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Departamento de Matemáticas y Computación
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Introduction

INTRODUCTION

Project

1 The objective of this project is to formalize concepts and theorems of
linear algebra, concretly of vector spaces, using Isabelle/HOL.

2 We have followed a Halmos’ book: Finite-dimensional vector spaces.

3 The project has been written in English.
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Introduction

We will try to formalize the first 16 sections in Halmos:

Sections
1 Fields

2 Vector Spaces

3 Examples

4 Comments

5 Linear Dependence

6 Linear Combinations

7 Bases

8 Dimension

Sections
9 Isomorphism

10 Subspaces

11 Calculus of Subspaces

12 Dimension of a Subspace

13 Dual Spaces

14 Brackets

15 Dual Bases

16 Reflexivity
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Introduction

Main Theorems

Theorem 1

Every linearly independent set can be extended to a basis.

Theorem 2

Any two finite bases of a finite dimensional vector space have the same
cardinality.

Theorem 3

An n-dimensional vector space V over a field K is isomorphic to Kn.

Theorem 4

There exists an isomorphism between a vector space V and the dual space
of its dual.
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Introduction

Isabelle

Isabelle: The theorem proving assistant in which we have made the
development.

Isar: Intelligible semi-automated reasoning.

HOL: Higher-order logic.

HOL-Algebra: A library of linear algebra implemented in Isabelle
using HOL.

Locales: A kind of module in which we can fix variables and declare
assumptions.
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Introduction

Example of Isabelle code

locale vector_space = K: field K + V: abelian_group V

for K (structure) and V (structure) +

fixes scalar_product:: "’a => ’b => ’b" (infixr "·" 70)

assumes mult_closed: "[[x ∈ carrier V;a ∈ carrier K]]
=⇒ a · x ∈ carrier V"

and mult_assoc: "[[x ∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊗K b) · x = a · (b · x)"
and mult_1: "[[x ∈ carrier V]] =⇒ 1K · x = x"

and add_mult_distrib1:

"[[x∈ carrier V; y ∈ carrier V; a ∈ carrier K]]
=⇒ a · (x ⊕V y)= a·x ⊕V a·y"
and add_mult_distrib2:

"[[x∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊕K b) · x = a·x ⊕V b·x"
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Indexed Sets

INDEXED SETS

Indexed Sets
1 In mathematics, we usually represent a set of n elements this way:

A = {a1, . . . , an}

2 Really a set doesn’t have an order by default (but we can give one for
it).

3 This is not important...unless the order has influence on the proof.
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Indexed Sets

We have implemented the type indexed set as a pair of a set and a
function that goes from naturals to the set:

type synonym (’a) iset = "’a set × (nat => ’a)"

An indexing of a set will be any bijection between the set of the
natural numbers less than its cardinality (because we start counting
from 0) and the set:
inj_on f A = (∀ x∈A. ∀ y∈A. f x = f y −→ x = y)

bij_betw f A B = (inj_on f A ∧ f ‘ A = B)

definition indexing :: "(’a iset) => bool"

where "indexing (A,f) = bij_betw f {..<card (A)} A"
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Indexed Sets

We have defined operations to insert and remove one element of an
indexed set:

definition indexing_ext :: "(’a iset) => ’a => (nat => nat => ’a)"

where "indexing_ext (A,f) a = (λn. λk. if k < n then f k

else if k = n then a else f (k - 1))"

definition insert_iset :: "’a iset => ’a => nat => ’a iset"

where "insert_iset (A,f) a n

= (insert a A, indexing_ext (A,f) a n)"

definition remove_iset :: "’a iset => nat => ’a iset"

where "remove_iset (A,f) n = (A - {f (n)},

(λk. if k < n then f (k) else f (k + 1)))"
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Indexed Sets

We present an induction rule created to prove theorems and properties of
indexed sets:
lemma
indexed_set_induct2 [case_names indexing finite empty insert]:

assumes "indexing (A, f)"

and "finite A"

and "∀ f. indexing ({}, f) ==> P {} f"

and step: "∀ a A f n. [|a /∈ A;

[| indexing (A, f) |] ==> P A f;

finite (insert a A);

indexing ((insert a A), (indexing_ext (A, f) a n));

0 ≤ n; n ≤ card A |] ==>

P (insert a A) (indexing_ext (A, f) a n)"

shows "P A f"

using ‘finite A‘ and ‘indexing (A, f)‘

proof (induct arbitrary: f)

...

qed
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Theorem 1

THEOREM 1

Previous Result

If the set of non-zero vectors x1, . . . , xn is linearly dependent, then there
exists at least one xk , 2 ≤ k ≤ n, which is a linear combination of the
preceding ones.

Note that the given order is very important, so the use of indexed sets is
indispensable.

Theorem 1

Every linearly independent set of a finite vector space V can be extended
to a basis.
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Theorem 1

Theorem 1

Every linearly independent set of a finite vector space V can be extended
to a basis.

Let A = {a1, . . . , an} an independent set and B = {b1, . . . , bm} a
basis of V . We apply the previous result to the set:
C = { a1, . . . , an︸ ︷︷ ︸

Elements of A

, b1, . . . , bm︸ ︷︷ ︸
Elements of B

}

Since the first n elements are in an independent set (they are
contained in A), hence the element which is a linear combination of
the preceding ones is in B.

Let bi that element, then we remove it and we obtain:
C ′ = {a1, . . . , an, b1, . . . , bi−1, bi+1, . . . bm}
If C ′ is independent we have already finished (the basis is C ′), if not
we iterate the process.
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Theorem 1

PROBLEMS

C = {
Elements of A︷ ︸︸ ︷
a1, . . . , an ,

Elements of B︷ ︸︸ ︷
b1, . . . , bm } could be a multiset.

SOLUTION: C = A ∪ (B − A).

There could be some elements of B which are linear combination of
the preceding ones (there is no unicity). SOLUTION: Take the least.

The iterative reasonings are hard to be implemented in Isabelle. The
functions in HOL are total. SOLUTION: Partial functions (tail
recursive).
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Theorem 1

We define two functions: remove ld and iterate remove ld.

The first one removes the least element of a dependent set which is a
linear combination of the preceding ones.
definition remove_ld :: "’c iset => ’c iset"

where "remove_ld (A,f) =

(let n = (LEAST k::nat. ∃ y ∈ A. ∃ g.
g ∈ coefficients_function (carrier V)

∧ (1::nat) ≤ k ∧ k < (card (A))

∧ f k = y

∧ y = linear_combination g (f ‘ {i::nat. i<k}))

in remove_iset A n)"

The second one iterates the previous function until achieving an
independent set.
partial function (tailrec) iterate_remove_ld :: "’c set => (nat

=> ’c) => ’c set"

where "iterate_remove_ld A f

= (if linear_independent A then A

else iterate_remove_ld (fst (remove_ld (A, f)))

(snd (remove_ld (A, f))))"
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Theorem 1

There are three important results which iterate remove ld must satisfy to
demonstrate the theorem:

1 The result is a linearly independent set (about 100 lines).

2 The result is a spanning set (about 130 lines).

3 The independent set A is contained in the result of the function
(about 350 lines).

The total number of lines necessary to prove this theorem were 984.
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Theorem 1

lemma extend_not_empty_independent_set_to_a_basis:

assumes "linear_independent A"

and "A 6={}" shows "∃ S. basis S ∧ A ⊆ S"

proof -

def X ≡"B-A"
have "linear_independent(iterate_remove_ld (A∪X) h)"

proof (rule linear_independent_iterate_remove_ld)

...

qed
have "span(iterate_remove_ld (A∪X) h)=carrier V"

proof (rule iterate_remove_ld_preserves_span)

...

qed
have "A ⊆ (iterate_remove_ld (A∪X) h)"

proof (rule A_in_iterate_remove_ld)

...

qed
...

qed
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Theorem 2

THEOREM 2

Swap theorem

If A is a linearly independent set of V and B is any spanning set of V ,
then card(A) ≤ card(B).

Corollary: theorem 2

Any two finite bases of a finite dimensional vector space have the same
cardinality.
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Theorem 2

swap function ({a1, . . . , an} × {b1, . . . , bm})
= ({a2, . . . , an} × {a1, b1, . . . , bi−1, bi+1, . . . , bm})

Where bi is the first element which is a linear combination of the
preceding ones (a1, . . . , bi−1).
This function satisfies, amongst others, the following properties:

It preserves the linear independence in the first component.

It preserves the span in the second component.

Jose Divasón (UR) Formalization of vector spaces using Isabelle Website 18 / 31

http://www.unirioja.es/cu/jodivaso


Theorem 2

swap function ((A,f) × (B,g)):

First component:
I We remove the first element of A, in other words: the function returns

the set A− {a1} (and the corresponding indexation).

Second component:
I If a1 ∈ B then simply we change the indexation moving that element to

the first position of B.
I If a1 /∈ B, then we add it in the first position of B and after that we

will remove the first element which is a linear combination of the
preceding ones using the function remove ld.

The implementation in Isabelle:
definition swap_function :: "(’c iset × ’c iset)

=> (’c iset × ’c iset)"

where "swap_function ((A,f),(B,g)) = (remove_iset_0 A,

if f 0 ∈ B then

insert_iset (remove_iset (B,g) (obtain_position (f 0) B))

(f 0) 0

else remove_ld (insert_iset (B,g) (f 0) 0))"
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Theorem 2

Swap theorem

If A is a linearly independent set of V and B is any spanning set of V ,
then card(A) ≤ card(B).

Suppose that card(A) > card(B) and then we apply swap function card(B) times.

We will obtain that in the second component of the result there will be only elements of A

(but not all). This is because we will have removed card B elements of B in the second

component (one in each iteration, so we will have removed all elements of B).

swap functioncard(B) ({a1, . . . , an} × {b1, . . . , bm})
= ({acard(B)+1, . . . , an} × {a1, . . . , acard(B)︸ ︷︷ ︸

C

})

Let be C that set, we will have:
I C ⊂ A (strict).

I span(C) = V (because the second component was a spanning set and the function

preserves the span). So C is a spanning set.

Let be x ∈ A but x /∈ C (this element exists because C ⊂ A strictly). As C is a spanning
set, we can express x as a linear combination of elements of C .

However, this is a contradiction with A being linearly independent (because C ∪ {x}
would be linearly dependent and as C ∪ {x} ⊆ A then A would be dependent).
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Theorem 2

PROBLEMS

We can’t follow a similar reasoning than in theorem 1 to prove the
result: now we need to have control in the number of iterations.

Need to separate in cases the function to avoid a multiset again and
to be able to apply remove ld.

We have to make use of the power of a function...however, this is not
implemented in Isabelle. We have to make it:
instantiation "fun" :: (type, type) power

begin
definition one_fun :: "’a => ’a"

where one_fun_def: "one_fun = id"

definition times_fun :: "(’a => ’a) => (’a => ’a) => ’a => ’a"

where "times_fun f g = (∀ x. f (g x))"

instance
proof
qed
end
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Theorem 2

Once we have defined the power of a function, we have to prove the
properties that swap function satisfies in case that we apply the
function once and after that generalize them using induction. The
following lemma is indispensable:

corollary fun_power_suc_eq:

shows "(f^(n+1)) x = f ((f^n) x)"

using fun_power_suc by (metis id_o o_eq_id_dest)

This is a long and tedious process: the proofs of all necessary
properties and lemmas to make the demonstration take up 1800 lines.
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Theorem 3

THEOREM 3

What is Kn?

Definition of Kn

Kn = K×K× · · · ×K︸ ︷︷ ︸
n

= {(x1, . . . , xn)|xi ∈ K ∀i ,1 ≤ i ≤ n}

And in Isabelle?

First we define the type vector, a pair of a function and a natural:
types ’a vector = "(nat => ’a) * nat"

I The function maps naturals to elements of a set.
I The natural is the length of the vector minus one.
I Example: To represent (a1, a2, a3, a4) we have a vector (f , 3) where

f (0) = a1, f (1) = a2, f (2) = a3 and f (3) = a4.
I Problem: we don’t have unicity of representation.
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Theorem 3

definition K_n_carrier :: "’a set => nat => (’a vector) set"

where "K_n_carrier A n = {v. ((∀ i<n. ith v i ∈ A))

∧ (∀ i≥n. ith v i = 0) ∧ (vlen v = (n - 1))}"

definition
K_n_add :: " nat => ’a vector => ’a vector => ’a vector"

(infixr "⊕ı" 65)

where "K_n_add n = (λv w. ((λi. ith v i ⊕R ith w i), n -

1))"

definition K_n_zero :: "nat => ’a vector"

where "K_n_zero n = ((λi. 0R), n - 1)"

definition K_n_mult :: "nat => ’a vector => ’a vector => ’a

vector"

where "K_n_mult n = (λv w. ((λi. ith v i ⊗R ith w i),

n - 1))"

definition K_n_one :: "nat => ’a vector"

where "K_n_one n = ((λi. 1R), n - 1)"
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Theorem 3

Definition of Kn in Isabelle
Finally using the definition of carrier, add, zero, mult and one we can define the

concept of Kn:
definition K_n :: "nat => ’a vector ring"

where
"K_n n = (| carrier = K_n_carrier (carrier R) n,

mult = (λv w. K_n_mult n v w),

one = K_n_one n,

zero = K_n_zero n,

add = (λv w. K_n_add n v w)|)"

We need to check that Kn is a vector space, so we need to define its scalar

product: a� (b1, . . . , bn) = (a · b1, . . . , a · bn)
definition K_n_scalar_product :: "’a => ’a vector => ’a vector"

(infixr "�" 65) where "a � b = (λn::nat. a ⊗R ith b n, vlen b)"

lemma vector_space_K_n:

shows "vector_space R (K_n n) (op �)"
unfolding K_n_def

proof (intro vector_spaceI)
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Theorem 3

Definition of isomorphism between vector spaces

Two vector spaces V and W over the same field K are isomorphic if there
exists a linear map f : V →W such that is a bijection.

Theorem 3

An n-dimensional vector space V over a field K is isomorphic to Kn.

Let X = {x1, . . . , xn} be a basis of V . The isomorphism between V and
Kn is easy to understand:

a = α1x1 ⊕V · · · ⊕V αnxn ∈ V

f

((
(α1, . . . , αn) ∈ Kn

f −1

hh
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Theorem 3

FROM Kn TO V

Let (α1, . . . , αn) be a vector of Kn. Hence, the corresponding a ∈ V
will be a = α1x1 ⊕V · · · ⊕V αnxn.

How could we make it in Isabelle? We use that {xi}i∈{1...n} are a
basis and thus every a ∈ V can be uniquely determined as the finite
sum

∑n
i=1 αixi = α1x1⊕V · · · ⊕V αnxn = a. We only have to multiply

each component of (α1, . . . , αn) with the corresponding element of
the basis X = {x1, . . . , xn} and finally sum all again to obtain the
linear combination which will be equal to a:

In order to do that we will define a function named iso K n V. To
terminate the proof we have to demonstrate that this function is also
a linear map.

definition iso_K_n_V :: "’a vector => ’c"

where "iso_K_n_V x

= finsum V (λi. fst x i · indexing_X i) {..<dimension}"
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Theorem 3

FROM V TO Kn

Let a ∈ V . We know that we can express it as a linear combination of
the elements of the basis and this linear combination is unique:
a = α1x1 ⊕V · · · ⊕V αnxn. The corresponding element in Kn is
(α1, . . . , αn).

Hence we need to manage to represent (α1, . . . , αn) using that
a = α1x1 ⊕V · · · ⊕V αnxn. We will do it in the next way, we can write
(α1, . . . , αn) as a finite sum of elements of the canonical basis of Kn:
(α1, . . . , αn) = α1 · (1, 0, . . . , 0)⊕Kn · · · ⊕Kn αn · (0, . . . , 0, 1)

So we have to take the scalars of the linear combination of the
elements of the basis of V ({x1, . . . , xn}) for a and multiply them
(with the scalar product of Kn) with the corresponding vector of the
canonical basis. Finally we will sum all to obtain (α1, . . . , αn).

definition iso_V_K_n :: "’c => ’a vector"

where "iso_V_K_n x =

finsum (K_n dimension) (λi. (K_n_scalar_product (lin_comb (x)

(indexing_X i)) (x_i i dimension))) {..<dimension}"
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Management

MANAGEMENT
Task Estimated time

Previous learning 12
Fields 17

Vector spaces 2.4
Examples 3.6

Comments 36
Linear dependence 24

Linear combinations 45
Basis 23.5

Dimension 25.25
Isomorphism 29.5

Subspaces 10.5
Calculus of subspaces 17

Dimension of a subspace 9.5
Dual spaces 12

Brackets 1
Dual bases 21.5
Reflexivity 10

Documentation 140

TOTAL HOURS 439.75

File Lines
Previous 55

Field2 326
Vector Space 42

Examples 57
Comments 329

Linear dependence 532
Linear combinations 1921

Indexed set 1226
Basis 1962

Dimension 2235
Isomorphism 3465

Subspaces 234
TOTAL 12387
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Conclusions and further work

CONCLUSIONS AND FURTHER WORK

CONCLUSIONS

Formalization requires a steep learning curve.

Proofs in a book are not fully formal.

Comparison between the length in the book and the formalized proof.

Iterative proofs vs rewritting proofs.

FURTHER WORK

To continue with the development of the following sections in Halmos.

ForMath project.
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Thanks

THANKS FOR YOUR ATTENTION.
The complete Isabelle code and the memoir are available in

www.unirioja.es/cu/jodivaso
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