This section also introduces two different represen-
tations of matrices and shows their differences. HMA is Is-
abelle/HOL’s [13] library on multivariate analysis and JNF
is our matrix library in the archive of formal proofs (AFP)
which allows essential flexibility for formalizing Jordan nor-
mal forms [19].
Next, we provide details on our formalization of Theo-

rem 1.3 in Section 3. We closely follow a paper proof [16]
using Brouwer’s fixpoint theorem and use HMA as matrix
representation.

4

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��
��	
���
�
��

(a) using Theorem 1.3

��

�

�

�

�

��

��

��

��

��

�

�

�

�

��

��

��

��

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

�	

��

��
�	�
���	

(b) using Theorem 1.4

Figure 2. Improvements over Algorithm 1

Afterwards, in Section 4 we create a bridge between the
HMA world and JNF world which permits to easily transfer
theorems from one world to the other.
This bridge is essential for a more elaborate proof of the

Perron–Frobenius theorem for irreducible matrices. It is il-
lustrated in Section 5 and contains many more properties
than just the one that the spectral radius is an eigenvalue.

In Section 6 we explain the formalization of our key The-
orem 1.4. It is not restricted to irreducible matrices and its
formalization requires JNF matrices.

We further prove in Section 7 that for matrices of dimen-
sion up to 4, the spectral radius is not only an eigenvalue,
but it is also the eigenvalue that has the largest Jordan block
among all eigenvalues with maximal norm.

Finally, we integrate our findings to an efficient complexity
checker and verify its soundness in Section 8. This complex-
ity checker is also integrated in CeTA. It is five times faster
than Algorithm 1 on standard benchmarks and easily solves
larger examples which were not feasible before.

We conclude in Section 9 and shortly explain why our im-
proved complexity checker also has the potential to increase
the power of automated tools.

The whole formalization is available in the AFP:

https://www.isa-afp.org/entries/Perron_Frobenius.html

2 Preliminaries
We assume basic knowledge of linear algebra and analysis.
We use letters u,v,x ,y, z for vectors, A,B,C,D for matrices,
λ for eigenvalues, and i, j for matrix indices. Sometimes x
is also used as the variable of a uni-variate polynomial. To
denote the i-th row j-th column element of a matrix A, we
often write Ai j or A i j in Isabelle sources. We usually write
the function application by parenthesis and use juxtaposition
for multiplication in mathematical text, whereas in formal
Isabelle sources juxtaposition is function application and
multiplication is written explicitly. So, the expression Af (x)
is written as A · f x when presenting it as Isabelle source.

We write ||v ||1 for the linear norm of a vectorv and ||v || for
the Euclidean norm, i.e., ||v ||1 =

∑
i |vi | and ||v || =

√∑
i |vi |2.

We write I for the identity matrix, det(A) for the determi-
nant of a matrix A, and χA for the characteristic polynomial
of A, i.e., χA (x) = det (xI −A). A vector v , 0 is an eigenvec-
tor of A with eigenvalue λ, if Av = λv . It is well known that
λ is an eigenvalue of A iff χA (λ) = 0, and that χA is a monic
polynomial where the degree of χA is the same as the dimen-
sion of A. Two matrices A and B are similar if A = P−1BP
for some invertible matrix P . Similar matrices have the same
characteristic polynomial and the same eigenvalues.
The spectral radius ρA of A is defined as max { |λ | | λ ∈

C, χA (λ) = 0 }, i.e., ρA is the largest norm of the eigenvalues
of A. An eigenvalue λ is maximal if |λ | = ρA.
For each matrix A we associate a directed graph where

there is an edge i → j iff Ai j , 0. A matrix A is irreducible if
the graph ofA is connected, i.e., for every index i and j there
is a non-empty path from i to j.
We compare vectors and matrices pointwise, e.g., A ≥ B

is defined as Ai j ≥ Bi j for all indices i and j.
The roots of unity of degree k are precisely the complex

values x satisfying xk = 1. The primitive roots of unity of
degree k are those roots of unity of degree k which do not
satisfy x ℓ = 1 for any 0 < ℓ < k . For instance, the roots of
unity of degree 4 are 1, −1, i, and −i, whereas only i and −i
are primitive roots of unity of degree 4.
In earlier work [19], we formalized the theory of Jordan

normal forms (JNFs) in Isabelle/HOL. For this paper, it is
only important to know that one can prove the soundness of
Algorithm 1 with the help of JNFs; that the sum of the sizes

5

https://www.isa-afp.org/entries/Perron_Frobenius.html

Efficient Certification of Complexity Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

of the Jordan blocks for A and λ is precisely the algebraic
multiplicity of λ, i.e., the order of λ as root of χA; and that
there is a verified algorithm for step 4 in the Algorithm 1:
it computes the set of Jordan blocks for A and λ via the
Gaussian elimination.

2.1 HMA Matrix Representation
Matrices in HMA are represented using ideas by Harrison [8]:
matrices with elements of type α are essentially1 represented
as functions of type ′n → ′m → α where ′n and ′m are type
variables which are restricted to have finitely many elements.
Vectors are represented correspondingly as functions of type
′n → α .
The HMA representation has the advantage that the type

system can enforce compatible dimensions. For instance,
matrix addition will have type (′n → ′m → α) → (′n →
′m → α) → (′n → ′m → α) and is defined as A + B =
(%i j .Ai j + B i j).2 Consequently, the library contains (un-
conditional) lemmas like the associativity of matrix addition:
A + (B +C) = (A + B) +C .

Several results and algorithms on HMA matrices are pro-
vided in the Isabelle distribution, e.g., that real vectors form
a Euclidean space.
There is however also a disadvantage of this representa-

tion: it is cumbersome, if possible, to change the dimension
of the matrix, or to decompose matrices into blocks. To wit,
consider formulating Strassen’s matrix multiplication algo-
rithm using the HMA representation; in the recursion you
will have to find new types which represent the upper/lower-
left/right blocks of a matrix.

2.2 JNF Matrix Representation
The JNF matrix representation is based on the characteristic
function of a matrix, too, but the type of indices is always
natural numbers and the dimension is made explicit. To be
more precise, matrices have essentially the type α mat =
N × N × (N→ N→ α).3
A disadvantage of this approach compared to HMA is

that the type system of Isabelle/HOL cannot express the
constraint of compatible dimensions. For instance, matrix
addition will have type α mat→ α mat→ α mat and is es-
sentially defined as (n,m,A)+ (n′,m′,B) = (n,m, (%i j .Ai j+
B i j)). Clearly, there is a problem if (n,m) , (n′,m′). There-
fore, the library for JNF matrices works with explicit carriers:
carrier-mat n m is the set of all matrices with dimension
n×m. In the sequel, we often identify a matrix (n,m,A) with
1The actual Isabelle/HOL definition uses an isomorphic copy of ′n →
′m → α . In this paper we will neglect this aspect and just identify an HMA
matrix with its characteristic function.
2In this paper, we use %i . f i as syntax for lambda-expressions, since λ is
already used to denote eigenvalues.
3The actual Isabelle/HOL type definition additionally enforces that the
characteristic function returns a fixed value—undefined—for indices beyond
the dimension. In this way, only the intended part of the characteristic
function becomes relevant when specifying matrix equality.

its characteristic function A. The dimensions will mostly be
visible in constraints on the carrier like A ∈ carrier-mat n m.

Most lemmas in the JNF library require explicit conditions
on dimensions; e.g., the associativity of matrix addition is
stated as

A ∈ carrier-mat n m =⇒ B ∈ carrier-mat n m =⇒
C ∈ carrier-mat n m =⇒ A + (B +C) = (A + B) +C

Moreover, there are also auxiliary lemmas which are not
needed in the HMA representation at all, such as closure
under addition:

A ∈ carrier-mat n m =⇒ B ∈ carrier-mat n m =⇒
A + B ∈ carrier-mat n m

Hence, working with JNF matrices is more tedious, but it
also has some advantages. Changing the dimension of a ma-
trix, or decomposing it, is straightforward using JNFmatrices.
For instance, for the upcoming formalization of the Perron–
Frobenius theorem, the derivation rule for characteristic
polynomials is essential. Here, mat-delete A i j deletes the
i-th row and j-th column of a matrixA in JNF-representation.

Lemma 2.1. A ∈ carrier-mat n n =⇒
pderiv (char-poly A) =

∑
i<n char-poly (mat-delete A i i)

3 Perron–Frobenius, Basic Version
We start this section with a formalized version of the basic
Perron–Frobenius theorem, Theorem 1.3. It additionally con-
tains the property that the spectral radius has an associated
non-negative real eigenvector.

Theorem 3.1 (Isabelle/HOL version of Theorem 1.3).
real-non-neg-mat A =⇒
∃v .eigen-vector A v (of-real (spectral-radius A)) ∧

real-non-neg-vec v

We only present an informal short proof of Theorem 3.1
following a textbook by Serre [16, Theorem 5.2.1]. The proof
is based on Brouwer’s fixpoint theorem.

Theorem 3.2 (Brouwer for Rn). Let S ⊆ Rn be a non-empty,
compact and convex set. Let f be a continuous function from
S to S . Then f has a fixpoint x , i.e., x ∈ S and f (x) = x .

Proof of Theorem 3.1. Define S := {v | ||v ||1 = 1 ∧ v ≥ 0 ∧
Av ≥ ρAv}. Consider two cases.

If there is some x ∈ S such that Ax = 0, then Ax = 0x , so
x is a non-negative real eigenvector with eigenvalue 0. Since
x ∈ S we conclude

0 = Ax ≥ ρAx

and as x , 0 and x ≥ 0, this implies 0 ≥ ρA. Hence, ρA = 0
since ρA ≥ 0 by the definition of the spectral radius.

6

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

In the other case, we know that Av , 0 for all v ∈ S .
Hence, we can define f (v) := 1

||Av ||1
Av and by Brouwer’s

fixpoint theorem obtain some x ∈ S such that f (x) = x .4
As in the previous case we easily conclude that x is a

non-negative eigenvector for eigenvalue ||Ax ||1:

Ax = ||Ax ||1 f (x) = ||Ax ||1x

Moreover, since x ∈ S we derive

||Ax ||1x = Ax ≥ ρAx

and hence ||Ax ||1 ≥ ρA. But since by definition ρA ≥ ||Ax ||1
we conclude ||Ax ||1 = ρA. □

The Isabelle/HOL formalization of the above proof re-
quires only 400 lines. It closely follows the informal proof
using the HMA library. For the actual formalization we re-
fer to the sources and here only mention some important
aspects.
• The paper proof hides conversions between complex
and real numbers, which however are frequently oc-
curring in the formalization where there are different
types for real and complex numbers.
• In order to apply Brouwer’s fixpoint theorem, we need
to prove the continuity of the function f . Unfortu-
nately, the Isabelle distribution lacks continuity results
for several operations on matrices like matrix multi-
plication. Here, we are grateful to Fabian Immler who
gave us a short tutorial on how these proofs are best
conducted within Isabelle/HOL: do not use continuous-
on, but tendsto, tendsto-intros and friends.
• In the above proof it is essential to use the linear norm,
since otherwise S is not necessarily convex. However,
in HMA the vector norm is fixed to the Euclidean norm.
Hence, we had to reprove certain lemmas about norms.

Let us now illustrate how to exploit Theorem 1.3 in Exam-
ple 1.2 from the introduction.

Example 3.3. Instead of computing all eigenvalues, we di-
rectly apply step 3 of Algorithm 1. Here, we decide ρA ≤ 1
by checking that there is no real root of χA in the inter-
val (1,∞). The latter property can be easily verified using
Sturm’s method, whose formalization was already provided
by Eberl [2]. Moreover, for step 4 we apply a cheap square-
free factorization on χA to see that χA contains no duplicate
factors and hence, no duplicate roots. Thus, the largest Jor-
dan block is of size 1 and we can deduce that An ∈ O (1).

Unfortunately, Theorem 1.3 combined with square-free
factorization does not always suffice to precisely determine
the asymptotic growth rate of An , without explicit computa-
tion of the complex eigenvalues.

4In order to prove that S is non-empty, pick some (complex) eigenvector
to eigenvalue ρA , apply the norm-function on all components, and finally
divide the whole vector by its linear vector norm.

Example 3.4. Consider the matrix

A =
1
2



0 1 0 1 1
0 0 1 1 0
1 0 0 0 0
1 0 0 0 1
0 1 1 0 0


with characteristic polynomial:

χA =

(
4x2 + 2x + 1

4

)2
(x − 1)

One can easily check ρA ≤ 1 as in Example 3.3. However,
there are two complex roots with multiplicity 2, so we must
know whether their norm is precisely 1, and if so, we must
compute the sizes of their Jordan blocks. Theorem 1.3 does
not provide any help in these tasks, so we would fall back to
applying algebraic number computations to determine the
complex roots λ1 and λ2 of 4x2 + 2x + 1 and to further decide
whether |λ1 | = 1 and |λ2 | = 1 are satisfied—the answer is no.

4 Connecting HMA- and JNF-Matrices
In order to formally prove the stronger Theorem 1.4, we need
to combine theorems of the HMA library and the JNF library.
To this end, we establish a connection between both repre-
sentations in the form of transfer rules [10]. The connection
consists of two parts.

The first part is the definition of correspondence relations
between matrices (or vectors, or indices) of JNF and HMA.
We define functions to convert between indices, matrices
and vectors of the two representations. For instance, for
indices from-nat ::N→ ′n is defined as an arbitrary bijection
between {0, . . . ,CARD(′n) − 1} and the universe of ′n which
has CARD(′n) many elements. The inverse function is to-
nat :: ′n → N. For matrices we define
definition from-hma :: (′n → ′m → α) → α mat where
from-hma A =

(CARD(’n), CARD(’m), (% i j. A (from-nat i) (from-nat j)))
and a similar definition is available for conversion of vectors.
Then it is easy to define when two indices, matrices, etc. are
related. All of the following relations take two arguments
and return a Boolean, where the first argument is an object of
the JNF world, and the second argument is the corresponding
object in the HMA world.5

definition rel-I :: N→ ′n → bool where
rel-I i j = (i = to-nat j)

definition rel-M :: α mat→ (′n → ′m → α)→ bool where
rel-M A B = (A = from-hma B)
The second step of the connection is proving several trans-

fer rules which we will explain by an example.

5In the sources, the relations rel-I and rel-M have the names HMA-I and
HMA-M respectively.

7

Efficient Certification of Complexity Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

lemma (rel-M −−−−−→ rel-M −−−−−→ rel-M) +JNF +HMA
lemma (rel-M −−−−−→ =) detJNF detHMA

The first transfer rule states that if we invoke matrix addition
on A1 and A2 in the JNF world (via +JNF), and we invoke
matrix addition on B1 and B2 in the HMA world (via +HMA),
then the resulting matrices will be related by rel-M, provided
A1 is related to B1 and A2 is related to B2. Similarly, the
second transfer rule states that if A1 and B1 are related by
rel-M then the computed determinants in both worlds are
related by the equality relation, i.e, they are equal.
Whereas it was quite easy to prove the transfer rules for

matrix addition, multiplication, etc., the most difficult part
was actually the transfer rule for determinants. Recall that
the determinant of a matrix is defined as a sum ranging
over all permutations of the indices, where each summand
depends on the sign of the permutation. For the transfer rule
for determinants we essentially have to prove the following
property.∑

p . p permutes {0..<CARD(′n)} signof p ·∏
i<CARD(′n)A (from-nat i) (from-nat (p i)) =∑

p . p permutes UNIV signof p ·
∏

i ∈UNIVA i (p i))

To this end, we convert the set of permutations via the bi-
jections from-nat and to-nat and at the same time show that
the signs do not change by this conversion.
After having installed the transfer rules we can easily

transfer lemmas from the JNF world to the HMA world.
For instance, we transfer properties on the characteristic
polynomial in the HMA world which so far have only been
available in the JNF world.
Since the transfer package is bidirectional, we can also

transfer statements from HMA into JNF. For instance, Theo-
rem 3.1 is transferred into the following theorem:

A ∈ carrier-mat CARD(′n) CARD(′n) =⇒
real-nonneg-mat A =⇒ n , 0 =⇒
∃v . v ∈ carrier-vec CARD(′n) ∧

eigenvector A v (of-real (spectral-radius A)) ∧
real-nonneg-vec v

Here, we would like to replace the expression CARD(′n) by
a variable n to make the theorem applicable to arbitrary di-
mensions. To this end, we implement a small routine which
automatically proves the following theorem from the afore-
mentioned theorem by using the local type definitions [11].

A ∈ carrier-mat n n =⇒
real-nonneg-mat A =⇒ n , 0 =⇒
∃v . v ∈ carrier-vec n ∧

eigenvector A v (of-real (spectral-radius A)) ∧
real-nonneg-vec v

The new theorem is more generic and only constraints the
new variable n to be non-zero. This constraint is a conse-
quence of the fact that types have to be non-empty; the

routine internally creates a local type τ with n elements and
then instantiates the previous statement where ′n will be τ .
It is worth noting that there is slightly different spelling

of constants between Theorem 3.1 and the above statements,
e.g. eigen-vector and eigenvector . This is caused by slightly
different names in the HMA and the JNF worlds and this
difference has an advantage: without it one would always
have to prefix non-overloaded constants for disambiguation,
which decreases readability.

5 Perron–Frobenius, Irreducible Matrices
In order to circumvent the limitation of Theorem 1.3 we
continue to formalize the Perron–Frobenius theorem for
irreducible matrices.

Theorem 5.1 (Perron–Frobenius, irreducible version). Let
A be a non-negative real and irreducible matrix. Then

1. ρA is an eigenvalue with eigenvector z > 0.
2. The algebraic multiplicity of ρA is 1.
3. Every non-negative real eigenvector corresponds to eigen-

value ρA.
4. There is some k > 0 and polynomial f such that χA =

f (xk − ρkA) and the norm of all complex roots of f is
strictly less than ρA.

In order to formalize Theorem 5.1, we closely follow a
paper proof by Wielandt [20], though we will also see one
deviation. As in the proof of Theorem 3.1, we mostly use
HMA matrices, but at a certain point also JNF matrices.

Proof. We assume that A is a square matrix of dimension n.
Since A is irreducible, (A + I)n > 0. Similar to the proof of
Theorem 3.1, we define a compact set: X1.

X := {x ∈ Rn | x ≥ 0,x , 0} X1 := {x ∈ X | ||x || = 1}

Next, we define a function r from X to real numbers

r (x) := min
j,x j,0

(Ax)j

x j
= max {c | cx ≤ Ax }

with the property that r (x)x ≤ Ax .
Note that r is neither continuous on X nor on X1, since

the selection of the indices j in the minimum-operation is
not continuous. Therefore, we define

Y := {(A + I)nx | x ∈ X1}

and prove that r is continuous on Y , the reason being that
r (y) = minj

(Ay)j
yj

for all y ∈ Y . Hence, we apply the extreme
value theorem on r and Y to obtain a maximum z such that
r (z) = max {r (y) | y ∈ Y }. At this point the formalization
slightly differs from the paper proof, since the standard no-
tion of maximum and Isabelle/HOL’s notion of the maximum
of a set are not the same: the latter only works for finite sets.
Therefore, the formalization instead uses Hilbert’s choice op-
erator (SOME in Isabelle) and contains an explicit statement
of membership and maximality.

8

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

definition z = (SOME z. z ∈ Y ∧ (∀y ∈ Y . r y ≤ r z))
lemma z ∈ Y ∧ (y ∈ Y −→ r y ≤ r z)

We further prove that z is also maximal for X , and that z is a
positive eigenvector with eigenvalue r (z) by directly trans-
lating the paper proof. To be more precise, we show that for
any u ∈ X with r (u) = r (z) it follows that u is an eigenvec-
tor with eigenvalue r (z) and u > 0. Afterwards, we derive
that r (z) is actually ρA by proving that any complex eigen-
value λ satisfies |λ | ≤ r (z). So, at this point we completed
part (1) of Theorem 5.1 which is a slightly stronger property
than Theorem 3.1: for irreducible matrices we get a positive
real eigenvector whereas we only had a non-negative real
eigenvector before.
For proving that ρA has multiplicity 1, the formalization

becomes more interesting. The paper proof works along the
following line, where it is shown that the derivative of χA at
point ρA is positive. Here, Bi is the matrix where row i and
column i have been deleted from A.

χ ′A (ρA)
(∗)
=

∑
i

χBi (ρA)
(∗∗)
> 0

Equality (∗) is essentially the derivation rule for characteris-
tic polynomials which says χ ′A =

∑
i χBi and which is hard to

state in the HMAworld because of the change of dimensions.
Although this lemma has been formalized for JNF-matrices
(Lemma 2.1), it is still not possible to convert it back to the
HMA world, since there is no operation on HMA matrices
which corresponds to mat-delete. Therefore, we provide an-
other operation, which erases a specific row and column
by overwriting the values by zero. This operation is easy to
define in both the JNF- and the HMA-representation and also
the proof of the transfer-rule between the constants mat-
erase (JNF) and erase-mat (HMA) as in Section 4 is straight-
forward. In JNF we then show the following property of the
derivative of the characteristic polynomial wheremonom 1 n
is just one possible way to write the monomial xn in Is-
abelle/HOL.

lemma A ∈ carrier-mat n n =⇒ monom 1 1 ·
pderiv (char-poly A) =

∑
i<n char-poly (mat-erase A i i)

The advantage of this characterization of the derivative is to
be convertible to HMA via transfer.

lemma monom 1 1 · pderiv (charpoly A) =∑
i charpoly (erase-mat A i i)

We clearly see that the latter lemma lives in HMA; for in-
stance, the range of the index i of the summation is implicit
by the type and not explicitly bounded by n as before. Using
the lemma it is no longer difficult to formalize step (∗) where
we replace Bi by erase-mat A i i .

For proving (∗∗) the essential step is to show for all B that
A ≥ B ≥ 0 together with A , B implies ρB < ρA. Hence,
ρA is larger than any root of χB and thus, χB (ρA) > 0. For

proving ρB < ρA we do not follow the paper proof which
considers an arbitrary complex eigenvector of B, but instead
we apply the Perron–Frobenius Theorem 3.1 to directly re-
strict to a non-negative real eigenvectoru of B for eigenvalue
ρB , i.e., u ∈ X . Note that it is not possible to use the already
proven part (1) of Theorem 5.1 at this point, since B is not
necessarily irreducible. By the restriction u ∈ X it becomes
easy to derive (∗∗): ρB ≤ ρA follows from monotonicity via
ρBu = Bu ≤ Au and ρA = max {c | ∃x ∈ X . cx ≤ Ax }.
Moreover, ρB = ρA would imply (A − B)u = 0 and u > 0, a
contradiction to A , B.
At this point we have proved the first two parts of Theo-

rem 5.1, and we skip the explanation of the remaining part
as it is again quite close to the paper proof, e.g. by showing
that A is similar to λ

|λ |A for every maximal eigenvalue λ. □

After its proof, let us have a look at Theorem 5.1 from
the complexity viewpoint. Here, in particular the last part
is interesting. It implies that all maximal eigenvalues have
algebraic multiplicity 1, and hence the Jordan blocks of these
eigenvalues all have size 1. This permits us to easily deter-
mine the matrix growth in Example 3.4 without explicitly
computing any eigenvalue.

Example 5.2. The matrix in Example 3.4 is irreducible and
ρA = 1. By Theorem 5.1 the largest Jordan block of a maximal
eigenvalue has size 1. Thus, An ∈ O (1) by the soundness of
Algorithm 1.

6 Perron–Frobenius, General Case
The Perron–Frobenius Theorem 5.1 implies that for irre-
ducible matrices we can always (and only) derive either con-
stant or exponential growth. Therefore, irreducible matrices
are quite limited for complexity analysis.6 For instance, The-
orem 5.1 is not applicable on Example 1.2 since that matrix is
not irreducible. So, we would like to generalize Theorem 5.1
to non-irreducible matrices. Since we are mainly interested
in the last property of Theorem 5.1, we exactly obtain The-
orem 1.4 of the introduction, whose informal proof is as
follows.

Proof of Theorem 1.4. The proof is by induction on the di-
mension n and considers three cases. The irreducible case
is handled by Theorem 5.1, and the property is trivial in
case the dimension of A is 1. So we remain with the only
interesting case that A is not irreducible and n ≥ 2. Then
there exists a permutation π of row and columns such that

π (A) =

[
B C
0 D

]

where the dimensions of B and D are both smaller than n.
Since π is a permutation we know that also B and D are non-
negative real matrices. Hence, by the induction hypothesis
6This knowledge should be exploited when searching for suitable matrix
interpretations in automatic complexity tools.

9

Efficient Certification of Complexity Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

we conclude

χB = fB
∏
k ∈KB

(xk − ρkB) and χD = fD
∏
k ∈KD

(xk − ρkD).

Since A and π (A) are similar, they have the same character-
istic polynomial. We conclude

χA = χπ (A) = χB χD

and moreover ρA = max{ρB , ρD }. Hence, for ρB = ρD it
suffices to choose f = fB fD andK = KB∪KD . If ρB < ρD we
just choose f = χB fD andK = KD to finish the proof. Finally,
the case ρD < ρB is symmetric to the case ρB < ρD . □

In order to formalize the above informal proof, clearly we
need JNF matrices to perform the decomposition of π (A)
into the four blocks B, C , 0, and D. Here, it turns out that
we also have to formalize several results on permutations
of matrix indices, e.g., that applying a permutation is a simi-
larity transformation, and that a non-irreducible matrix can
always be permuted to the form above, i.e., a block matrix
where the lower-left block is 0. Especially the latter fact is
quite tedious.

To be more precise, letG be the graph of A. Since A is not
irreducible and n ≥ 2, we get two indices i and j such that
there is no path from i to j. Now let I be the set of indices
(i.e., nodes of G) that are reachable from i . Next define π
as a permutation which moves I to the front—in Isabelle,
we define π as a permutation obtained by sorting the list
of all indices w.r.t. a suitable order. Finally we prove that
π (A) has the desired property, since any non-zero value in
the lower-left block of π (A) would connect a node which is
reachable from i to a node which is not reachable by i .
In total, we arrive at the formalized statement of Theo-

rem 1.4 which is available for both HMA and JNF. We do
not display a formal version of the theorem explicitly at this
point, but instead present a corollary which is tailored for
complexity analysis. Here, the matrixA has elements of type
real, so the second assumption demands that there are no
real eigenvalues above 1, whereas in the conclusion we know
that all complex roots of f have a norm below 1.

Corollary 6.1. non-neg-mat A =⇒
∀x . poly (charpoly A) x = 0 −→ x ≤ 1 =⇒
∃ K f . charpoly A = f ·

∏
k←K (monom 1 k − 1) ∧

∀x .poly (map-poly complex-of-real f) x = 0 −→ |x | < 1

Based on this corollary, we can now prove why it suffices
to consider the potential eigenvalues in Figure 2b. The figure
states that for matrices of dimension n it suffices to compute
the Jordan blocks of the roots of unity of degree at most
⌊ n2 ⌋. This is just a simple counting argument: If there is any
maximal eigenvalue λ with norm 1, then by the corollary
it must be a root of unity of degree k where k ∈ K . Since
Jordan blocks of size 1 can always be ignored in Algorithm 1,
we may assume that k has a Jordan block of size 2 or above.
But then also the multiplicity of λ must be at least 2, so a

multiple of k must occur at least twice in K . However, then
the degree of χA is at least 2k , so k ≤ ⌊ n2 ⌋.

With this reasoning we can prove the validity of all num-
bers in Figure 2b except for the potential eigenvalue −1
which is labeled by 5. According to the above counting ar-
gument we would have to consider the Jordan blocks of
−1 already for matrices of dimension 4. The answer to this
difference is provided in the next section.

7 Largest Jordan Blocks
Note that Theorem 1.4 and Corollary 6.1 only provide us
with information on the characteristic polynomial of A, but
they do not provide insights on the structure of the Jordan
blocks of A.
In contrast, the following lemma states that the Jordan

blocks of the spectral radius are always the largest ones
among all maximal eigenvalues. Hence, it suffices to just
compute the Jordan blocks for eigenvalue 1 in Algorithm 1,
and thus, Jordan blocks for −1 do not have to be computed
for matrices of dimension 4.

Lemma 7.1. LetA be a non-negative real matrix of dimension
n ≤ 4, and λ a maximal eigenvalue of A. If a Jordan block of
A and λ is of size s , then there exists a Jordan block of A and
ρA with size t ≥ s .

Proof. W.l.o.g. we assume that ρA = 1, as otherwise one
can just multiply the matrix by the constant 1/ρA. In the
following we just provide a short informal argument and
refer to the sources for the details of the formalization via
JNF matrices.

By using the counting argument of Corollary 6.1, we see
that the only possible violation of the claim is that −1 has a
Jordan block of size 2, so in particular K must be the multiset
{2, 2} and hence χA = (x2 − 1)2. By Theorem 5.1 we then
know that A is not irreducible. Consequently we can obtain

a permutation π such that π (A) =
[
B C
0 D

]
. Moreover, the

theorem tells us that both B and D must have the character-
istic polynomial x2 − 1. Since both B and D are non-negative
this is only possible if

π (A) =



0 a c d
1
a 0 e f
0 0 0 b
0 0 1

b 0



for some a > 0 and b > 0.

10

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

We derive that π (A) is similar to E via the invertible matrix
P where д = −abe+af +bc−d2b and h = abe+af +bc+d

2a .

E =



−1 д 0 0
0 −1 0 0
0 0 1 h
0 0 0 1



P =



1
2

−a
2

abe+af −bc−d
8b

abe+af −bc−d
8

0 0 1
2

−b
2

1
a 1 abe−af +bc−d

2ab 0
0 0 1

b 1


Actually, we used Mathematica to obtain д, h, E, and P and
then manually copied these definitions into our formaliza-
tion. Thus A is similar to E, too, and so their Jordan blocks
must be identical. So, since A has a Jordan block for −1 of
size 2, д must be non-zero. But then also h must be non-zero
by the definition of д and h. Thus, there also is a Jordan block
for eigenvalue 1 with size 2. □

Currently Lemma 7.1 states the maximality result only
for matrices up to dimension 4. We conjecture that it is also
true for arbitrary n: among billions of generated matrices
we did not find any violation. However, we do not see how
to generalize the proof of Lemma 7.1.

8 Improved Certification Algorithm
In order to actually certify the growth rate of the power of
non-negative real matrices via Corollary 6.1 and Lemma 7.1,
there is still one minor problem, namely the existentially
quantified K and f in the corollary have to be computed.
To this end, we first prove the soundness of Algorithm 2. It
computes K and f and thereby proves that these values are
uniquely determined.

Algorithm 2: Computing K and f of Corollary 6.1.
Input: A polynomial д = f

∏
k ∈K (x

k − 1) where f has
no complex roots with norm 1

Output: K and f
1 f := д, K := ∅
2 k := degree f
3 while k ≥ 1 do
4 if xk − 1 divides f then
5 K := {k } ∪ K , f := f /(xk − 1)
6 else
7 k := k − 1
8 return K and f

It is important that the loop in Algorithm 2 goes down
from the degree of f to 1. If one would reverse the iteration
order, then the algorithm would deliver wrong results: for
instance consider д = x2 − 1 with the correct answer f = 1

and K = {2}, but where an iteration with ascending k would
result in f = x + 1 and K = {1}.
We are now ready to present the improved certification

algorithm for matrix growth.

Algorithm 3: Efficient Certification of An ∈ O (nd).
Input: A non-negative real matrix A and degree d .
Output: Accept or assertion failure.

1 Assert {x ∈ R.χA (x) = 0,x > 1} = ∅ via Sturm’s method
2 Compute K by decomposing χA via Algorithm 2
3 if |K | ≤ d + 1 then accept
4 Check the Jordan blocks for eigenvalue 1, i.e., assert that

each Jordan block of A and 1 has size s ≤ d + 1
5 if dimension of A ≤ 4 then accept
6 for k ∈ {2, . . . ,maxK } do
7 mk := |{k ′ ∈ K . k divides k ′}|
8 if mk > d + 1 then
9 Check the Jordan blocks for all primitive roots

of unity of degree k
10 Accept

Algorithm 3 is even more fine-grained than considering
all points in Figure 2b, since it precisely determines the set
of maximal eigenvalues whose multiplicities may violate the
given complexity bound, without explicitly computing them.
The value mk in the algorithm is precisely the algebraic
multiplicity of the primitive roots of unity of degree k , and
in particularm1 = |K | is the algebraic multiplicity of 1.

In order to produce the primitive roots of unity of degree k ,
we apply explicit formulas for k ≤ 4: {1}, {−1}, { −1±

√
3i

2 }, and
{±i} for k = 1, 2, 3, and 4, respectively, and otherwise we just
invoke a generic complex-root algorithm on xk−1which will
generate all roots of unity of degree k , even non-primitive
ones.

We formalize the soundness of Algorithm 3 by combining
the soundness of Algorithm 1 with Corollary 6.1, Lemma 7.1,
and the soundness of Algorithm 2.
Let us illustrate the improvement of Algorithm 3 over

Algorithm 1 and also over Corollary 6.1 in an example.

Example 8.1. Consider some non-negative real matrix A
with

χA =
1

4096
(
4096x21 − 8192x20 + 4096x19 − 4096x18

+ 4608x17 + 3584x16 − 4096x15 + 3456x14

− 8048x13 + 4608x12 + 128x11 + 488x10 − 656x9

− 119x7 + 152x6 − x4 − 9x3 + 1
)

where we are interested in checking whetherAn has constant
growth, i.e., d = 0.
We tested three different algorithms to conduct the fol-

lowing task: check that ρA ≤ 1 and compute all critical

11

Efficient Certification of Complexity Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

�

�

�

�

�

�

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��

�	
���
 �����

(a) Algorithm 1

�

�

�

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��

�	
���
 �����

(b) Corollary 6.1

��

-��� -��� -��� ��� ��� ��� ���
-���

-���

-���

���

���

���

���

��

��

�	
���
 �����

(c) Algorithm 3

Figure 3. Different ways to compute critical eigenvalues

eigenvalues λ, i.e., eigenvalues λ with norm 1 which have
an algebraic multiplicity of 2 or more, so that a Jordan block
computation for λ is required. The execution of the algo-
rithms is illustrated in Figure 3 where each point indicates
an explicitly computed potential eigenvalue, and each num-
ber indicates a calculated algebraic multiplicity.

(a) Algorithm 1 first explicitly computes all eigenvalues,
i.e., the complex roots of χA, as shown in Figure 3a.

Afterwards it determines their norms, and finally com-
putes the algebraic multiplicity of each maximal eigen-
value. This approach requires expensive algebraic num-
ber computations, e.g., the imaginary part of one of
the eigenvalues is root #5 of a degree 42 polynomial
whose leading coefficient is 75557863725914323419136.
We had to abort this computation after one hour.7 Note
that preprocessing the characteristic polynomial by
a square-free factorization does not help in this ex-
ample: the factorization splits χA into f 2д

4096 where the
roots of f = 64x8 − 128x7 + 64x6 + 4x4 − 4x3 − x + 1
are precisely the eigenvalues with multiplicity 2 and
the roots of д are the eigenvalues with multiplicity 1.
Still determining the norms of the complex roots of f
(instead of χA) took more than one hour.

(b) The next approach first applies Sturm’s method to
detect ρA = 1, indicated by the gray line in Figure 3b.
Then using Corollary 6.1 we know that the critical
eigenvalues can only be roots of unity up to degree 10.
For all of these numbers the algebraic multiplicities
are calculated and it is then determined that 1 is the
only critical eigenvalue. The overall execution took
10.33 seconds.

(c) Finally we invoke Algorithm 3. It first applies Sturm’s
method and then computes K = {3, 4}. Next, it figures
out that only for k = 1 there are critical eigenvalues:
mk ≤ 1 = d + 1 for k = 2, 3, 4. Finally, it returns as
critical eigenvalues all roots of unity of degree k = 1,
i.e., 1. Hence, only one eigenvalue is explicitly com-
puted, cf. Figure 3c. The overall computation took 0.05
seconds.

Example 8.1 uses an artificial large matrix where tremen-
dous improvement in speed is observed. Tomeasure improve-
ments in practice, we extracted all matrix interpretations
from complexity proofs of the international termination and
complexity competition [6] in the last three years, which
amounts to the validation of the growth rate of 6,690 matri-
ces, whose largest dimension was only 5. This low dimension
keeps the overhead of algebraic number computations at a
reasonable level. Still, processing all 6,690 matrices became
five times faster after replacing Algorithm 1 by Algorithm 3.

Finally, we remark that the integration of Algorithm 3
into IsaFoR—the formalization underlying CeTA—was unfor-
tunately not straightforward. The reason is that initially we
based our definition of the graph of a matrix on the AFP en-
try on graphs by Noschinski [14]. However, IsaFoR already
depends on an AFP entry on computing strongly-connected
components of a graph by Lammich [12]. Since both of these
AFP entries define their own versions of graphs in different

7All experiments have been conducted on a computer running at 3.5 GHz
using compiled Haskell code. This code was generated from the Isabelle
sources using Isabelle’s code generator [7].

12

CPP’18, January 8–9, 2018, Los Angeles, CA, USA J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada

theory files using the same theory name, we could not include
both AFP entries into IsaFoR in Isabelle 2017. Our solution
was to completely rewrite the graph part of our formaliza-
tion so that it no longer depends on the the AFP entry by
Noschinski. Clearly, it would have been more convenient if
there were support on resolving theory-name clashes, e.g.,
by some kind of package or module system.

9 Conclusion
We developed an efficient algorithm which decides An ∈

O (nd) for non-negative real matrices. Its soundness has been
formalized in Isabelle/HOL, and it is heavily based on our for-
malization of the Perron–Frobenius theorem. A key technical
part of the formalization is our connection between matrices
in JNF and HMA representations: it permits to arbitrarily
switch between both representations.

Since for matrices of dimensions up to 5 no algebraic num-
ber computations are required, it also seems to be possible to
use our algorithm for synthesis of matrix interpretation: one
can write a polynomial-sized SAT or SMT encoding whether
a symbolic matrix of dimension up to 5 has an a-priori fixed
growth rate by just encoding the computations that are per-
formed in Algorithm 3.
Although our formalization was motivated by the cer-

tification of complexity proofs, there are also other appli-
cations where it may become useful. For instance, Theo-
rem 5.1 implies that there is a unique eigenspace that con-
tains a non-negative real vector, and moreover this space
is 1-dimensional. This property is connected to invariant
distributions of stochastic matrices and to convergence of
finite irreducible Markov chains. Hence, it will be interesting
to connect our work with the recent formalization of Markov
chains by Hölzl [9].

Acknowledgments
This research was supported by the Austrian Science Fund
(FWF) project Y757. Jose Divasón is partially funded by the
Spanish project MTM2014-54151-P. Most of the research was
conducted while Sebastiaan Joosten and Akihisa Yamada
were working in the University of Innsbruck. The authors
are listed in alphabetical order regardless of individual con-
tributions or seniority.
We thank Fabian Immler for his explanations on how to

perform continuity proofs in the HMA library.

References
[1] Martin Avanzini, Georg Moser, and Michael Schaper. 2016. TcT: Ty-

rolean Complexity Tool. In TACAS 2016 (LNCS), Vol. 9636. 407–423.

[2] Manuel Eberl. 2015. A Decision Procedure for Univariate Real Polyno-
mials in Isabelle/HOL. In CPP 2015. ACM, 75–83.

[3] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. 2008. Matrix
Interpretations for Proving Termination of Term Rewriting. Journal
of Automated Reasoning 40, 2-3 (2008), 195–220.

[4] Ferdinand Georg Frobenius. 1912. Über Matrizen aus nicht negativen
Elementen. In Sitzungsberichte Preuß. Akad. Wiss. 456–477.

[5] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian
Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski,
and René Thiemann. 2017. Analyzing Program Termination and Com-
plexity Automatically with AProVE. Journal of Automated Reasoning
58, 1 (2017), 3–31. https://doi.org/10.1007/s10817-016-9388-y

[6] Jürgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann, and
Johannes Waldmann. 2015. Termination Competition (termCOMP
2015). In CADE-25 (LNCS), Vol. 9195. 105–108.

[7] Florian Haftmann and Tobias Nipkow. 2010. Code Generation via
Higher-Order Rewrite Systems. In FLOPS 2010 (LNCS), Vol. 6009. 103–
117.

[8] John Harrison. 2013. The HOL Light Theory of Euclidean Space. J.
Autom. Reasoning 50, 2 (2013), 173–190.

[9] Johannes Hölzl. 2017. Markov chains and Markov decision processes
in Isabelle/HOL. Journal of Automated Reasoning (2017). To appear.

[10] Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A
Modular Design for Quotients in Isabelle/HOL. In CPP 2013 (LNCS),
Vol. 8307. 131–146.

[11] Ondřej Kunčar and Andrei Popescu. 2016. From Types to Sets by Local
Type Definitions in Higher-Order Logic. In ITP 2016 (LNCS), Vol. 9807.
200–218.

[12] Peter Lammich. 2014. Verified Efficient Implementation of Gabow’s
Strongly Connected Components Algorithm. Archive of Formal Proofs
(May 2014). http://isa-afp.org/entries/Gabow_SCC.html, Formal proof
development.

[13] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. 2002.
Isabelle/HOL –A Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283.
Springer.

[14] Lars Noschinski. 2013. Graph Theory. Archive of Formal Proofs (April
2013). http://isa-afp.org/entries/Graph_Theory.html, Formal proof
development.

[15] Oskar Perron. 1907. Zur Theorie der Matrices. Math. Ann. 64 (1907),
248–263.

[16] Denis Serre. 2002. Matrices: Theory and Applications. Springer.
[17] René Thiemann and Christian Sternagel. 2009. Certification of Termi-

nation Proofs using CeTA. In TPHOLs’09 (LNCS), Vol. 5674. 452–468.
[18] René Thiemann and Akihisa Yamada. 2016. Algebraic Numbers in

Isabelle/HOL. In ITP 2016 (LNCS), Vol. 9807. 391–408.
[19] René Thiemann and Akihisa Yamada. 2016. Formalizing Jordan normal

forms in Isabelle/HOL. In CPP 2016. ACM, 88–99.
[20] Helmut Wielandt. 1950. Unzerlegbare, nicht negative Matrizen. Math-

ematische Zeitschrift 52, 1 (1950), 642–648.
[21] Harald Zankl andMartin Korp. 2014. Modular Complexity Analysis for

Term Rewriting. Logical Methods in Computer Science 10, 1:19 (2014),
1–34.

13

https://doi.org/10.1007/s10817-016-9388-y
http://isa-afp.org/entries/Gabow_SCC.html
http://isa-afp.org/entries/Graph_Theory.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 HMA Matrix Representation
	2.2 JNF Matrix Representation

	3 Perron–Frobenius, Basic Version
	4 Connecting HMA- and JNF-Matrices
	5 Perron–Frobenius, Irreducible Matrices
	6 Perron–Frobenius, General Case
	7 Largest Jordan Blocks
	8 Improved Certification Algorithm
	9 Conclusion
	Acknowledgments
	References

