
FACULTAD DE CIENCIAS, ESTUDIOS AGROALIMENTARIOS
E INFORMÁTICA

TITULACIÓN:

Ingeniería Técnica en Informática de Gestión

TÍTULO DEL PROYECTO O TRABAJO FIN DE CARRERA:

Demostración de propiedades de espacios vectoriales finito-
dimensionales en Isabelle/HOL

DIRECTOR/ES DEL PROYECTO O TRABAJO:

D. Jesús María Aransay Azofra

DEPARTAMENTO: Matemáticas y Computación

ALUMNO/S: Jose Divasón Mallagaray

CURSO ACADÉMICO: 2011 / 2012

2

Degree’s Thesis
Proofs of properties of finite-dimensional

vector spaces using Isabelle/HOL

Jose Divasón Mallagaray
Supervised by Jesús Maŕıa Aransay Azofra

Universidad de La Rioja
2011/2012

ii

To my friend Claudia.
Now that you have started the degree in mathematics, I hope you have the
same luck than I have had. You deserve the best, keep it up!

iv

Abstract

In this work we deal with finite-dimensional vector spaces over a generic field
K. First we will state properties of vector spaces independently of their di-
mension. Then, we will introduce the conditions to obtain finite-dimensional
vector spaces. The notions of linear dependence and independence, as well as
linear combinations, and hence the notion of basis will be presented. Some
results about the dimension of the different basis of a vector space will be
necessary, as well as on the isomorphism among vector spaces. Once we have
introduced the notion of basis, and with the additional condition of it being
finite, we will introduce the notion of finite-dimensional vector space. Next
step is to introduce vector subspaces. We will pay attention to vector susb-
paces generated by a given set of vectors and prove some of their properties.
The notion of linear maps will be also required to define isomorphisms of
vector spaces. Finally, we will prove that a vector space (over a field K) of
(finite) dimension n is isomorphic to Kn.

The previous results will be presented following the book by Halmos on
vector spaces [1]. Its formalization will be carried out in Isabelle/HOL [25].

vi

Acknowledgements

I must say that this work, due to its difficulty and complexity, has been de-
veloped in close colaboration with the advisor of the project, Jesús Aransay.
From here I want to say that I am very grateful to Jesús for his patience,
specially in my first moments with Isabelle/HOL. It took me a lot of hard
work to overcome the initial difficulties and at that moments he helped with
my learning of the system, much more than I expected at first. Whenever I
was stuck, I visited the office and he looked for a while to solve my doubts.
I am sure that with other person as advisor, the development of this project
wouldn’t have been possible or at least we wouldn’t have achieved the for-
malization of the results that we have obtained. Thanks Jesús.

There are another two persons who deserve to be named in this gratitudes:
Óscar Ciaurri and Julio Rubio. It can be said that Óscar is the first person
responsible for this project to get started, since he began a chain: Óscar
knew that I like this topics about logic and mathematical reasoning, and he
got in touch with Julio to comment it (without my knowledge). After that,
Julio went to look for me at the end of an exam to offer me the possibility
of this degree’s dissertation with Jesús. I’m grateful to them. Both are the
persons responsible for giving me the opportunity of this project and I have
tried to make the most of it.

viii

Contents

1 Introduction 1

2 Management 5

3 Mathematical Definitions 17

4 Theorem proving: Isabelle 21

4.1 Some ideas on theorem proving 21

4.2 Isabelle introduction by example 23

4.3 Locales and Abstract Algebra 28

5 Fields 35

6 Vector spaces 43

7 Examples 47

8 Comments 49

9 Linear dependence 61

10 Linear combinations 77

10.1 Sets indexation . 77

10.2 Linear combinations . 94

x CONTENTS

11 Bases 115

11.1 Definitions . 115

11.2 Theorems . 125

12 Dimension 141

12.1 Theorems . 141

12.2 Definition and other dimension theorems 156

13 Isomorphism 165

13.1 Definition of Kn . 167

13.2 Canonical basis . 171

13.3 Bijection between basis . 180

13.4 Properties of Canonical Basis 185

13.5 Linear maps . 193

13.6 Defining the isomorphism between Kn and V 196

14 Subspaces 207

15 Future Work 213

16 Conclusions 215

16.1 Management conclusions . 218

Chapter 1

Introduction

First of all we have to say that this is not a common degree’s dissertation
of “Ingenieŕıa Técnica en Informática de Gestión” in which an application
or a database is developed following a methodology with an analysis, design,
implementation and verification processes. We are going to develop in this
project something more focused on the mathematical field: we are going to
formalize in Isabelle/HOL results of linear algebra, specifically, results about
finite dimensional vector spaces. This project is in some sense a research
project, in which we will have a learning period of the Isabelle/HOL language
and after that we will try to formalize the proofs, and in which some degree
of uncertainty about the feasibility of the tasks to be accomplished exists.

The first question arises is: why did I choose this kind of project? The
main reason is due to the own interest in this kind of matters about formal
verification of algorithms, mechanized reasoning, formal proofs. . . Another
reason is to go out of standard projects, hence I can make use of the mathe-
matical knowledge that I have attained in the degree.

Still another motivation exists in the study and the improvement of our
knowledge on mathematical proofs and its inherent nature. Traditionally,
“pencil and paper” proofs are carried out in a loose way and without an
absolute rigour in some of their details. There exist mathematical results
which proofs have contained mistakes for long periods, even in the light of
being publicly available and widely accepted (for instance, there were some
erroneus proofs of the Four Colour Theorem which were accepted for long
periods, see [22] for details). The detailed implementation of proofs has
gained attention since the end of the XIX century (with the foundation of

2 Introduction

logical systems, following the influence of Frege, Hilbert...). The mechaniza-
tion obtained through computers has then give place to the formalization of
mathematical proofs, starting from the computer implementation of a logical
system and building mathematical knowledge through the computer-assisted
application of logical rules. These computer-assisted proofs are consequently
full of minor details, but also formally verified, hence somehow more trustable
than traditional proofs, and even available for being reproduced in any com-
puter by external agents. The process of creating or “translating” textbook
proofs and results to formalized proofs requires a deep study and insight of
that proofs which is very often a challenging task.

Another reason is to check the capacities of a given logic (HOL) to im-
plement a mathematical formalization from a practical point of view. If we
are capable of implementing a proof in a given logic, this demonstrates that
the proof and its reasoning techniques can be carrried out in such a logical
setting.

In addition, the “Universidad de La Rioja” is involved in a European
project about formalization of mathematics: ForMath [13] (the objective
of this project is to develop libraries of formalized mathematics concerning
algebra, linear algebra, real number computation and algebraic topology).
Thus, our project will share some goals with the ForMath project.

Once we have decided that we will make a project about formal proofs,
why we choose Isabelle/HOL? Isabelle is an environment for computer-
assisted formal proofs. It has libraries with the development of several
theories about algebra, analysis. . . and its capacities are well-known. Some
examples of theorems proved with Isabelle are the Fundamental Theorem
of Algebra and the Prime Number Theorem (some other relevant theorems
proved in Isabelle can be found here: [14]). In addition, Isabelle is a system
which permits declarative and procedural proofs. A declarative system is one
in which one writes a proof in the normal way, although in a highly stylized
language and with very small steps. In a procedural system one does not
write proofs at all: the computer presents the user with proof obligations or
goals, and the user then executes tactics which reduce a goal to zero or more
new, and hopefully simpler, subgoals. Another proof assistants only allow
one of this proof styles (for example, HOL-Light and Coq are procedural sys-
tems and Mizar is declarative). Proofs with a procedural system are easier
for a beginner (as me) because they are more interactive.

Finally, we already know what we are going to do and what environment

3

we are going to use. Why do we focused on vector spaces?

Despite they are something quite basic in the field of linear algebra, vec-
tor spaces aren’t developed in Isabelle/HOL (really there is only a result
about real vector spaces: the Hanh-Banach theorem formalized by Gertrud
Bauer[12]). Hence another point to do this project is to increase the amount
of mathematical results that have been implemented, in order to create a cor-
pus of mathematical results that permits further developments in the field of
finite dimensional vector spaces.

In order to formalize the main results on vector space we will follow a
Halmos’ book: Finite-dimensional vector spaces [1]. This book summarizes
and presents the main results of finite-dimensional vector spaces and their
proofs.

At first, our objective was to manage to formalize the first 16 sections,
i.e., up to prove that a vector space is isomorphic to the dual of its dual. The
proof of this theorem is presented in Halmos in a simple manner (in other
books the proof is omitted or it is not explicitly proved). Previous to this
result, Halmos introduces vector spaces, both of finite and infinite nature.
Then, properties about the dimension and the nature of basis in such spaces
are proved. In particular, the notions of linear dependence and independence
are introduced. The vector space Kn is also defined (with K the field over
which a vector space is defined), and its correspondence to a vector space V
proved. Notions of subspaces and direct sums are also presented. Along the
memoir, all these notions will be defined and formalized in Isabelle/HOL.

I have to say that my initial knowledge about formal proofs was null,
either in Isabelle/HOL or in another theorem proving environment. For that
reason, I required a learning process, hard but nice. It is usually said that it
is harder to learn to formalize proofs than to learn a programming language,
and I can say that in my case it is true.

In this memoir it is impossible to include the whole code implemented
due to its length, but we can see it complete in [2]. Here we will present
the main results, sometimes omitting parts of the formal proofs or even the
whole proofs. In addition, we will omit auxiliary results which are necessary
or useful, but not crucial or essential to our goal (or their proofs do not
require any interesting kind of reasoning).

The project and the memoir have been written in English by several
reasons. The first one is that the Isabelle/HOL libraries are implemented in

4 Introduction

English, and as we want to increase them we have to do it in this language.
The second reason is that the diffusion that we can achieve writting a project
in English is greater than in Spanish. The third reason is that we want
this project to be part of the ForMath reports and documentation (and this
project main language is English). Writting the memoir in English and in
LATEX poses a challenge, even more since I haven’t used English for several
years and I have never used LATEX.

Chapter 2

Management

This degree’s thesis started in November of 2010. As we have already said
in the Introduction, our first objective is to formalize the first 16 sections in
Halmos up to managing to prove that a vector space is isomorphic to the
dual of its dual and we had the intention of doing it for June of 2011, i.e.,
in 8 months of work. Those 16 first sections take up a total of 25 pages in
the book. It is very difficult to estimate the possible duration of the project,
since as we have said before, there exists an inevitable uncertainty that we
can’t control.

We have said that the goal is to formalize 16 sections of Halmos [1] in 8
months. Every section has neither the same length nor the same difficulty,
so we can’t estimate that we are going to formalize 2 sections by month.
In addition, it is necessary a learning period (really the learning period is
continous during the whole development) before starting to implement and
formalize proofs. It would be better to talk about formalized pages by month.
Even more, there exists a rule that says that a line of a book should be turned
into 4 lines in a formalized proof (“de Bruijn factor” [15]). As the 16 first
sections in Halmos take up 25 pages, a good objective is to plan as work the
formalization of 3 to 4 pages by month.

Working 2-3 hours per day during those 8 months, we have about 450
hours for the project.

We are going to show a decomposition in tasks of the project (we will
divide it in the sections of the book). Every task about proofs can be decom-
posed in another two: first, to study, think and develop the proof in paper

6 Management

and after that to implement it in Isabelle/HOL. In addition, we add at the
end of each section a task of reviewing the finished proofs to try to make
them clearer, shorter, more organized and legible. This task takes up about
20% of the time to develop the code.

0. PREVIOUS LEARNING

Firstly I will have to read some documents and tutorials about Is-
abelle/HOL. Really, these documents will be good as an introduction to
Isabelle, but as in a programming language, the only way of learning to for-
malize is by doing it. This learning is continuous during the development,
but I need this as a first contact with the system.

• Read tutorials and practice with Isabelle/HOL. Estimated time: 12
hours.

TOTAL ESTIMATED TIME OF THIS TASK: 12 hours.

1. FIELDS

Here Halmos presents the definition of field. The implementation of it will
be not difficult for us, since it is alreay done in the Isabelle/HOL library. This
is a good section to practice and learn about the formal proofs in Isabelle.
We will prove the exercise 1 which is in page 2 of Halmos. It contains 7
preliminary results about fields.

• Exercise 1 of page 2. Estimated time: 14 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 3 hours.

The difficulty of this chapter is that here we start with the proofs in Isabelle.
TOTAL ESTIMATED TIME OF THIS TASK: 17 hours.

2. VECTOR SPACES

In this section we will define the concept of vector space. To define
algebraic structures in Isabelle is not hard, and thanks to the possibility of
defining inheritances from abelian groups in the definition of vector space,
this section doesn’t seem hard to be implemented.

• Definition of Vector Space. Estimated time: 1 hour.

• Vector Space Introduction. Estimated time: 1 hour.

7

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 0.4 hours

TOTAL ESTIMATED TIME OF THIS TASK: 2.4 hours.

3. EXAMPLES

Here we will present an instance of vector space. We will prove that every
field over itself is a vector space. In future sections we will prove another
example: Kn is a vector space (for Kn a field).

• Every field over itself is a vector space. Estimated time: 3 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 0.6 hours

TOTAL ESTIMATED TIME OF THIS TASK: 3.6 hours.

4. COMMENTS

Our intention is to make the exercise 1 of this section (page 6). It consists
in proving 7 properties about vector spaces, the relation between the zero and
the scalar product . . . Nevertheless, it is a good idea to plan for this section
some proofs of another interesting and useful properties for the future which
don’t appear in Halmos.

• Exercise 1. Estimated time: 12 hours.

• Another lemmas and results. Estimated time: 18 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 6 hours

TOTAL ESTIMATED TIME OF THIS TASK: 36 hours.

5. LINEAR DEPENDENCE

With a quick look we realize that this is a hard section. We have to do
the definition of the concepts: linear dependence and linear independence.
At this time, it is no clear how we can make it. After that we have to
check that definitions are mutually exclusive and to prove the properties
that a linearly independent/dependent set satisfies. We think that it will
be necessary to introduce much more lemmas and results than in Halmos.
Halmos also explains briefly the definitions of these concepts in the case of

8 Management

an infinite set. Depending on the difficulty, we could study the possibility of
implementing them (even if our main interest lies in the finite version).

• Define the notion of a linearly independent set and a linearly dependent
set. Estimated time: 2 hours.

• Prove that the definitions are mutually exclusive. Estimated time:
3 hours.

• Prove properties and results of linearly independence and dependence.
Estimated time: 15 hours.

• POSSIBLE: Implement the notion of linearly independence and depen-
cence in the infinite case.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 4 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 24 hours.

6. LINEAR COMBINATIONS

Despite this being a short section, we think it will be very difficult. We
have to prove theorem 10.2.1 and it doesn’t look nice, since Halmos is in-
troducing orders to sets. We don’t know at this moment how we will avoid
this problem. It is a critical result because it is used several times in future
sections, so we have to be careful with the development of this section. Here
we also have to prove properties of linear combinations, even some which
don’t appear in Halmos but that will save work for us in the future. Here we
have to present the definition of linear combination which is indeed a finite
sum, so we will have to look for how finite sums are implemented in the
Isabelle/HOL library in order to make the definition of linear combination.

• Define linear combinations. Estimated time: 2 hours.

• Prove some properties of them. Estimated time: 7 hours.

• Prove that if x is a linear combination of {xi}i∈N, then if {xi}i∈N is
linearly independent, then a necessary and sufficient condition that x
be a linear combination of {xi}i∈N is that the enlarged set, obtained by
adjoining x to {xi}i∈N, be linearly dependent. We can decompose this
theorem in two implications. Estimated time: 7 hours.

9

• The linear combination of {} is 0V . Estimated time: 0.5 hours.

• Study how to prove the theorem 10.2.1 avoiding the problem of the
order. Estimated time: 6 hours.

• Prove it. Estimated time: 15 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 7.5 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 45 hours.

7. BASES

At first, this is another very difficult section. The main objective will be
to prove theorem 11.2.1, which claims that every linearly independent set can
be completed to a basis. The proof of this theorem looks very hard, it makes
use of an iterative reasoning that we don’t know how we will implement.
Nevertheless, we define the notion of basis before that and we will try to
prove that the coordinates of a vector in a basis are unique.

• Define the notion of basis. Estimated time: 0.25 hours.

• Define a finite dimensional vector space. Estimated time: 0.25
hours.

• Prove that the coordinates of a vector in a basis are unique. Estimated
time: 4 hours.

• Prove the theorem 11.2.1. Estimated time: 15 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 4 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 23.5 hours.

8. DIMENSION

Here Halmos presents another important result, the theorem 12.1.2, which
claims that two bases of the same finite dimensional vector space have the
same cardinality. It makes use of a new iterative argument for the proof
again, so it seems that it will be very difficult and hard to be implemented.
Here we will also try to present the proof of theorem 12.2.2 (every set of
n + 1 vectors of an n-dimensional vector space is linearly dependent) which
is easier once we have proved 12.1.2.

10 Management

• Prove theorem 12.1.2. Estimated time: 18 hours.

• Define the notion of dimension of a finite dimensional vector space.
Estimated time: 0.25 hours.

• Prove theorem 12.2.2. Estimated time: 3 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 4 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 25.25 hours.

9. ISOMORPHISM

This seems a very laborious section. We have to define the concept of
isomorphism between two vector spaces and prove that every n-dimensional
vector space V over a field K is isomorphic to Kn. We will try to prove it,
and this is a great question. We have no idea how we could define Kn in
general, since Isabelle does not permit dependent types. It is worth noting
that the notion of linear map will show up here, even if Halmos introduces
it much later.

• Define the isomorphism between two vector spaces. Estimated time:
0.5 hours.

• Define Kn in general. Estimated time: 4 hours.

• Prove that every n-dimensional vector space V over a field K is isomor-
phic to Kn. Estimated time: 20 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 5 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 29.5 hours.

10. SUBSPACES

This seems an easier section. We will try to define a subspace of a vector
space and prove several properties.

• Definition of subspace. Estimated time: 1 hour.

• Prove that a subspace always contains 0V . Estimated time: 1 hour.

11

• Demonstrate that a subspace is a vector space. Estimated time: 5
hours.

• {0V } and the whole vector space V are subspaces. Estimated time:
2 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 1.5 hours.

TOTAL ESTIMATED TIME OF THIS TASK: 10.5 hours.

11. CALCULUS OF SUBSPACES

Here we want to prove the three theorems presented by Halmos.

• Prove the theorem 1: the intersection of any collection of subspaces is
a subspace. Estimated time: 3 hours

• Define the subspace spanned by a set. Estimated time: 1 hour.

• Prove the theorem 2: If S is any set of vectors in a vector space V and
if M is the subspace spanned by S, then M is the same as the set of
all linear combinations of elements of S. Estimated time: 5 hours.

• Prove the theorem 3: If A and B are any two subspaces and if M is the
subspace spanned by A and B together, then M is the same as the set
of all vectors of the form a⊕V b, with a in A and b in B. Estimated
time: 5 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 3 hours

TOTAL ESTIMATED TIME OF THIS TASK: 17 hours.

12. DIMENSION OF A SUBSPACE

In this section Halmos presents two theorems which don’t seem very dif-
ficult once we have proved all previous results.

• Prove the theorem 1: A subspace M in an n-dimensional vector space
V is a vector space of dimension ≤ n. Estimated time: 3 hours.

12 Management

• Prove the theorem 2: Given any m-dimensional subspace M
in an n-dimensional vector space V , we can find a basis
{x1, . . . , xm, xm+1, . . . , xn} in V so that x1, . . . , xm are in M and form,
therefore, a basis of M . Estimated time: 5 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 1.5 hours

TOTAL ESTIMATED TIME OF THIS TASK: 9.5 hours.

13. DUAL SPACES

• Define a linear functional on a vector space. Estimated time: 1
hour.

• Define the dual space of a vector space. Estimated time: 1 hour.

• Prove that the dual space is a vector space. Estimated time: 8
hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 2 hours

TOTAL ESTIMATED TIME OF THIS TASK: 12 hours.

14. BRACKETS

This is a section about notation of linear functionals. We decide to use
the notation proposed ([x, y] instead of y(x) for a linear functional y of a
vector space V and a vector x of V) to follow exactly Halmos. We have to
be careful with the implementation, so that the term [., .] could be used in
Isabelle.

• Implement the notation proposed in Halmos. Estimated time: 1
hour.

TOTAL ESTIMATED TIME OF THIS TASK: 1 hour.

15. DUAL BASES

It is difficult to estimate the time that we will spend on the following
theorems because it will depend on the implementation of the previous con-
cepts. Nevertheless, these theorems are very important and not so laborious
as some of the previous ones.

13

• Prove the theorem 1: If V is an n-dimensional vector space, if
{x1, . . . , xn} is a basis in V , and if {α1, . . . , αn} is any set of n scalars,
then there is one and only one linear functional y on V such that
[xi, y] = αi for i = 1, . . . n. Estimated time: 6 hours.

• Prove the theorem 2: if V is an n-dimensional vector space and if
X = {x1, . . . , xn} is a basis in V , then there is a uniquely determined
basis X ′ in the dual space of V , X ′ = {y1, . . . , yn}, with the property
that [xi, yj] = δij. Consequently the dual space of an n-dimensional
space is n-dimensional. Estimated time: 6 hours.

• Formalize the theorem 3: If u and v are any two different vectors of the
n-dimensional vector space V , then there exists a linear functional y
on V such that [u, y] 6= [v, y]; or, equivalently, to any non-zero vector x
in V there corresponds a y in the dual space of V such that [x, y] 6= 0.
Estimated time: 6 hours.

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 3.5 hours

TOTAL ESTIMATED TIME OF THIS TASK: 21.5 hours.

16. REFLEXIVITY

This is the last section that we want to formalize. This is not very labo-
rious using previous results: we want to prove that every finite dimensional
vector space is isomorphic with the dual of its dual space. We can do it
next way: We know using theorem 2 of previous section that the dual of a
vector space has the same dimension of the vector space, so dimension of V
is the same than the dimension of its dual space, V ′, and hence equal to the
dimension of the dual of its dual, V ′′. We also know that an n-dimensional
vector space over a field K is isomorphic to Kn, so V and V ′′ are isomorphic
to Kn and hence also between them. Nevertheless, the proof in Halmos gives
an explicit definition of the isomorphism.

• Prove the theorem: If V is a finite-dimensional vector space, then cor-
responding to every linear functional z0 on V ′, there is a vector x0 in V
such that z0(y) = [x0, y] = y(x0) for every y in V ′; the correspondence
z0 � x0 between V ′′ and V is an isomorphism. Estimated time: 8
hours.

14 Management

• Check the code and make clearer, shorter and more legible the proofs.
Estimated time: 2 hours

TOTAL ESTIMATED TIME OF THIS TASK: 10 hours.

17. DOCUMENTATION AND MANAGEMENT

Finally, we will make the documentation of the whole project. We will
try to reduce, summarize and explain the main proofs. The fact of doing
it in LATEX and in English will have as a consequence that I will be slower
than we would like. Taking into account the nature of the project, it will
need a continuous supervision of the advisor of the project, making meetings
or replying e-mails in order to solve doubts, problems, questions This
part is very difficult to estimate, and it will be carried out during the whole
process of development.

• Make the documentation of the project. Estimated time: 120 hours.

• Reviews and corrections. Estimated time: 20 hours.

• Meetings with the advisor, resolution of problems, doubts . . .

TOTAL ESTIMATED TIME OF THIS TASK: 140 hours.

If we make the sum of all estimated times, we will obtain that the esti-
mated duration of the project is 439.75 hous, i.e, if we make every task in
time we will have a margin of more than 10 hours for possible delays.

Finally a brief comment about the risk management. Besides the normal
risk of a common individual final year project (to suffer some illnes, to lose
the pendrive with the code, find a job and then break the initial planification
. . .) we have two very important risks, particular to this kind of project, that
we have to analyze in detail: the difficulty and the feasibility of the project.

• Difficulty: We can know which parts of the project seem to be very
difficult, but we can’t estimate how difficult it will be, or if there will
be also another hard proofs. It is very possible that we will be some-
times stuck in our development. It is impossible to avoid it due to the
uncertainty that surrounds the project. If finally this risk appears, we
could look for similar formalized proofs (if exist) in the Isabelle/HOL
library and on the internet, we could ask to other people that have
more knowledge of this matter, make questions in the user mailing list
of Isabelle . . .

15

• Feasibility: At first, the development created by Gertrud Bauer
to formalize the Hanh-Banach theorem for real vector spaces in
Isabelle/HOL[12] makes feasible the beginning of the implementation,
since there are concepts that Bauer has already implemented (but for
the real case, and we will generalize it for any field). If during the de-
velopment we realize that there exist something that is impossible to be
implemented or that it is very hard, and it needs an effort which isn’t
worth, then we will avoid it and we would implement another easier
results, i.e., we will took a turn to the project.

16 Management

Chapter 3

Mathematical Definitions

In this chapter we will define previous mathematical structures and notions
that are necessary to implement a vector space. Luckily, the great majority
of these structures are already implemented in Isabelle. Let’s begin:

Definition 3.0.1 A monoid is a set G together with an operation
� : G×G→ G that satisfies the following axioms. Let a, b, c ∈ G:

• Associativity: a� (b� c) = (a� b)� c

• Identity element: there exists an element e ∈ G that verifies

e� a = a� e = a

In other words, a monoid is an algebraic structure with a single associative
binary operation (�) and an identity element (e).

We may note that there is another property implicit in this definition:
the closure: if a, b ∈ G then a � b ∈ G. The set G is not empty because
second axiom implies the existence of an identity element.

In addition, we must realize that the identity element will depend on the
binary operation. We can talk about additive monoids when the operation
is the sum (+) and then the identity element is called zero (denoted by 0).

On the other hand, we define a multiplicative monoid as a monoid whose
operation is the multiplication (it is commonly denoted by ∗ or ⊗) and the
identity element is the one (1).

18 Mathematical Definitions

Nevertheless, the operation of a monoid is not necessarily an addition or
a multiplication in the sense of elementary arithmetic. For example, there
exist monoids given by a rotation, transformation . . . instead of an additive
or multiplicative operation (for example, cyclic groups are monoids and the
operation is a rotation. A chain of characteres with the operation concatenate
is also it. See [6]).

A brief comment about notation: once we have introduced a monoid
(G,�, e), and it is clear what we have, then we can speak of “the monoid
G”, though stricly speaking, this is the underlying set and is just one of the
ingredients of (G,�, e).

Definition 3.0.2 An abelian (or commutative) monoid is a monoid
(G,�, e) whose elements also verify the commutative property:

∀a, b ∈ G we have a� b = b� a

Definition 3.0.3 An element a of a monoid (G,�, e) is invertible if there
exists b ∈ G in a way that a� b = b� a = e, where e is the identity element.

For example, in an additive monoid (G,+,0) the definition will be: a+b =
b+ a = 0 and the inverse element (also called unit) is usually represented by
−a.

Analogously, in a multiplicative monoid (G,⊗,1) the definition will turn
into: a⊗ b = b⊗ a = 1 and the invertible element b will be denoted by a−1.

Definition 3.0.4 The set of invertible elements is called set of units.

Definition 3.0.5 A group is a monoid all of whose elements are invertible.

Definition 3.0.6 An abelian (or commutative) group is a group (G,�, e)
whose elements also verify the commutative property 1:

∀a, b ∈ G we have a� b = b� a

As well as in monoids, we have additive abelian groups (G,+) and multiplica-
tive abelian groups (G,⊗).

1Another possibility to define it is to say that an abelian group is an abelian monoid
all of whose elements are invertible.

19

Definition 3.0.7 A ring is a set G equipped with two binary operations
+: G × G → G and ⊗ : G × G → G called addition and multiplication. To
qualify as ring, the set and two operations (G,+,⊗) must satisfy the following
requirements known as the ring axioms:

• (G,+,0) is required to be an additive abelian group.

• (G,⊗,1) is required to be a multiplicative monoid.

• ∀a, b, c ∈ G are satisfied the distributive laws:

i) a⊗ (b+ c) = (a⊗ b) + (a⊗ c)
ii) (a+ b)⊗ c = (a⊗ c) + (b⊗ c)

Definition 3.0.8 A commutative ring is a ring (G,+,⊗) in which the mul-
tiplication operation is commutative, that is:

If a, b ∈ G then a⊗ b = b⊗ a

Definition 3.0.9 An integral domain is a commutative ring (G,+,⊗) in
which 1 6= 0 and it has not zero-divisors (the integral property), that means:

If a, b ∈ G and a⊗ b = 0, then a = 0 or b = 0

20 Mathematical Definitions

Chapter 4

Theorem proving: Isabelle

4.1 Some ideas on theorem proving

Here we present a brief introduction to the field of theorem proving. There
are some good articles in which formal proofs are explained in detail, for
example [17, 19, 18] an specially [22]. We will follow them to present this
section.

Mathematics are traditionally considered as an exact science, free of im-
perfections. The production of a theorem requires creative ability which gives
rise to a proof of it. However, once the theorem is proved, the activity of ver-
ifying if the proof is correct is an objective activity. Generally, the theorems
published in journals are considered as correct, since they have been sub-
jected to checkings by another renowned mathematicians or the publishers.
However, the history of mathematics has seen publications of false results
which have not been detected during long periods of time. One example
of that is the demonstration of the Fermat’s Last Theorem, presented by
Andrew Wiles in 1993. A checker found an error in this proof and it was
corrected in 1995 [20].

Nowadays, computers are support tools in the mathematical work, spe-
cially in the process of theorem proving. A computer can be useful in several
ways, for example it can be used as a part of the proof in order to solve
a huge number of cases, since the proof in paper could be unapproachable
by a person in a reasonable time. There exist some examples of this. Per-
haps the most famous are the Four-Colour Theorem [23] and the Kepler’s

22 Theorem proving: Isabelle

Conjecture [24].

A second use of computers is to try to check the correction of mathemat-
ical proofs through their formalization. Traditional mathematical proofs are
written in a way to make them easily understandable by mathematicians.
Routine logical steps are omitted and an enormous amount of context is as-
sumed on the part of the reader. On the contrary, a formal proof is a proof
in which every logical inference has been checked all the way back to the
fundamental axioms of mathematics: all the intermediate logical steps are
supplied, without exception. This makes that a formal proof be much more
laborious than the traditional demonstration.

The work to formalize a proof is, usually, as follows. A formal proof begins
with a traditional mathematical proof written in detail, making explicit the
whole premises and all cases. After that, a proof assistant is selected to
formalize it. This selection is based on the implemented logics or in the
libraries developed in each one. Once we have selected it, we have to prove
the result and the assistant will ensure that there won’t be inferences which
don’t be product of the axioms and logic rules implemented. Hence, we will
be sure that our proof is correct.

There exist different proof assistants with their own characteristics and
logics. These proof assistants compete amongst them in the same way that
the programming languages or the operating sistems. On the webpage [21]
there is a list that keeps track of the formalization status of a hundred well-
known theorems. If we analyze this list of theorems, it turns out that there
are five proof assistants that have been significantly used for formalization of
mathematics: HOL Light, Mizar, ProofPower, Isabelle and Coq. With the
support of this proof assistants, several important theorems have been proved
recently. Maybe the most impressive proof is the Four-Colour Theorem by
Georges Gonthier using Coq in 20041.

1We have to remark the difference between the traditional proof of this theorem and
the formal proof. Both use a computer: the first one as a calculation tool in order to rule
out cases. In the second one a computer is used to reproduce minutely a huge number of
logic steps that prove the theorem.

4.2 Isabelle introduction by example 23

4.2 Isabelle introduction by example

Isabelle [25] is a generic proving assistant (in the sense of that we can imple-
ment several logics on it). It is programmed in ML, a functional programming
language very extended. In its kernel (known as Isabelle/Pure or as meta-
logic) we can find a group of inference basic rules which correspond to a part
of the higher order logic, such as Alonzo Church [38] developed, also named
simple type theory. This metalogic can be defined by its syntax, its semantics
and the group of inference rules.

The syntax of the metalogic results from a type system and the terms
that can be defined using them. The available types in our system will be
basic types: (σ, τ, υ, . . .), and functional types of the form σ → τ .

The terms are the ones of λ-calculus – constants, variables, abstractions,
combinations – with the proper restrictions of the types (for example, we
can’t declare the corresponding term to the application of the function f to
a given x if f hasn’t a functional type, f : σ → τ and x is of the corresponding
type x : σ).

The basic types and the constants could be increased in each logic that
we want to implement. It will always include a type prop, representing the
propositions, and the logic constants of the metalogic (true, > and false ⊥).
Any formulae in the system will be a term of the type prop. Let be φ and ψ
formulaes or terms of the type prop. We define the operation φ⇒ ψ, which
means ‘φ implies ψ’. We also define the universal quantifier

∧
, such as

∧
x.φ

be equivalent to ‘for all x, φ is true’. We also have the equality a ≡ b.2

With respect to the semantics, each type of the metalogic denotes a non-
empty set. The fact of allowing empty sets would make that some of the
rules that we will introduce later would be false (they would need to be
reformulated in a more complex way). The logics implemented over the
metalogic could accept empty types. From the sets of each type, a functional
type σ → τ denotes the set of functions of σ to τ . A closed term of type
σ denotes a value of the corresponding set. If to each constant x of a type
σ we assign a value b(x) of a type τ , the λ-abstractions λx : σ.b(x) denote
functions.

The available inference rules are the next:

2The symbols ⇒,
∧

and ≡ are chosen for the metalogic, keeping this way available for
the logics that we will implement over it the most usual −→, ∀, =.

24 Theorem proving: Isabelle

• About the implication operator, ⇒-introduction and ⇒-elimination:

[φ]

ψ

φ⇒ ψ

φ⇒ ψ φ

ψ

• About the universal quantifier
∧

,
∧

-introduction and
∧

-elimination:

[φ]∧
x.φ

∧
x.φ

φ[b/x]

The first rule must satisfy that x is not a free variable in φ.

• About the equality, reflexivity, simmetry and transitivity:

a ≡ a
a ≡ b
b ≡ a

a ≡ b b ≡ c
a ≡ c

• About the abstraction operator λ, α-conversion, β-conversion and ex-
tensionality:

(λx.a) ≡ (λy.a[y/x]) ((λx.a)(b)) ≡ a[b/x]

f(x) ≡ g(x)

f ≡ g

The rule α-conversion requires that y is not free in a. The rule of
extensionality is true if x is not free in either f or g. The extensionality
is equivalent to µ-conversion, i.e. (λx.f(x)) ≡ f (with x not free in f).

• The abstraction and combination rules are the following ones (the ab-
straction rule requires that x isn’t in the premises):

[a ≡ b]

(λx.a) ≡ (λx.b)

f ≡ g a ≡ b

f(a) ≡ g(b)

• The logic equivalence means the equality of the truth values.

[φ]

ψ

[ψ]

φ

φ ≡ ψ

φ ≡ ψ φ

ψ

As we have seen, the underlying metalogic to the system is simple. We
can assert that it is the kernel of the logic system in which we can rely

4.2 Isabelle introduction by example 25

on. Over this metalogic several logics can be implemeted. For example, the
standard distribution of Isabelle includes implementations of first order logic,
of the Zermelo-Fraenkel’s set theory, of the classic computational logic. . . It
also contains an implementation of higher order logic (HOL), in which we
will focus on. HOL is the most used theory in Isabelle and its expressive
capacity has been used to formalize numerous mathematical results.

In order to be able to implement HOL over the metalogic, we have to
define a new type system for our logic which fulfills the properties of the
higher order logic (also known as simple type theory), and a new group of
rules (or axioms) which define the logical system.3

With respect to the types, it is allowed to define new types whenever they
aren’t empty. There also exists a mechanism which allows us to define new
types as subsets of existing types. In this way, we can define the type product
of two types (an hence we can work with tuples), the type sum of two defined
types (producing the set of the direct sums of the elements of both types),
or also types defined by induction. The system provides facilities which turn
the definition of types into something trivial. With this facilities, we can
define (in fact, they are included in the standard library of Isabelle) types
for the natural numbers, integers, reals, complexes, groups, rings and almost
every type of structure which appears in a mathematical text (in general, in
a proof assistant, it is easier to represent structures than to prove properties
over themselves).

With respect to the new rules (or axioms) added, the list is small:

refl: t = t

subst: [s = t ; P s] =⇒ P t

ext: (
∧
x. f x = g x) =⇒ (λx. f x) = (λx. g x)

impI:(P =⇒ Q) =⇒ P−→ Q

mp: [P −→ Q ; P] =⇒ Q

iff: (P −→ Q) −→ (Q −→ P) −→ (Q = P)

someI: P x =⇒ P (εx. P x)

True or False: (P = True) ∨ (P = False)

The rule ext represents the extensionality of the functions (with respect

3In general, when we work with proof assistants, we have to be careful when we include
axioms, since an inadequate or wrong axiom would make our system inconsistent so that
we could prove any result.

26 Theorem proving: Isabelle

to the universial quantifier
∧

of the metalogic). The rule iff imposes that
the formulaes logically equivalent are equal. The rule someI contains the
defining property of the Hilbert’s descriptive operation ε. This operator is a
quantifier εx.P [x] which returns some x that verifies P , in case that x exists.
The operator will be used to define the existential quantification:

∃x.Px ≡ P (εx.Px)

Finally, the rule True or False (also known as law of excluded middle)
makes that the implemented logic be classic. Removing this axiom, we could
also implement constructive logics over the Isabelle metalogic. The other im-
plemented axioms assign connectors of our particular logic to the connectors
of the metalogic (for example,the rule impI links −→ to =⇒). The rest of
the elements used in the logic (the constants True and False, the connectors
¬, ∀, ∧, ∨, the unique existencial ∃1 . . .) can be defined (without the neces-
sity of introducing them axiomatically) from the previous connectives. For
example, True can be defined equal to (λx.x) = (λx.x) and ¬ can be defined
as ¬P = (P −→ False).

Now we are going to see a simple example of a proof in higher order logic,
with a result of classical logic (a De Morgan’s law).

lemma "¬ (A ∧ B) −→ ¬ A ∨ ¬ B"

proof
assume n: "¬ (A ∧ B)"

show "¬ A ∨ ¬ B"

proof (rule ccontr)

assume nn: "¬ (¬ A ∨ ¬ B)"

have "¬ A"

proof (rule notI)

assume a: "A"

have "¬ B"

proof (rule notI)

assume b: "B"

from a and b have "A ∧ B" by (rule conjI)

with n show False by rule

qed
hence "¬ A ∨ ¬ B"

using disjI2 [of "¬ B" "¬ A"] by fast

with nn show False by fast

4.2 Isabelle introduction by example 27

qed
hence "¬ A ∨ ¬ B"

using disjI1 [of "¬ A" "¬ B"] by fast

with nn show False by fast

qed
qed

The wording expresses that the negation of the conjunction of two propo-
sitions A and B is equal to the disjoint negation of each one. As we can see,
the notation in the system is similar to a proof in natural language. Using
the command show we fix a proposition that we want to demonstrate. The
command have allows us to fix partial results necessary in the proof, which
can be used later. When we use the command proof we open a new con-
text in which we will try to prove the fixed proposition (by show or have).
Each proof is made using proof procedures. Those procedures act over the
fact that we want to demonstrate (in the same way that an algorithm acts
over the input data). For example, in the above proof we can see some such
as rule or fast. It can also obtain additional help with previous lemmas or
axioms already proved. For example, in the two aforementioned procedures,
rule tries to apply the theorem which has as a parameter to the result that
we want to prove. If both results coincide (the system will try to instanti-
ate the corresponding variables), the state of our demonstration will change,
transforming itself into the premises of the rule that we have included as a
parameter of rule. With successive changes in the result, we turn it into eas-
ier results; if these results coincide with some of our premises (in the result
shown, ¬(A ∧B)) or with some previous result proved in Isabelle/HOL, the
proof (of the final result or of the intermediate results) will be completed (an
we will write the command qed).

In any case, as in a mathematical demonstration, we can give different
proofs for the same result. In particular, for the previous result and making
use of the most advanced procedures of the system, the result can be proved
in one line:

lemma "¬ (A ∧ B) −→ ¬ A ∨ ¬ B"

by simp

If a user is interested in how the system has made the proof with the
method simp in order to remake the proof in detail, he can do it inside the

28 Theorem proving: Isabelle

system with total transparency.

We have used three procedures: rule, fast and simp, but there exist much
more procedures, with different capacities and power. For example, auto,
blast, fastsimp, force, best . . . A brief explanation of the main methods can be
found here [26]. In addition, the Isabelle reference manual and the system
manual can be consulted here [27, 28].

Nevertheless, not all the formalization of proofs is so slow. One impor-
tant and useful tool for our development has been sledgehammer [39]. Using
this tool we can automatize proofs, so we spare work. A good explanation
of how it works can be found in [26]: Sledgehammer is Isabelle’s subsystem
for harnessing the power of first-order automatic theorem provers. Given
a conjecture, it heuristically selects a few hundred relevant facts (lemmas,
definitions, or axioms) from Isabelle’s libraries, translates them to first-order
logic along with the conjecture, and delegates the proof search to exter-
nal resolution provers (E[29],SPASS[30], and Vampire[31]) and SMT solvers
(CVC3[32], Yices[33], and Z3[34]). Sledgehammer is rather effective[35] and
has been useful in our development, helping in the completion of non-trivial
goals with its capacity to use previous results.

4.3 Locales and Abstract Algebra

In this section we will find some examples about creating environments and
an infrastructure (with inheritance between structures and so on) of algebraic
structures which are going to be used in our development. It is just a brief
introduction to locales (a kind of module in which we can fix variables and
declare assumptions) in Isabelle/HOL: we want to give an idea of how the
system works in broad strokes, without going into details. We can find
detailed explanations of type classes and locales in the documentation for
Isabelle [3, 4].

Our first objective is to achieve a correct representation of the notion of
vector space in Isabelle/HOL. For that, we will try to give an appropiate
definition using existing concepts in Isabelle’s libraries.

To be able to implement this structure of vector space, we will begin
studying how is represented the simplest structure: a monoid. The Isabelle
definition of monoid consists of, firstly, the type of the objects which have the

4.3 Locales and Abstract Algebra 29

same structure than a monoid (with respect to the type system introduced),
and of the properties that define what objects of type monoid are really
monoids.

Let’s see the definition of the type of monoids:

record ’a monoid =

carrier :: "’a set"

mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)

one :: ’a ("1ı")

With respect to the defined type, we must clarify that its definition has
been made using a record. A record is part of Isabelle/HOL type system,
because they are internally encoded like a product of types in which each
type is labelled with the field name assigned to that record.

In the previous case, the record consists of three components: carrier,
which represents the set of the algebraic structure, a binary operation (mult)
and finally a constant (one). The underlying type of the structure (denoted
by ’a) is a variable type and thanks to that we can represent monoids of
naturals, lists, integers or any other data type implemented in the system.

Isabelle provides features to introduce simplest notation defined by the
user. For example, with “infixl ⊗1” we are creating an alias for the operation
mult G which could be denoted using the infix operator ⊗G. This operation
has been declared like left-associative, with a priority order of 70 (to be
compared with other operations priority). If the structure (G) is clear from
the context, we can also abridge previous notation to ⊗. Similarly, if there
exists a single monoid in our work context we can do the same with 1G

writing 1.

At this point, we realize that we are not representing a monoid in general:
giving the operation ⊗ and the constant 1 we are defining the data type
of a multiplicative monoid. We will explain later how Isabelle manages to
represent an additive monoid.

Now we have the data type of a monoid, but not all structures with a
carrier, a binary operation and a constant are monoids. There are other
properties which must be satisfied (see the definition of monoid in second
chapter). Due to the lack of expressive power of the Isabelle/HOL type
system, those properties must be specified separately:

30 Theorem proving: Isabelle

locale monoid =

fixes G (structure)
assumes m_closed [intro, simp]:

" [[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"

and m_assoc:

" [[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"

and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"

and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

In the previous code, G makes reference to the monoid that we are defin-
ing, and after that each line represents one of the properties of a monoid. We
can see that the binary operation (⊗) is closed over the carrier (m closed) and
it is also associative (m assoc). So we have defined the first two properties:
closure4 and associativity. To represent the last property (identity element)5

we use three assumptions: “1 ∈ carrier G” (one closed), “1⊗x = x” (l one)
and “x ⊗ 1 = x” (r one). To be able to define previous conditions we have
used a locale, a kind of module in which we can fix variables (in this case
G) and declare assumptions (m assoc, m closed . . .).

We have a predicate monoid whose type is the type of fixed structures in
the locale and it returns True when all premises (m closed, r one . . .) are
satisfied and False in other case.

Generally, when introducing new concepts or definitions we also provide
the system with an introduction rule, which acts in the opposite way to
the definition: “Whenever we have something which satisfies every prop-
erty of the newly introduced definition, then it satisfies the definition”. For
example, if we want to check if some structure is a monoid we would use
the introduction rule created to make it. Normally those lemmas are called
“name of the structureI ” (in the following case, “monoidI”):

lemma monoidI:

fixes G (structure)

4This property is implicit in the definition of monoid, but we must declare it in Isabelle
because we have a carrier G (whose elements are of type ’a) and we must demand of our
binary operation to take pairs of elements in the carrier to elements in the carrier.

5There exists an element e ∈ G that verifies e� a = a� e = a

4.3 Locales and Abstract Algebra 31

assumes m_closed: "!!x y. [| x ∈ carrier G; y ∈ carrier G |]

==> x ⊗ y ∈ carrier G"

and one_closed: "1 ∈ carrier G"

and m_assoc:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]

==> (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"

and r_one: "!!x. x ∈ carrier G ==> x ⊗ 1 = x"

shows "monoid G"

by (fast intro!: monoid.intro intro: assms)

Using the representation of monoid in Isabelle/HOL, definition of multi-
plicative abelian monoids is easy:

locale comm_monoid = monoid +

assumes m_comm: " [[x ∈ carrier G; y ∈ carrier G]]
=⇒ x ⊗ y = y ⊗ x"

With this representation we have defined a multiplicative abelian monoid.
But for example, how we can define and additive abelian monoid? The
confusion exists because Isabelle uses this naming convention [5, page 52]:
“multiplicative structures that are commutative are called commutative and
additive structures are called abelian”.

Next table clarifies how are called the different structures in Isabelle:

USUAL NAME NAME IN ISABELLE
multiplicative monoid monoid

multiplicative abelian monoid comm monoid
additive abelian monoid abelian monoid

multiplicative group group
multiplicative commutative group comm group

additive abelian group abelian group

Using this convention, an additive abelian monoid (an abelian monoid in
Isabelle) is represented as follows:

locale abelian_monoid =

fixes G (structure)
assumes a_monoid:

"monoid (| carrier = carrier G, mult = add G, one = zero G |)"

and a_comm: " [[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊕ y = y ⊕ x"

32 Theorem proving: Isabelle

Note that we have not created a record like this:

record ’a abelian monoid =

carrier :: "’a set"

add :: "[’a, ’a] ⇒ ’a" (infixl "⊕ı" 70)

zero :: ’a ("0ı")

We have used the definition of monoid but imposing that this structure
must satisfy the properties of a monoid with the add (also denoted ⊕) and
the constant zero (or 0).6

Based on the definition of monoid, if we include a premise imposing that
every element of the carrier be invertible we obtain the definition of group7.

Firstly, we define the notion of Units :

definition Units :: "’a monoid => ’a set"

where "Units G == {y. y ∈ carrier G ∧
(∃ x ∈ carrier G. x ⊗ y = 1 ∧ y ⊗ x = 1)}"

After that we can represent a group:

locale group = monoid +

assumes Units: "carrier G <= Units G"

Up to now, we have seen how Isabelle/HOL implements the definitions
of monoid, abelian monoid and group. It is time to explain how it represents
rings :

6 Really, the implementation of an additive abelian monoid in Isabelle/HOL does not
follow the logical relationship between algebraic structures. As we need the addition
operation (⊕) and the constant zero (0), firstly it is declared the type ring (with mult,
add, zero and one) and using it an additive abelian monoid can be implemented. This
is because Isabelle only admits simple inheritance between record types and thus the
definition of ring cannot be done by merging record types abelian monoid and monoid,
since they both contain a carrier field. So the additive version of monoid operations has
been made explicit only on the ring record type definition.

7Another possibility to define the notion of group is to include a new operation inv
which assigns each element of the group to its inverse.

4.3 Locales and Abstract Algebra 33

record ’a ring = "’a monoid" +

zero :: ’a ("0ı")
add :: "[’a, ’a] ⇒ ’a" (infixl "⊕ı" 65)

The previous structure, as in the example about monoids, defines the data
type that a ring must have. As we can see, we can define it making use of a
sort of inheritance (of the record monoid) that Isabelle provides to us. This
is a great advantage in the sense of reusing code, because type ring has been
defined like a monoid with another additional properties. Therefore, and
thanks to polymorphism of parameters in functions in HOL, every function
or predicate which admits a variable of monoid type will also admit ring type
variables.

Appart from ring type, we must make a definition which really charac-
terizes a ring structure:

locale ring = abelian_group R + monoid R for R (structure) +

assumes l_distr:"[|x ∈ carrier R;y ∈ carrier R; z ∈ carrier R|]

=⇒ (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and r_distr:"[|x ∈ carrier R;y ∈ carrier R; z ∈ carrier R |]

=⇒ z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

To define the properties which represent a ring we are reusing code again,
so we are minimizing work. If we compare the definition given in chapter
3 with this one, we are going to realize that they are exactly equal: a ring
will satisfy the properties of an additive abelian group (abelian group in
Isabelle) and the properties of a multiplicative monoid (monoid in Isabelle).
In addition, to this, we include the distributive laws which are represented
by l distr and r distr.

From this definition and adding the property of commutativity we will
obtain the notion of commutative ring :

locale cring = ring + comm_monoid R

To sum up, if we want to define correctly an algebraic structure in Is-
abelle/HOL following locales we must do two things:

i) Define its data type using a record.

34 Theorem proving: Isabelle

ii) Define its properties using a locale.

In the first step we show the parts of the structure being defined (sets,
operations, constants...) and in the second we define what properties and
relations must be satisfied by these parts.

As we have seen in this section, we can save work (in both steps) reusing
code through inheritances. Note that if we are using inheritances in the
second step and we are not including new components in the structure (the
underlying data type is the same as the data type of the structure of which
we are inheriting) then we can avoid to make the first step (Isabelle will make
it instead of us).

Finally we must remark that there are another ways to define an algebraic
structure in Isabelle/HOL, for example following type classes [3]. In spite
of there also exists a developement of the algebraic structures using type
classes[7] we decided to follow locales due to his advantages. In particular, the
use of explicit carriers (not as type, but like sets) will going to make possible
to define subsets (we can not make it with subtypes). For example, this is
very important in order to define the notion of a basis : using locales it will be
easy, but it is not clear how make it following type classes. In addition, most
of algebraic structures and its properties that we need are more developed
following locales (we can base on them to make our implementation).

Chapter 5

Fields

In this chapter we will cover the representation of fields in Isabelle/HOL
using locales and inheritance.

First of all, let’s see the definition of field as presented in Halmos:

Definition 5.0.1 A field is a set K together with two binary operations called
addition (+) and multiplication (∗). The following axioms are also satisfied:

A) To every pair, a and b, of elements in K there corresponds a scalar
a+ b, called the sum of a and b, in such a way that:

(1) addition is commutative, a+ b = b+ a

(2) addition is associative, a+ (b+ c) = (a+ b) + c

(3) there exists a unique scalar 0 (called zero) such that a+0 = a for
every scalar a

(4) to every scalar a there corresponds a unique scalar −a such that
a+ (−a) = 0

B) To every pair, a and b, of elements in K there corresponds a scalar
a ∗ b, called the product of a and b, in such a way that:

(1) multiplication is commutative, a ∗ b = b ∗ a
(2) multiplication is associative, a ∗ (b ∗ c) = (a ∗ b) ∗ c
(3) there exists a unique non-zero element 1 (called one) such that

a ∗ 1 = a for every scalar a

36 Fields

(4) to every scalar a there corresponds a unique scalar a−1 (or 1
a
) such

that a ∗ a−1 = 1

C) Multiplication is distributive with respect to addition: a ∗ (b + c) =
a ∗ b+ a ∗ c

Note that another alternative definition is that:

Definition 5.0.2 A field is an integral domain all of whose elements (except
0) are invertible with respect to the multiplication.

Let’s see it:

• The assumptions in A are the definition of an additive abelian group.

• The assumptions (2),(3) of B are the definition of a multiplicative
monoid.

• C is one distributive law and if we join all with the assumption (1) of
B we obtain a commutative ring.

• (3) of B also requires 1 6= 0 (non-zero).

• Finally with assumption (4) of B we will obtain an integral domain (this
assumption implies the integral property) and finally the alternative
definition.

So using this definition and reusing code by inheritance of the domain
structure, we would make a representation of a field in Isabelle/HOL easily.
Fortunately, this is already done in the HOL-Algebra library.

locale field = "domain" +

assumes field_Units: "Units R = carrier R - {0}"

The following image presents a scheme which tries to clarify the relation-
ships between the implementation of algebraic structures in Isabelle/HOL
with locales as it is done in the library of HOL-Algebra. Of course, there are
many other ways to create such an infrastructure (for example commutative
ring could inherit of abelian monoid and abelian group instead of ring).

37

Now, as introductory examples of the proofs that can be carried out in the
previous algebraic structures, we present the Isabelle proofs corresponding
to some of the exercises proposed in Halmos, section 1. Most of them are
already done as part of the HOL-Algebra library, so their proofs are almost
direct for us. Let R be a field.

For every x ∈ R, 0 + x = x:

lemma (in field) l_zero:

"x ∈ carrier R =⇒ 0 ⊕ x=x"

using r_zero [of x]

using zero_closed

using a_comm [of x 0] by simp

For every x, y and z in R, if x+ y = x+ z then y = z:

38 Fields

lemma (in field) a_l_cancel:

" [[x ∈ carrier R; y∈ carrier R;z ∈ carrier R]] =⇒ (x ⊕ y = x ⊕
z) = (y = z)"

using a_l_cancel .

For every x, y ∈ R, x+ (y − x) = y (Here y − x = y + (−x))1:

lemma (in field) plus_minus_cancel:

" [[x ∈ carrier R; y ∈ carrier R]] =⇒ x ⊕ (y 	 x) = y"

proof -

assume x_in_R: "x ∈ carrier R"

and y_in_R: "y∈ carrier R"

moreover have minus_x_in_R: "	 x ∈ carrier R"

using a_inv_closed [OF x_in_R] .
have prev_eq: "(x ⊕ 	 x) ⊕ y = y"

using x_in_R y_in_R

by (simp add: r_neg l_zero)

show ?thesis

unfolding minus_eq [OF y_in_R x_in_R]

unfolding a_comm [OF y_in_R minus_x_in_R]

unfolding a_assoc [symmetric, OF x_in_R minus_x_in_R y_in_R]

using prev_eq .
qed

For every x ∈ R, x ∗ 0 = 0 ∗ x = 0:

lemma (in field) r_null:

"x ∈ carrier R=⇒ x ⊗ 0=0"
using r_null .

lemma (in field) l_null:

"x ∈ carrier R=⇒ 0 ⊗ x=0"
using l_null .

For every x ∈ R, (−1) ∗ x = −x:

1Note that in the proof we use the definition of binary 	, rewriting x	 y as x⊕ (y).

39

lemma (in field) l_minus_one:

"x∈ carrier R =⇒ (1) ⊗ x = 	x"
proof -

assume x_in_R: "x ∈ carrier R"

have "(1) ⊗ x = 	(1 ⊗ x)"

using l_minus[OF one_closed x_in_R] .
also have "...= 	x" using l_one[OF x_in_R] by presburger

finally show ?thesis .
qed

For every x, y ∈ R, then (−x) ∗ (−y) = x ∗ y:

lemma (in field) prod_minus:

assumes x_in_R: "x ∈ carrier R"

and y_in_R: "y ∈ carrier R"

shows "(x) ⊗ (y) = x ⊗ y"

proof -

have minus_x_in_R: "	 x ∈ carrier R" and minus_y_in_R: "	 y ∈
carrier R"

using a_inv_closed [OF x_in_R]

using a_inv_closed [OF y_in_R] .
show ?thesis

unfolding l_minus [OF x_in_R minus_y_in_R]

unfolding r_minus [OF x_in_R y_in_R]

unfolding minus_minus [OF m_closed [OF x_in_R y_in_R]] ..
qed

For every x, y ∈ R, if x ∗ y = 0 then x = 0 or y = 0 (or both)2:

lemma (in field) integral:

assumes x_y_eq_0: "x ⊗ y = 0"
and x_in_R: "x ∈ carrier R"

and y_in_R: "y ∈ carrier R"

shows "x = 0 | y = 0"

2Note that this exercise can be solved directly with the integral property (3.0.9). Never-
theless, we can prove it without using that property. This is because the integral property
can be proved using that all non-zero elements are invertible (in fact, with this, we can
define the notion of field without using the integral property. However, we will not change
definitions already made in Isabelle/HOL).

40 Fields

proof (cases "x 6= 0")
— We give as a parametrer to ’cases’ a boolean (x 6= 0); this will make appear

two cases: when the boolean is true (case True) and when the boolean is false (case
False). For us, case False will be trivial.

case False show ?thesis

using False — This is the negation of the boolean that I have written in
’cases’.

by fast — Case False is trivial, it implies that x is zero and the lemma
would be proved.
next

— We want to separate in cases and for that we must use next, if not in this
case, we could apply the premisse False in case True

case True — Next case: case True
note x_neq_0 = True

— With this command we are assigning a pseudonym to True because we will
separate in cases y 6= 0 and then we will meet with cases True and False, again.

show ?thesis

proof (cases "y 6= 0")
case False show ?thesis — Trivial case

using False by simp

next
case True

note y_neq_0 = True

— Really here we will not need the pseudonym (we will not make more
distinction between cases), but we will use it to clarify the premises and its names.

show ?thesis

proof -

have y_un: "y ∈ Units R"

using y_in_R

using field_Units

using y_neq_0 by simp

have inv_y_in_R: "inv y ∈ carrier R"

using Units_inv_closed [OF y_un] .
— Now we will begin with a ’calculation’ in Isabelle. A calculation is a

group of equalities which are linked amongst themselves. For that, we use the
command ’also’ and ’. . . ’

have "0 = 0 ⊗ inv y"

— We can not use simp: left term of the equality is simpler than right
one.

using l_null [symmetric, OF inv_y_in_R] .

41

also have " . . . = (x ⊗ y) ⊗ inv y"

— Here we make use of the original premise of the lemma: x⊗ y = 0
unfolding x_y_eq_0 [symmetric] ..

also have " . . . = x ⊗ (y ⊗ inv y)"

unfolding m_assoc [OF x_in_R y_in_R inv_y_in_R] ..
also have " . . . = x ⊗ 1"

unfolding Units_r_inv [OF y_un] ..
also have " . . . = x"

unfolding r_one [OF x_in_R] ..
— At the beginning of our ’calculation’ we have started with 0, so we

have proved that 0 = x (through some intermediate steps). To close a ’calculation’
it is used the command ’finally’ which makes equal the left term of the first ’have’
before the ’also’ with the right term of the last.

finally have "0 = x" .
— Using 0 = x we can obtain a contradiction with our premises trivially.
then show ?thesis using x_neq_0 by fast

qed
qed

qed

42 Fields

Chapter 6

Vector spaces

In this chapter we show the implementation of vector spaces. In the following
we will assume, if it is not otherwise stated, that K is a field which plays the
role of being the scalar set. We will represent the sum over this field as +
and the multiplication as ∗.

Firstly, the definition of a Vector Space (following Halmos):

Definition 6.0.3 A vector space is a set V of elements called vectors satis-
fying the following axioms:

A) To every pair, x and y, of vectors in V there corresponds a vector x⊕y,
called the sum of x and y, in such a way that:

(1) addition is commutative, x⊕ y = y ⊕ x
(2) addition is associative, x⊕ (y ⊕ z) = (x⊕ y)⊕ z
(3) there exists in V a unique vector 0V (called the origin) such that

x⊕ 0V = x for every scalar x

(4) to every scalar x ∈ V there corresponds a unique scalar 	x such
that x⊕ (x) = 0V

B) To every pair, a and x, where a is a scalar (a ∈ K) and s is a vector
in V there corresponds a vector a · x in V , called the product of a and
x, in such a way that:

(1) multiplication by scalars is associative, a · (b · x) = (a ∗ b) · x

44 Vector spaces

(2) 1K · x = x for every vector x.

C) (1) Multiplication by scalars is distributive with respect to vector ad-
dition: a · (x⊕ y) = a · x⊕ a · y

(2) Multiplication by vectors is distributive with respect to scalars ad-
dition: (a+ b) · x = a · x⊕ a · y

Our objective is to implement it in Isabelle/HOL. We will try to make
use, as for as possible, of the available structures in the HOL-Algebra library,
since this will permit us to reuse all results already proved in the library for
such structures. If we study in detail the above definition and compare it to
other algebraic structures, we can realize that A axioms tell us that V is an
(additive) abelian group. So we have and alternative definition which will be
very useful to implement the concept of vector space using inheritance.

Definition 6.0.4 A vector space V (over a field (K,+, ∗)) is an additive
abelian group (V,⊕V , 0V) together with an operation · : K×V → V such that
the following properties are satisfied. Let v, w ∈ V and a, b ∈ K:

• a · (b · v) = (a ∗ b) · v

• 1 · v = v

• a · (v ⊕V w) = a · v ⊕V a · w

• (a+ b) · v = a · v ⊕V b · v

A few comments:

Even if there exist two operations called addition (the addition over the
field K and the addition over the abelian group V), we may note that they
aren’t the same operation because they belong to different structures. For
that reason we write the symbol + when we are operating in field K and the
symbol ⊕V when we are refering to the sum of the abelian group.

Similarly we must remark the difference between the zeros (writing 0 for
the zero of K and 0V for the zero of V). This is very important in order to
avoid confusions.

In a vector space, the abelian group V describes the additive structure of
the system and the operation · : K×V → V shows us the connection between
K and the abelian group V .

45

Now we present how we have implemented a vector space in Isabelle/HOL,
following locales and using inheritance. We need to fix a field, an abelian
group and the scalar product relating both structures (an abelian group
together a field would be a vector space with one specific scalar product but
not with another).

locale vector_space = K: field K + V: abelian_group V

for K (structure) and V (structure) +

fixes scalar_product:: "’a => ’b => ’b" (infixr " ·" 70)

assumes mult_closed: " [[x ∈ carrier V;a ∈ carrier K]]
=⇒ a · x ∈ carrier V"

and mult_assoc: " [[x ∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊗K b) · x = a · (b · x)"
and mult_1: " [[x ∈ carrier V]] =⇒ 1K · x = x"

and add_mult_distrib1:

" [[x∈ carrier V; y ∈ carrier V; a ∈ carrier K]]
=⇒ a · (x ⊕V y)= a ·x ⊕V a ·y"
and add_mult_distrib2:

" [[x∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊕K b) · x = a ·x ⊕V b ·x"

If we compare this implementation of vector space with the alternative
definition that we have presented previously (definition 6.0.4), we would real-
ize that our implementation has been made following literally the alternative
definition.

Using this introduction lemma we can check if an algebraic structure is a
vector space:

lemma vector_spaceI:

fixes K (structure) and V (structure)
and scalar_product ::"’a => ’b => ’b" (infixr " ·" 70)

assumes field_K: "field K"

and abelian_group_V: "abelian_group V"

and mult_closed:

"
∧
x a. [[x ∈ carrier V;a ∈ carrier K]] =⇒ a ·x ∈ carrier V"

and mult_assoc:

"
∧
x a b. [[x ∈ carrier V; a ∈ carrier K; b ∈ carrier K]]

=⇒ (a ⊗K b) · x = a · (b · x)"
and mult_1: "

∧
x. [[x ∈ carrier V]] =⇒ 1K · x = x"

46 Vector spaces

and add_mult_distrib1:

"
∧
x y a. [[x∈ carrier V; y ∈ carrier V; a ∈ carrier K]]

=⇒ a ·(x ⊕V y)= a ·x ⊕V a · y"
and add_mult_distrib2:

"
∧
x a b. [[x∈ carrier V; a ∈ carrier K; b ∈ carrier K]]

=⇒ (a ⊕K b) · x = a ·x ⊕V b ·x"
shows "vector_space K V scalar_product"

proof (unfold vector_space_def, intro conjI)

show "field K" using field_K .
show "abelian_group V" using abelian_group_V .

next
show "vector_space_axioms K V scalar_product"

by (auto intro: vector_space.intro abelian_group.intro

field.intro vector_space_axioms.intro assms)

qed

There is a concept closely related to the one of vector space, which is
the one of module. Even if we are not using it in our development, we
present here its definition, following the one presented in Halmos because
of its inherent relevance. Actually, modules are a generalization of vector
spaces, so we could now think of an alternative definition of vector spaces
based on modules.

Definition 6.0.5 If the scalars are elements of a ring (instead of a field),
the generalized concept corresponding to a vector space is called a module.

Chapter 7

Examples

Generally, when introducing a new concept in a theorem prover, it is worth
to provide (and prove) some known examples of such concept, ensuring that
the set of objects defined is not empty. This is also common practice in
Mathematics. Following Halmos, section 3 is devoted to present some exam-
ples of vector spaces, which show the utility of the concept. We have chosen
two of these examples to prove the utility of our definition of vector space.
The first one corresponds with exercise 6 in Halmos, and it proves that every
field K is a vector space over itself, considering its multiplication as scalar
product. We make use of the theorem vector spaceI proved in the previous
section:

lemma field_is_vector_space:

assumes field_K: "field K"

shows "vector_space K K op ⊗K "

proof (rule vector_spaceI)

show "field K" using field_K .
show "abelian_group K" using field_K

unfolding field_def

unfolding domain_def

unfolding cring_def

unfolding ring_def

by fast

next
show "

∧
x a. [[x ∈ carrier K; a ∈ carrier K]] =⇒ a ⊗K x ∈

carrier K"

48 Examples

using monoid.m_closed [OF field_is_monoid [OF field_K]] by best

next
show "

∧
x a b. [[x ∈ carrier K; a ∈ carrier K; b ∈ carrier K]]

=⇒ a ⊗K b ⊗K x = a ⊗K (b ⊗K x)"

using monoid.m_assoc [OF field_is_monoid [OF field_K]] by best

next
show "

∧
x. x ∈ carrier K =⇒ 1K ⊗K x = x"

using monoid.l_one [OF field_is_monoid [OF field_K]] by best

next
show "

∧
x y a. [[x ∈ carrier K; y ∈ carrier K; a ∈ carrier K]]

=⇒ a ⊗K (x ⊕K y) = a ⊗K x ⊕K a ⊗K y"

using ring.r_distr [OF field_is_ring [OF field_K]] by best

next
show "

∧
x a b. [[x ∈ carrier K; a ∈ carrier K; b ∈ carrier K]]

=⇒ (a ⊕K b) ⊗K x = a ⊗K x ⊕K b ⊗K x"

proof -

fix x and a and b

assume x_in_K: "x ∈ carrier K"

and a_in_K: "a∈ carrier K" and b_in_K:"b∈ carrier K"

show "(a ⊕K b) ⊗K x = a ⊗K x ⊕K b ⊗K x"

using ring.l_distr

[OF field_is_ring [OF field_K] a_in_K b_in_K x_in_K] .
qed

qed (auto)

There is another relevant example in our development, which proves that
Kn, with n ∈ N, is also a vector space with an adequate scalar product. We
will present this example later (in chapter 13) when proving that every vector
space of dimension n is isomorphic to Kn.

Chapter 8

Comments

In this chapter we will make the proofs of some properties of vector spaces,
specifically the first exercise proposed by Halmos in section 4. Most prop-
erties are basic and we will need to use them in the future, so this is an
important section. Due to that, we will prove properties of vector spaces
which don’t appear in Halmos that will be very useful to us.

Halmos proposes some exercises, but most of them are properties already
proved in abelian groups, rings... so they are in the Isabelle library and using
the inheritance of properties provided by locales we obtain them for vector
spaces. Lemmas in which the scalar product appears need to be proved and
we make it here.

We have two zeros: 0V and 0. We need to define separately the closure
property in order to avoid confusions. Alternatively, we could specify the
structure writing V.zero_closed and K.zero_closed.

lemma zeroV_closed: "0V ∈ carrier V"

using V.zero_closed .

lemma zeroK_closed: "0K ∈ carrier K"

using K.zero_closed .

A variation of r_neg (x ∈ carrier V =⇒ x ⊕V 	V x = 0V):

lemma r_neg’:

assumes x_in_V: "x ∈ carrier V"

shows "x 	V x=0V"
proof -

50 Comments

have "0V = x ⊕ V 	V x"

using V.r_neg [OF x_in_V, symmetric] .
also have " . . . =x 	V x" using a_minus_def [symmetric, OF x_in_V

x_in_V] .
finally show ?thesis by simp

qed

We want to prove that a · 0V = 0V. First of all, we prove some auxiliary
lemmas:

lemma mult_zero_descomposition [simp]:

assumes a_in_K: "a ∈ carrier K "

shows "a · 0V ⊕V a · 0V = a · 0V"
proof -

have "a · 0V =a · (0V ⊕V 0V)"
using V.r_zero [symmetric, OF V.zero_closed] by simp

also
have " . . . =a · 0 V ⊕ V a · 0 V"

using add_mult_distrib1 [OF V.zero_closed V.zero_closed a_in_K]

by simp

finally show ?thesis by rule

qed

lemma plus_minus_assoc:

assumes x_in_V: "x ∈ carrier V"

and y_in_V: "y ∈ carrier V" and z_in_V: "z ∈ carrier V"

shows "x ⊕V y 	V z = x ⊕V (y 	V z)"

proof -

have minus_z_in_V:"	V z ∈ carrier V"

using V.a_inv_closed [OF z_in_V] .
have "x ⊕V y 	V z = x ⊕V y ⊕V 	V z"

using a_minus_def [of "x ⊕V y", OF _ z_in_V]

using V.a_closed [OF x_in_V y_in_V] .
also have "x ⊕V y ⊕V 	V z = x ⊕V (y ⊕V 	V z)"

using V.a_assoc [OF x_in_V y_in_V minus_z_in_V] .
also have " . . . = x ⊕V (y 	V z)"

unfolding a_minus_def [symmetric, OF y_in_V z_in_V] ..
finally show ?thesis by simp

qed

Now we can complete the theorem that we want to prove. It corresponds

51

with exercise 1C in section 4 in Halmos.

lemma scalar_mult_zeroV_is_zeroV:

assumes a_in_K:"a ∈ carrier K"

shows "a · 0V = 0V"
proof -

have mclosed: "a · 0 V ∈ carrier V"

using mult_closed [OF V.zero_closed a_in_K] .
have "a · 0V = a · 0V ⊕V a · 0V"

using mult_zero_descomposition [OF a_in_K] by simp

hence "a · 0V 	V a · 0V = a · 0V ⊕V a · 0V 	V a · 0V"
using mclosed by simp

thus ?thesis

unfolding plus_minus_assoc [OF mclosed mclosed mclosed]

unfolding r_neg’ [OF mclosed]

using V.r_zero [OF mclosed] by simp

qed

We apply a similar reasoning to prove that 0 · x = 0V (this corresponds
with exercise 1D in section 4 in Halmos):

lemma mult_zero_descomposition2:

assumes x_in_V: "x ∈ carrier V"

shows "0K · x ⊕V 0K · x = 0K · x"
proof -

have "0K · x = (0K ⊕K 0K) · x"
using zeroK_closed

using K.r_zero [OF zeroK_closed ,symmetric] by simp

from this show ?thesis

using add_mult_distrib2 [OF x_in_V zeroK_closed

zeroK_closed,symmetric]

by simp

qed

The exercise 1D in section 4 in Halmos is proved as follows:

lemma zeroK_mult_V_is_zeroV:

assumes x_in_V: "x ∈ carrier V"

shows "0K · x = 0V"
proof -

have mclosed: "0K · x ∈ carrier V"

using mult_closed [OF x_in_V zeroK_closed] .
have "0K · x = 0K · x ⊕V 0K · x"

52 Comments

using mult_zero_descomposition2 [OF x_in_V,symmetric] .
hence "0K · x 	V 0K · x = 0K · x ⊕V 0K · x 	V 0K · x" by simp

thus ?thesis

unfolding plus_minus_assoc [OF mclosed mclosed mclosed]

unfolding r_neg’ [OF mclosed]

using V.r_zero [OF mclosed] by simp

qed

Another relevant property permit us to relate the additive inverse of the
multiplicative unit with the additive inverse. It corresponds with exercise
(1F) in section 4 in Halmos.

lemma negate_eq:

assumes x_in_V: "x ∈ carrier V"

shows "(K 1K) · x = 	V x"

proof (rule V.minus_equality [symmetric, of "(K 1K) · x" x])

show "x ∈ carrier V" using x_in_V .
have minus_oneK_closed: "	 K 1 K ∈ carrier K"

using K.a_inv_closed [OF K.one_closed] .
show "	 1 · x ∈ carrier V"

using mult_closed [OF x_in_V minus_oneK_closed] .
show "	1 · x ⊕V x = 0V"
proof -

have "0V = 0K · x"
using zeroK_mult_V_is_zeroV [symmetric, OF x_in_V] .

also have " . . . = (K 1K ⊕K 1K) · x"
unfolding K.l_neg [OF K.one_closed] ..

also have " . . . = 	K 1 K· x ⊕V 1 K · x"
using add_mult_distrib2 [OF x_in_V minus_oneK_closed

K.one_closed] .
also have " . . . = 	K 1 K· x ⊕V x"

unfolding mult_1 [OF x_in_V] ..
finally show ?thesis by rule

qed
qed

The previous property can be proved not only for the multiplicative unit
of K but for every element in its carrier. We redo the demonstration (the
previous lemma could be proved as a corollary of this):

lemma negate_eq2:

assumes x_in_V: "x ∈ carrier V"

53

and a_in_K: "a ∈ carrier K"

shows "(K a) · x = 	V (a ·x)"
proof(rule V.minus_equality [symmetric, of "(K a) · x" "a ·x"])

show "a ·x ∈ carrier V" using mult_closed[OF x_in_V a_in_K] .
show "	 a · x ∈ carrier V"

using mult_closed [OF x_in_V K.a_inv_closed[OF a_in_K]] .
show "	a ·x ⊕V a ·x = 0V"
proof -

have "0V = 0K · x"
using zeroK_mult_V_is_zeroV [symmetric, OF x_in_V] .

also have " . . . = (K a⊕K a) · x"
unfolding K.l_neg [OF a_in_K] ..

also have " . . . = 	K a · x ⊕V a · x"
using add_mult_distrib2

[OF x_in_V K.a_inv_closed[OF a_in_K] a_in_K] .
finally show ?thesis by rule

qed
qed

The next two lemmas prove exercise 1E, which says that the scalar prod-
uct also satisfies an integral property (if a · b = 0V , either a = 0K or b = 0V):

lemma mult_zero_uniq:

assumes x_in_V: "x ∈ carrier V" and x_not_zero: "x 6= 0V"
and a_in_K: "a ∈ carrier K" and m_ax_0: "a · x = 0V"
shows "a = 0K"

proof (rule classical)

assume a_not_zero: "a 6= 0K"
have a_un: "a ∈ Units K"

using a_not_zero

using a_in_K

using K.field_Units by simp

have inv_a_in_K: "inv a ∈ carrier K"

using K.Units_inv_closed [OF a_un] .
have "x = (inv a ⊗ a) · x"

using K.Units_l_inv [OF a_un]

using mult_1 [OF x_in_V]

by simp

also have " . . . = inv a · (a · x)"
using mult_assoc [OF x_in_V inv_a_in_K a_in_K] .

also have " . . . = inv a · 0V" using m_ax_0 by simp

54 Comments

also have " . . . = 0V"
using scalar_mult_zeroV_is_zeroV [OF inv_a_in_K] .

finally have "x = 0V" .
with x_not_zero show "a=0K" by contradiction

qed

lemma integral:

assumes x_in_V: "x∈ carrier V"

and a_in_K: "a ∈ carrier K"

and m_ax_0: "a · x= 0V"
shows "a = 0K | x=0V"

proof (cases "x 6= 0V")
case False show ?thesis using False by simp

next
case True

note x_not_zero = True

show ?thesis

proof (cases "a 6= 0K")
case False show ?thesis using False by simp

next
case True

note a_not_zero=True

show ?thesis

using mult_zero_uniq [OF x_in_V x_not_zero a_in_K m_ax_0]

using a_not_zero by contradiction

qed
qed

We present here some other properties which don’t appear in Halmos
but that will be useful in our development. For instance, distributivity of
substraction with respect to the scalar product:

lemma diff_mult_distrib1:

assumes x_in_V: "x∈ carrier V"

and y_in_V: "y ∈ carrier V"

and a_in_K: "a ∈ carrier K"

shows "a · (x 	V y) = a · x 	V a · y"
proof -

have minus_y_in_V: "	V y ∈ carrier V"

using V.a_inv_closed [OF y_in_V] .

55

have minus_one_in_K: "	K 1 ∈ carrier K"

using K.a_inv_closed[OF K.one_closed] .
have mclosed: "a · y ∈ carrier V"

using mult_closed [OF y_in_V a_in_K] .
have mclosed2: "a · x ∈ carrier V"

using mult_closed [OF x_in_V a_in_K] .
have "a · (x 	V y)=a · (x ⊕V 	V y)"

using a_minus_def[OF x_in_V y_in_V] by simp

also have " . . . = a · x ⊕ V a · (V y)"

using add_mult_distrib1 [OF x_in_V minus_y_in_V a_in_K] .
also have " . . . = a · x ⊕ V a · (K 1K · y)"

using negate_eq [OF y_in_V] by simp

also have " . . . = a · x ⊕ V (a ⊗K (K 1K)) · y"
using mult_assoc [OF y_in_V a_in_K minus_one_in_K ,symmetric]

by simp

also have " . . . = a · x ⊕ V ((K 1K)⊗K a) · y"
using K.m_comm [OF minus_one_in_K a_in_K] by simp

also have " . . . = a · x ⊕ V (K 1K) · a · y"
using mult_assoc [OF y_in_V minus_one_in_K a_in_K] by simp

also have " . . . = a · x ⊕ V 	V (a · y)"
using negate_eq [OF mclosed] by simp

also have " . . . = a · x 	V a · y"
using a_minus_def [OF mclosed2 mclosed,symmetric] .

finally show ?thesis .
qed

The following result proves distributivity of substraction (of K) with re-
spect to the scalar product:

lemma diff_mult_distrib2:

assumes x_in_V: "x∈ carrier V"

and a_in_K: "a ∈ carrier K"

and b_in_K: "b ∈ carrier K"

shows "(a 	K b) · x = a ·x 	V b ·x"
proof -

have minus_b_in_K: "	K b ∈ carrier K"

using K.a_inv_closed [OF b_in_K] .
have bx_in_V: "b ·x ∈ carrier V"

using mult_closed [OF x_in_V b_in_K] .
have "(a 	K b) · x=(a ⊕K 	K b) ·x "

using K.minus_eq [OF a_in_K b_in_K] by simp

56 Comments

also have " . . . =a ·x ⊕V (K b) ·x"
using add_mult_distrib2 [OF x_in_V a_in_K minus_b_in_K] .

also have " . . . =a ·x ⊕V (K (1K ⊗K b)) ·x"
using K.l_one [OF b_in_K] by simp

also have " . . . =a ·x ⊕V (K 1K ⊗K b) ·x"
using K.l_minus [OF K.one_closed b_in_K,symmetric] by simp

also have " . . . =a ·x ⊕V (K 1K) ·b ·x"
using mult_assoc [OF x_in_V K.a_inv_closed[OF K.one_closed]

b_in_K]

by simp

also have " . . . =a ·x ⊕V 	V (b ·x)"
using negate_eq [OF bx_in_V] by simp

also have " . . . =a ·x 	V b ·x"
using a_minus_def[OF mult_closed[OF x_in_V a_in_K]

bx_in_V,symmetric] .
finally show ?thesis by simp

qed

The following result proves that the unary substraction of K and V is a
self-cancelling operation by means of the scalar product:

lemma minus_mult_cancel:

assumes x_in_V: "x ∈ carrier V" and a_in_K:"a∈ carrier K"

shows "(K a) · (V x) = a · x"
proof -

have "(Ka) · (Vx) = (Ka ⊗ (K1K)) · x"
using negate_eq[OF x_in_V]

mult_assoc[OF x_in_V K.a_inv_closed[OF a_in_K]

K.a_inv_closed[OF K.one_closed]]

by auto

also have " . . . =(a⊗1) · x"
using K.prod_minus [OF a_in_K K.one_closed] by auto

finally show ?thesis using K.r_one [OF a_in_K] by auto

qed

A result proving that the scalar product is commutative over the elements
of K:

lemma mult_left_commute:

assumes x_in_V: "x ∈ carrier V"

and a_in_K: "a∈ carrier K"

and b_in_K:"b∈ carrier K"

57

shows "a · b · x = b · a · x"
proof -

have "a ·b ·x=(a⊗b) ·x"
using mult_assoc[OF x_in_V a_in_K b_in_K, symmetric] .

also have " . . . =(b⊗a) ·x" using K.m_comm[OF a_in_K b_in_K] by simp

finally show ?thesis

using mult_assoc[OF x_in_V b_in_K a_in_K] by simp

qed

A result proving that the scalar product is left-cancelling for the elements
of K different from 0:

lemma mult_left_cancel:

assumes x_in_V: "x ∈ carrier V"

and y_in_V: "y∈carrier V"

and a_in_K: "a∈carrier K"

and a_not_zero: "a 6=0K"
shows "(a · x = a · y) = (x = y)"

proof
assume ax_ay:"a ·x=a ·y"
have a_in_Units: "a ∈ Units K"

using K.field_Units and a_in_K and a_not_zero by simp

have "x=1K · x" using mult_1[OF x_in_V, symmetric] .
also have " . . . =((inv a)⊗K a) ·x"

using K.Units_l_inv [OF a_in_Units] by simp

also have " . . . =(inv a) · a ·x"
using mult_assoc[OF x_in_V

K.Units_inv_closed[OF a_in_Units] a_in_K]

by simp

also have " . . . =(inv a) · a ·y" using ax_ay by simp

also have " . . . =((inv a)⊗K a) ·y"
using mult_assoc[OF y_in_V K.Units_inv_closed

[OF a_in_Units] a_in_K] by simp

also have " . . . =1K · y"
using K.Units_l_inv [OF a_in_Units, symmetric] by simp

finally show "x=y" using mult_1[OF y_in_V] by simp

next
assume x_y: "x=y"

then show "a ·x=a ·y" by simp

qed

58 Comments

A similar result to the previous one but proving that the element of V
can be also cancelled:

lemma mult_right_cancel:

assumes x_in_V: "x ∈ carrier V"

and a_in_K: "a ∈ carrier K"

and b_in_K: "b∈carrier K"

and x_not_zero: "x 6=0V"
shows "(a · x = b · x) = (a = b)"

proof
assume ax_by:"a ·x=b ·x"
have "(a 	 K b) · x=a ·x 	 V b ·x"

using diff_mult_distrib2[OF x_in_V a_in_K b_in_K] .
also have " . . . =a ·x 	 V a ·x" using ax_by by simp

also have " . . . =0V"
using r_neg’[OF mult_closed[OF x_in_V a_in_K]] .

finally have "(a 	 K b) · x=0V" by simp

hence ab_zero: "a 	 K b=0K"
using x_not_zero

using integral[OF x_in_V K.minus_closed[OF a_in_K b_in_K]]

by simp

thus "a=b"

proof -

have a_min_b: "a ⊕K 	 Kb=0K"
using ab_zero and a_minus_def[OF a_in_K b_in_K] by simp

have "	 K(K b)=a"

using K.minus_equality

[OF a_min_b K.a_inv_closed[OF b_in_K] a_in_K] .
thus ?thesis using K.minus_minus[OF b_in_K] by simp

qed
next

assume "a=b"

then show "a ·x=b ·x" by simp

qed

Most of the previous results have been completed by calculational rea-
soning, as presented in the Isabelle lemma “integral” (see chapter 5). The
idea is, in order to prove an equality, one starts from its left hand side, and
then by applying rewriting rules, one reaches the right hand side. Then, by
summarizing the chain of equalities, the original equality is obtained. There-
fore, we can conclude that most of the proofs that we have completed up to

59

now are based on rewriting rules, case distinction (with the rule “cases” and
some boolean condition), and reductio ad absurdum. For more information
in calculational reasoning in Isabelle, see [36].

60 Comments

Chapter 9

Linear dependence

In this chapter we will present the notion of linearly dependent and indepen-
dent set. Halmos defines them next way:

Definition 9.0.6 A finite set {xi}i∈N of vectors (xi ∈ V) is linearly depen-
dent if there exists a corresponding set {αi}i∈N of scalars in K, not all zero,
such that ∑

i∈N

αi · xi = 0

Definition 9.0.7 If, on the other hand,
∑

i∈N αi · xi = 0 implies that αi = 0
for each i, the set {xi}i∈N is linearly independent.

We are formalizing both concepts in Isabelle/HOL. The definitions are
also generalized in Halmos to the case where the set of indexes is infinite.
We will also implement such generalizations.

Due to the definitions, first of all we will introduce the definition of linear
combination, even if it appears in Halmos later.

A linear combination is a finite sum of vectors of V multiplicated by
scalars. However, how can we specify the scalars? In a linear combi-
nation each vector will be multiplicated by one specific scalar, so this
scalar depends on the vector. For that reason, we introduce the notion of
coefficients_function.

definition coefficients_function :: "’b set => (’b => ’a) set"

where "coefficients_function X

62 Linear dependence

= {f. f ∈ X → carrier K ∧ (∀ x. x /∈X −→ f x = 0K)}"

The explanation of the definition of coefficients function is as follows:
given any set of vectors X, its coefficients functions will be every function
which maps each of the vectors in X to scalars in K. We impose an additional
condition, in such a way that every element out of the set of vectors X is
mapped to a distinguished element (in this case 0) of K.

The first condition in the definition (f ∈ X → carrier K) is clear. A
coefficients function is a function which maps, as we have said before, the
elements of a given set X to their corresponding scalars in K. The second
condition (∀ x. x /∈ X −→ f x = 0) requires further explanation: the rea-
son to map every element out of the set X to a distinguished point is that this
allows us to compare coefficients functions through the extensional equality
of functions ((f = g) = (∀ x. f x = g x)). Thus, two coefficients function
will be equal whenever they map every vector of X to the same scalar of K
(this statement would not hold in the absence of the second condition).

Giving f a coefficients function and a certain x in carrier V then f x

(the scalar of the vector) will be in carrier K.

lemma fx_in_K:

assumes x_in_V: "x ∈ carrier V"

and cf_f: "f ∈ coefficients_function (carrier V)"

shows "f(x) ∈ carrier K"

using assms unfolding coefficients_function_def by auto

For every x ∈ carrier V, multiplication between the scalar and the vec-
tor (f x · x) is in carrier V.

lemma fx_x_in_V:

assumes x_in_V: "x ∈ carrier V"

and cf_f: "f ∈ coefficients_function (carrier V)"

shows "f(x) ·x ∈ carrier V"

using mult_closed[OF x_in_V fx_in_K[OF x_in_V cf_f]] .

Now we are going to define a linear combination. In Halmos, next section
is about linear combinations, however we have to introduce now the definition
because we will use it to define the linear dependence of a set. We will use
the definition of sums over a finite set (finsum) which already exists in the
Isabelle library. Note that we are defining a linear_combination with two

63

parameters: second is the set of elements of V and first is the coefficients
function which assigns each vector to its scalar.

Due to the definition of finsum_def we are only considering the case
of a finite linear combination. The case of infinite linear combinations is
undefined. This is not a problem for us, because we will work with finite
vector spaces and in our development we will only need linear combinations
over finite sets. In addition, the sums in an infinite vector space are all finite
because without additional structure the axioms of a vector space do not
permit us to meaningfully speak about an infinite sum of vectors.

definition linear_combination :: "(’b ⇒ ’a) ⇒ ’b set ⇒ ’b"

where "linear_combination f X = finsum V (λy. f(y) ·y) X"

In order to define the notion of linear dependence of a set we need to
demand that this set be finite and a subset of the carrier. To abbreviate
notation we will define these two premises as good_set.

definition good_set :: "’b set => bool"

where "good_set X = (finite X ∧ X ⊆ carrier V)"

Next two lemmas show both properties:

lemma good_set_finite:

assumes good_set_X: "good_set X"

shows "finite X"

using good_set_X

unfolding good_set_def by simp

lemma good_set_in_carrier:

assumes good_set_X: "good_set X"

shows "X ⊆ carrier V"

using good_set_X

unfolding good_set_def by simp

Empty set is a good_set.

lemma [simp]: "good_set {}"

unfolding good_set_def by simp

Now, we can present the definition of linearly dependent set. A set will
be dependent if there exists a linear combination equal to zero in which not
all scalars are zero.

64 Linear dependence

definition linear_dependent :: "’b set ⇒ bool"

where "linear_dependent X = (good_set X

∧ (∃ f. f∈ coefficients_function (carrier V) ∧
linear_combination f X = 0V
∧ ¬(∀ x ∈ X. f x = 0K)))"

This definition is equivalent to the previous one:

definition linear_dependent_2 :: "’b set ⇒ bool"

where "linear_dependent_2 X =

(∃ f. f ∈ coefficients_function (carrier V) ∧ good_set X

∧ linear_combination f X = 0V ∧ ¬ (∀ x ∈ X. f x = 0K))"

Here we present the equivalence of the definitions:
lemma linear_dependent_eq_def:

shows "linear_dependent X = linear_dependent_2 X"

unfolding linear_dependent_def

unfolding linear_dependent_2_def by blast

We introduce now the notion of a linearly independent set. We will prove
later that linear dependence and independence are complementary notions
(every set will be either dependent or independent).

definition linear_independent :: "’b set ⇒ bool"

where "linear_independent X =

(good_set X

∧ (∀ f. (f∈ coefficients_function (carrier V) ∧
linear_combination f X = 0V)
−→ (∀ x ∈ X. f(x)=0K)))"

Abusing of the notation, we will sometimes use “dependent sets” and
“independent sets” to refer us to “linearly independent sets” and “linearly
dependent sets” respectively.

Next lemmas prove that if we have a linear (in)dependent set hence we
have a good_set (finite and in the carrier).

lemma l_ind_good_set: "linear_independent X =⇒ good_set X"

unfolding linear_independent_def by simp

lemma l_dep_good_set: "linear_dependent X =⇒ good_set X"

unfolding linear_dependent_def by simp

The empty set is linearly independent.

lemma empty_set_is_linearly_independent [simp]:

65

shows "linear_independent {}"

unfolding linear_independent_def

by simp

We can prove that linear independence is the opposite of linear depen-
dence. For that, we first prove that every set which is not linearly indepen-
dent must be linearly dependent:

lemma not_independent_implies_dependent:

assumes good_set: "good_set X"

shows "¬ linear_independent X =⇒ linear_dependent X"

proof (unfold linear_dependent_def)

assume not_linear_independent: "¬ linear_independent X"

from not_linear_independent obtain f

where f_in_coefficients: "f ∈ coefficients_function (carrier

V)"

and sum_zero: "linear_combination f X = 0V"
and not_all_zero: "¬(∀ x ∈ X. f(x)=0K)"
unfolding linear_independent_def using good_set by best

have " f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V ∧ ¬ (∀ x∈X. f x = 0)"
using f_in_coefficients and good_set and sum_zero and

not_all_zero

by simp

hence "∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V ∧ ¬ (∀ x∈X. f x = 0)"
by (rule exI [of _ "f"])

thus "good_set X ∧ (∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V ∧ ¬ (∀ x∈X. f x = 0))"
using good_set by simp

qed

Now we prove that every set which is linearly dependent is not linearly
independent:

lemma dependent_implies_not_independent:

shows "linear_dependent X =⇒ ¬ linear_independent X"

proof (rule impE)

assume ld: "linear_dependent X"

show "¬ linear_independent X"

proof (unfold linear_independent_def)

from ld obtain f where good_set: "good_set X"

66 Linear dependence

and cf_f: "f ∈ coefficients_function (carrier V)"

and lc_f_X_zero: "linear_combination f X = 0V "

and not_all_zero: " ¬(∀ x ∈ X. f x = 0K)"
unfolding linear_dependent_def by auto

have "¬ (∀ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V −→ (∀ x∈X. f x = 0))"
using cf_f and lc_f_X_zero and not_all_zero by auto

thus " ¬ (good_set X

∧ (∀ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V −→ (∀ x∈X. f x = 0)))"
using good_set by auto

qed
qed (auto)

Hence the result:

lemma dependent_if_only_if_not_independent:

assumes good_set: "good_set X"

shows "linear_dependent X ←→ ¬ linear_independent X"

using dependent_implies_not_independent

and not_independent_implies_dependent [OF good_set] by auto

Analogously, we can prove that a set is not linearly dependent if and
only if it is linearly independent. We use [[¬ P; ¬ R =⇒ P]] =⇒ R and the
previous lemma:

lemma not_dependent_implies_independent:

assumes good_set: "good_set X"

shows "¬ linear_dependent X =⇒ linear_independent X"

proof -

assume not_linear_dependent: "¬ linear_dependent X"

have imp: "¬ linear_independent X =⇒ linear_dependent X"

using not_independent_implies_dependent [OF good_set] .
show "linear_independent X"

apply (rule swap [OF not_linear_dependent imp]) .
qed

lemma independent_implies_not_dependent:

shows "linear_independent X =⇒ ¬ linear_dependent X"

proof -

assume li: "linear_independent X"

have imp: "linear_dependent X =⇒ ¬ linear_independent X"

67

using dependent_implies_not_independent .
show "¬ linear_dependent X" apply (rule swap[OF _ imp])

using li by simp+

qed

Finally, we obtain the equivalence of definitions:

lemma independent_if_only_if_not_dependent:

assumes good_set: "good_set X"

shows "linear_independent X ←→ ¬ linear_dependent X"

using independent_implies_not_dependent

and not_dependent_implies_independent [OF good_set]

by fast

Every good set will be either dependent or independent (but not both at
the same time). Note: the operator OR of this proof is not an exclusive OR,
so really here we are proving that every set is either dependent or independent
or both.

lemma li_or_ld:

assumes good_set:"good_set X"

shows "linear_dependent X | linear_independent X"

proof (cases "linear_dependent X")

case False show ?thesis

using not_dependent_implies_independent [OF good_set] by fast

next
case True thus ?thesis by fast

qed

In order to avoid that problem, we need to implement the operator ex-
clusive OR:

definition xor :: "bool ⇒ bool ⇒ bool"

where "xor A B ≡ (A ∧ ¬ B) ∨ (¬A ∧ B)"

Now we can prove that every good set will be either dependent or inde-
pendent (but not both at the same time):

lemma li_xor_ld:

assumes good_set:"good_set X"

shows "xor (linear_dependent X) (linear_independent X)"

proof (unfold xor_def,auto)

assume ld_X: "linear_dependent X"

68 Linear dependence

and li_X: "linear_independent X"

have "¬ linear_independent X"

using dependent_implies_not_independent[OF ld_X] .
thus False using li_X by contradiction

next
assume "¬ linear_independent X" thus "linear_dependent X"

using not_independent_implies_dependent[OF good_set _]

by simp

qed

A corollary of these theorems using that the empty set is linearly inde-
pendent: if we have a linearly dependent set, then it isn’t the empty set:

lemma dependent_not_empty:

assumes ld_A: "linear_dependent A"

shows "A 6={}"

using dependent_implies_not_independent[OF ld_A]

empty_set_is_linearly_independent by auto

Now we prove that every set X containing a linearly dependent subset
Y is itself linearly dependent. This property is stated in Halmos but not
proved, he says that the fact is clear.

The proof is easy but long. We want to achieve a linear combination of
the elements of X equal to zero and where not all scalars are zero. We know
that a subset Y of X is dependent, so there exists a linear combination of
the elements of Y equal to zero where not all scalars are zero (we will denote
its coefficients funcion as f). If we define a coefficients function for the set
X where the scalars of the elements y ∈ Y are f(y) and 0K for the rest of
elements in X, then we will obtain a linear combination of elements of X
equal to zero where not all scalars are zero (because not for all x ∈ Y , f(x)
is 0K).

lemma linear_dependent_subset_implies_linear_dependent_set:

assumes Y_subset_X: "Y ⊆ X" and good_set: "good_set X"

and linear_dependent_Y: "linear_dependent Y"

shows "linear_dependent X"

proof (unfold linear_dependent_def)

— Using that Y is dependent, we can obtain a linear combination equal to
zero where not all scalars are zero.

from linear_dependent_Y

obtain f where sum_zero_f_Y:"linear_combination f Y = 0V"

69

and not_all_zero_f:" ¬ (∀ x∈Y. f x = 0)"
and coefficients_function_f:

"f ∈ coefficients_function (carrier V) "

unfolding linear_dependent_def

by best

— Now we define the function and prove that is a coefficients function:
let ?g= "(λx. if x ∈ Y then f(x) else 0K)"
have coefficients_function_g:

"?g ∈ coefficients_function (carrier V) "

using coefficients_function_f

unfolding coefficients_function_def

by auto

— We want to prove another two things: that the linear combination is
zero and not all scalars are zero.

— First:
have sum_zero_g_X: "linear_combination ?g X = 0V"
proof -

— We will separate the linear combination into two ones, in the set Y and
in the set X − Y . We can do it thanks to the theorem finsum_Un_disjoint :
[[finite A; finite B; A ∩ B = {}; g ∈ A → carrier V; g ∈ B →
carrier V]] =⇒ finsum V g (A ∪ B) = finsum V g A ⊕V finsum V g B

and that the decomposition of the sets is disjoint.
— Some properties which we will need for the proof:

have descomposicion_conjuntos:"X=Y∪(X-Y)"
using Y_subset_X by auto

have disjuntos: "Y ∩ (X-Y)={}"

by simp

have finite_X: "finite X"

using good_set

unfolding good_set_def by simp

have finite_Y: "finite Y"

using linear_dependent_Y

unfolding linear_dependent_def

unfolding good_set_def by auto

have finite_X_minus_Y: "finite (X-Y)"

using finite_X by simp

have g1:"?g ∈ Y → carrier K"

...

have g2:"?g ∈ (X-Y) → carrier K"

...

70 Linear dependence

let ?h="(λx. ?g(x) ·x)"
have h1: "?h ∈ Y → carrier V"

...

have h2: "?h ∈ (X-Y) → carrier V"

...

— And now the decomposition. We will make a calculation until we
achieve the thesis.

have "linear_combination ?g X

= linear_combination ?g (Y∪(X-Y))"
using descomposicion_conjuntos by simp

also have descomposicion:

"...=linear_combination ?g Y ⊕V linear_combination ?g (X-Y)"

unfolding linear_combination_def

using finsum_Un_disjoint [OF finite_Y finite_X_minus_Y

disjuntos h1 h2]

by auto

— First linear combination of right term is the same linear combination
of the elements of Y where it was equal to zero.

also have "...=0V ⊕V linear_combination ?g (X-Y)"

proof -

have "linear_combination ?g Y=linear_combination f Y"

proof (unfold linear_combination_def)

have iguales: "Y=Y" ..
show "(

⊕
Vy∈Y. (if y ∈ Y then f y else 0) · y)

= (
⊕

Vy∈Y. f y · y)"
using finsum_cong [OF iguales] using h1 by auto

qed
also have "...=0V" using sum_zero_f_Y .
finally show ?thesis by simp

qed
also have "...=0V ⊕V 0V"
proof -

— Thanks to the definition of ?g, the linear combination in (X − Y) is
also zero (because all scalars are zero).

— As each scalar is zero, the multiplication between it and its vector is
zero (zeroK_mult_V_is_zeroV : x ∈ carrier V =⇒ 0 · x = 0V). Then we are
adding a finite sum of zeros, so it will be zero using finsum_zero : finite A =⇒
(
⊕

Vi∈A. 0V) = 0V.
have sum_g_X_minus_Y:"linear_combination ?g (X-Y)=0V"
proof -

71

have X_subset_V: "X ⊆ carrier V"

using good_set

unfolding good_set_def by auto

hence X_minus_Y_subset_V:"(X-Y) ⊆ carrier V" by auto

have not_in_Y: "x∈ (X-Y)=⇒ x /∈ Y" by auto

have "linear_combination ?g (X-Y)=(
⊕

Vy∈X - Y. 0 · y)"
proof (unfold linear_combination_def)

have igualesX_minus_Y: "X-Y=X-Y" ..
show "(

⊕
Vy∈X - Y. (if y ∈ Y then f y else 0) · y)

= finsum V (op · 0) (X - Y)"

using finsum_cong [OF igualesX_minus_Y eqTrueI [OF h2]]

by auto

qed
also have " . . . =(

⊕
Vy∈X - Y. 0V)"

proof (rule finsum_cong’)

show "X - Y = X - Y" ..
show "(λy. 0V) ∈ X - Y → carrier V" by simp

show "
∧
i. i ∈ X - Y =⇒ 0 · i = 0V"

using zeroK_mult_V_is_zeroV

using X_minus_Y_subset_V by auto

qed
also have " . . . =0V"

using finsum_zero [OF finite_X_minus_Y] .
finally show ?thesis .

qed
thus ?thesis by simp

qed
also have "...=0V" by simp

finally show ?thesis .
qed

— Second property is easy:
have not_all_zero_g: "¬ (∀ x∈X. ?g x = 0)"

using Y_subset_X

using not_all_zero_f by auto

have "?g ∈ coefficients_function (carrier V)

∧ linear_combination ?g X = 0V ∧ ¬ (∀ x∈X. ?g x = 0)"
using coefficients_function_g and good_set

and sum_zero_g_X and not_all_zero_g by fast

hence
"∃ f. f ∈ coefficients_function (carrier V)

72 Linear dependence

∧ linear_combination f X = 0V ∧ ¬ (∀ x∈X. f x = 0)"
by (rule exI[of _ ?g])

thus "good_set X ∧ (∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = 0V ∧ ¬ (∀ x∈X. f x = 0))"
using good_set by simp

qed

It may be worth noting that the proof, which closely follows the mathe-
matical sketch of the proof, consumes space mainly to prove that the coeffi-
cients function satisfies the right properties.

A set containing 0V is not an independent set:

lemma zero_not_in_linear_independent_set:

assumes li_A: "linear_independent A"

shows "0V /∈ A"

proof (cases "0V /∈ A")

case True thus ?thesis .
next

case False show ?thesis

proof -

have cb_A: "good_set A" using l_ind_good_set[OF li_A] .
have zero_in_A: "0V ∈ A" using False by simp

let ?g="(λx. if x=0V then 1K else 0K)"
have cf_g: "?g ∈ coefficients_function (carrier V)"

unfolding coefficients_function_def by auto

have lc_zero: "linear_combination ?g A=0V"
proof (unfold linear_combination_def)

have "(
⊕

Vy∈A. (if y = 0V then 1 else 0) · y)
=(

⊕
Vy∈A. 0V)"

proof (rule finsum_cong’,auto)

show "1 · 0V = 0V"
using scalar_mult_zeroV_is_zeroV by auto

fix i

assume i_in_A: "i ∈ A" and i_not_zero: "i 6= 0V"
show "0 · i = 0V"

using zeroK_mult_V_is_zeroV and i_in_A and cb_A

unfolding good_set_def by auto

qed
also have "...=0V"

using finsum_zero using good_set_finite[OF cb_A] by auto

finally show

73

"(
⊕

Vy∈A. (if y = 0V then 1 else 0) · y) = 0V" .
qed
have not_all_zero: "¬(∀ x∈A. ?g x = 0)"

using zero_in_A by auto

— Contradiction with linear_independent

show ?thesis

using cf_g lc_zero not_all_zero li_A

unfolding linear_independent_def by auto

qed
qed

Every subset of an independent set is also independent. This property
has been proved using sledgehammer (the tool for automatic discovery of
proofs).

lemma independent_set_implies_independent_subset:

assumes A_in_B: "A ⊆ B"

and li_B: "linear_independent B"

shows "linear_independent A"

by (metis A_in_B good_set_def good_set_finite good_set_in_carrier

dependent_implies_not_independent finite_subset l_ind_good_set

li_B linear_dependent_subset_implies_linear_dependent_set

not_independent_implies_dependent subset_trans)

We can even extend the notions of linearly dependent and independent
sets to infinite sets in the following way. We shall say that a set is linearly
independent if every finite subset of it is such.

definition linear_independent_ext:: "’b set ⇒ bool"

where "linear_independent_ext X

= (∀ A. finite A ∧ A ⊆ X −→ linear_independent A)"

Otherwise, it is linearly dependent.

definition linear_dependent_ext:: "’b set ⇒ bool"

where "linear_dependent_ext X

= (∃ A. A ⊆ X ∧ linear_dependent A)"

As expected, if we have a linearly independent set it will be also
linear_independent_ext set.

lemma independent_imp_independent_ext:

assumes li_X: "linear_independent X"

74 Linear dependence

shows "linear_independent_ext X"

proof -

have fin_X: "finite X" and X_in_V: "X ⊆ carrier V"

using l_ind_good_set[OF li_X] unfolding good_set_def by simp+

show ?thesis unfolding linear_independent_ext_def

proof (auto)

fix A

assume A_in_X: "A ⊆ X"

show "linear_independent A"

using independent_set_implies_independent_subset

[OF A_in_X li_X] .
qed

qed

The same property holds for dependent sets:

lemma dependent_imp_dependent_ext:

assumes ld_X: "linear_dependent X"

shows "linear_dependent_ext X"

unfolding linear_dependent_ext_def

using l_dep_good_set[OF ld_X]

unfolding good_set_def

using ld_X

by fast

Every finite set which is linear_independent_ext will also be
linear_independent :

lemma fin_ind_ext_impl_ind:

assumes li_ext_X: "linear_independent_ext X"

and finite_X: "finite X"

shows "linear_independent X"

by (metis finite_X li_ext_X linear_independent_ext_def

subset_refl)

Similarly with the notion of linear dependence:

lemma fin_dep_ext_impl_dep:

assumes ld_ext_X: "linear_dependent_ext X"

and gs_X: "good_set X"

shows "linear_dependent X"

by (metis gs_X ld_ext_X linear_dependent_ext_def

linear_dependent_subset_implies_linear_dependent_set)

75

We can prove that also in the infinite case, the definitions of
linear_independent_ext and linear_dependent_ext are complementary (ev-
ery set will be of one type or the other). Let’s see it:

lemma not_independent_ext_implies_dependent_ext:

assumes X_in_V: "X ⊆ carrier V"

shows "¬ linear_independent_ext X =⇒ linear_dependent_ext X"

unfolding linear_independent_ext_def and linear_dependent_ext_def

using not_independent_implies_dependent and X_in_V

unfolding good_set_def

by auto

lemma not_dependent_ext_implies_independent_ext:

assumes X_in_V: "X ⊆ carrier V"

shows "¬ linear_dependent_ext X =⇒ linear_independent_ext X"

by (metis X_in_V not_independent_ext_implies_dependent_ext)

lemma independent_ext_implies_not_dependent_ext:

shows "linear_independent_ext X =⇒ ¬ linear_dependent_ext X"

by (metis good_set_finite independent_implies_not_dependent

l_dep_good_set linear_dependent_ext_def

linear_independent_ext_def)

lemma dependent_ext_implies_not_independent_ext:

shows "linear_dependent_ext X =⇒ ¬ linear_independent_ext X"

by (metis independent_ext_implies_not_dependent_ext)

corollary dependent_ext_if_only_if_not_indepentent_ext:

assumes X_in_V: "X ⊆ carrier V"

shows "linear_dependent_ext X ←→ ¬ linear_independent_ext X"

using assms not_independent_ext_implies_dependent_ext

dependent_ext_implies_not_independent_ext

by blast

corollary independent_ext_if_only_if_not_depentent_ext:

assumes X_in_V: "X ⊆ carrier V"

shows "linear_independent_ext X ←→ ¬ linear_dependent_ext X"

using assms not_dependent_ext_implies_independent_ext

independent_ext_implies_not_dependent_ext

by blast

76 Linear dependence

Chapter 10

Linear combinations

10.1 Sets indexation

Here we present the notion of an indexed set in Isabelle. This is one of
the biggest problems that we have found in our development. Following
Halmos, we realize that there are some proofs where he expresses a set in a
determinate order (for example, A = {a1, . . . , an}) and he uses such orders
to build proofs upon (as we will see). However, a set has not an order by
default and of course, it is not implemented in Isabelle/HOL.

We have, at least, two different options:

• Try to make the proofs in other way, looking for alternative proofs of
the theorems in which the order of the sets is not used.

• Follow exactly Halmos and for that we would need to implement the
structure of an indexed set (a set with an order).

Firstly we tried to follow the first option: work without indexations be-
cause they are not inherent to sets and thus they require an additional effort
of implementation that we tried to avoid. It is also remarkable that Halmos
never mentions explicitly the need or relevance of having explicit orders for
sets. A finite set has not any order (although we can be able to assign one
for it). However, we will realize that the order is indispensable for the proofs
of the book (as we will see later).

So finally, we decided to implement the notion of indexed sets. The main

78 Linear combinations

advantage is that once we have done it, we will be able to follow the proofs
of the book literally and we will not have to look for alternative proofs, think
how we can express a lemma without taking the order into account, . . .

To implement indexed sets we have also several alternatives, for example:

• Implement the order as a bijection between the set of naturals smaller
than the cardinal of the set and the elements of the set. Each natural
will be assigned to an element and that natural represents the position
of the element in the set.

• Use lists, where the position of each element represents its index in the
set.

• Use tuples or relations of one element and one natural.

We decided to use the first option due to its advantages: indexed sets are
isomorphic to sorted canonical lists (we can define an isomorphism mapping
{(a, 1), (b, 2), (c, 3)} to the list [a, b, c]) but operations over sorted canonical
lists should preserve canonicity, which makes operations such as “insert” or
“remove” in given positions more complicated than their equivalent opera-
tions over sets with an indexing function. For example, if we want to add
one element to a list in a concrete position we have to do lot of things: create
another list with the elements of the first one until the position in which we
want to add the element, after that we have to add the element and then
continue interating the first list adding the rest of the elements to the second
one... With indexed sets we only have to make a function definition (this will
be the function insert iset). Nevertheless, lists have a great advantage: with
them we could execute our algorithms. Using tuples or relations is similar to
the first option.

We implement an indexation of a set A like a tuple of the set A and a
function f : N→ V which is bijective between the naturals up to the number
“card A - 1” and A. We have to give to the function a number n (n is a
natural number between 0 and card(A)− 1) and the function will return us
the element in the nth position in the set A (with respect to the given order).
In other words: A = f ′{.. < card(A)}. 1 Note that is correct: between 0
and card(A)− 1 (both included) there are card A elements.

1The case that A is empty is also included: {} = A = f ′({.. < card(A)} = f ′{.. <
card({})} = f ′{.. < 0} = f ′{} = {}.

10.1 Sets indexation 79

To sum up, in Halmos (and in any book) a finite set A is represented like
follows:

A = {a1, . . . , an} where n = card(A)

and with our definition, we are representing it similarly2:

A = {a0, . . . , an} where n = card(A)− 1

Now we can see how we have implemented an indexed set in Isabelle/HOL.

The next type definition, iset, represents the notion of an indexed set,
which is a pair: a set and a function that goes from naturals to the set.

type synonym (’a) iset = "’a set × (nat => ’a)"

Now we define functions which make possible to separate an indexed set
into the set and the function and we add them to the simplifier, since they
are only meant to be abbreviations of the “fst” and “snd” operations:

definition iset_to_set :: "’a iset => ’a set"

where "iset_to_set A = fst A"

definition iset_to_index :: "’a iset => (nat => ’a)"

where "iset_to_index A = snd A"

lemmas [simp] = iset_to_set_def iset_to_index_def

An indexing of a set will be any bijection between the set of the natural
numbers less than its cardinality (because we start counting from 0) and
the set. Note: we will always work with finite sets. By default, the Isabelle
definition of card assigns to an infinite set cardinality equal to 0.

First of all, we present the definitions of bijection and injectivity in Is-
abelle. A function f : A→ B is bijective if is injective and surjective. f will
be injective if whenever the images of two points in A are equal, then the
points are the same. f is surjective if f ‘A = B.

inj_on f A = (∀ x∈A. ∀ y∈A. f x = f y −→ x = y)

bij_betw f A B = (inj_on f A ∧ f ‘ A = B)

2Really, we could have made equal to Halmos, but then the notation in Isabelle would
be more difficult to be managed in the proofs.

80 Linear combinations

Finally, we present the definition of indexing using previous concepts:

definition indexing :: "(’a iset) => bool"

where "indexing A = bij_betw (iset_to_index A)

{..<card (iset_to_set A)} (iset_to_set A)"

Once we have the definition of indexing, we are going to prove some
properties of it.

We introduce some lemmas presenting properties and alternative defi-
nitions of “indexing”. For instance, whenever we have an indexing A =
(iset to set A, iset to index A) the index function will map naturals in the
range {.. < card(A)} to elements of iset to set A and, moreover, the image
set of the indexing function in such range will be whole set iset to set A.

lemma indexing_equiv_img:

assumes ob: "indexing A"

shows "(iset_to_index A)

∈ {..<(card (iset_to_set A))} → (iset_to_set A)

∧ (iset_to_index A) ‘ {..<(card (iset_to_set A))}

= (iset_to_set A)"

using ob

unfolding indexing_def

unfolding bij_betw_def by auto

The implication is also satisfied in the opposite direction:

lemma img_equiv_indexing:

assumes f: "(iset_to_index A)

∈ {..<(card (iset_to_set A))} → (iset_to_set A)

∧ (iset_to_index A) ‘ {..<(card (iset_to_set A))}

= (iset_to_set A)"

shows "indexing A"

proof -

...

qed

Now we present another alternative definition of indexing linking it with
the notions of injectivity and surjectivity:

lemma indexing_inj_surj:

assumes ob: "indexing A"

shows "inj_on (iset_to_index A) {..<(card (iset_to_set A))}

∧ (iset_to_index A) ‘ {..<(card (iset_to_set A))}

10.1 Sets indexation 81

= (iset_to_set A)"

using ob

unfolding indexing_def

unfolding bij_betw_def .

lemma indexing_inj_surj_inv:

assumes "inj_on (iset_to_index A) {..<(card (iset_to_set A))}

∧ (iset_to_index A) ‘ {..<(card (iset_to_set A))} = (iset_to_set

A)"

shows "indexing A"

unfolding indexing_def

unfolding bij_betw_def by fact

One basic property is that the empty set with any function of appropriate
type is an indexing :

lemma indexing_empty:

"indexing ({}, f)"

unfolding indexing_def

unfolding bij_betw_def by simp

Now we are proving a basic but useful lemma: if we have an indexing of
a set, then the image of a natural less than the cardinality of the set is an
element of the set.

lemma indexing_in_set:

assumes "indexing (A,f)"

and "n < card A"

shows "f n ∈ A"

using assms unfolding indexing_def bij_betw_def by auto

We present two auxiliary lemmas about indexings and their behaviour as
injective functions. The first one claims that if we have an indexing and two
naturals (less than the cardinality of the set) with the same image, then the
naturals are equal (which is a consequence of injectivity):.

lemma
indexing_impl_eq_preimage:

assumes i: "indexing (A, f)"

and x: "x ∈ {..<card A}" and y: "y ∈ {..<card A}"

and f: "f x = f y"

shows "x = y"

apply (rule inj_onD [of f "{..<card A}"])

82 Linear combinations

using i

unfolding indexing_def bij_betw_def

by simp fact+

On the contrary, if we have the same assumptions than before but we
consider that the image of both naturals are different, then the numbers are
distinct.

lemma
indexing_impl_ndiff_image:

assumes i: "indexing (A, f)"

and x: "x ∈ {..<card A}" and y: "y ∈ {..<card A}"

and f: "x 6= y"

shows "f x 6= f y"

proof (rule ccontr, simp)

assume "f x = f y"

hence "x = y"

using i

unfolding indexing_def bij_betw_def inj_on_def

using x y by auto

thus False using f by contradiction

qed

The following lemma proves that for any finite set A, there exist a natural
number n and a function f such that f is an index function of A with {.. < n}
the collection of indexes. The proof is not constructive, is based on a lemma
in the Isabelle library proving that every finite set is a mapping of a range
of the naturals.

lemma finite_imp_nat_seg_image_inj_on_Pi:

assumes f: "finite A"

shows "(∃ n::nat. ∃ f∈{i. i < n} → A.

((f ‘ {i. i < n} = A) ∧ inj_on f {i. i < n}))"

proof -

obtain f and n

where a1: "f ‘ {i. i < (n::nat)} = A ∧ inj_on f {i. i < n}"

and a2: "f ∈ {i. i < n} → A"

using finite_imp_nat_seg_image_inj_on [OF f] by auto

thus ?thesis by auto

qed

The bijection is between the naturals up to card(A) and the set. Thanks

10.1 Sets indexation 83

to that we are giving to the set an indexation, we are representing a set more
or less like a vector in C++: a structure with card(A) components (from
position 0 to (card(A)− 1)). Each component f(i) tallies with one element
of the set.

The following lemma extends the previous one, since we prove that n in
the previous lemma is actually card(A). The proof is carried out by induction
on the finite set A, and the indexing function is explicitly given (?f in the
proof below):

lemma finite_imp_nat_seg_image_inj_on_Pi_card:

assumes f: "finite A"

shows "(∃ f ∈ {i. i < (card A)} → A.

((f ‘ {i. i < (card A)} = A)

∧ inj_on f {i. i < (card A)}))"

using f proof (induct)

case empty

show ?case by auto

next
case (insert b B)

show "∃ f∈{i ::nat. i <

card (insert b B)} → insert b B.

f ‘ {i ::nat. i < card (insert b B)} = insert b B ∧
inj_on f {i ::nat. i < card (insert b B)}"

proof -

obtain g

where g1: "g ∈ {i. i < (card B)} → B"

and g2: "g ‘ {i ::nat. i < card B} = B ∧ inj_on g

{i ::nat. i < card B}"

using insert.hyps (3) by auto

let ?f = "(λn::nat. if n ∈ {i. i < card B} then g n

else if n = card B then b else g n)"

have f1: "?f ∈{i ::nat. i < card (insert b B)}

→ insert b B"

proof
...

qed
have f2: "?f ‘ {i ::nat. i < card (insert b B)}

= (insert b B) ∧ inj_on ?f {i ::nat. i < card (insert b B)}"

proof
...

84 Linear combinations

qed
show ?thesis

using f1 f2 by auto

qed
qed

As a corollary, we prove that for each finite set there exists an indexing
of it. This is the main theorem of this section and it will be very useful in
the future to assign an order to a finite set (we will need it in future proofs).

corollary obtain_indexing:

assumes finite_A: "finite A"

shows "∃ f. indexing (A,f)"

proof (unfold indexing_def,unfold bij_betw_def,auto)

...

qed

In addition, if we have an indexing we will know that the set is finite.
This lemma will allow us to remove the premise finite A whenever we work
with indexings. This is because Isabelle assigns 0 as the cardinality of an
infinite set. Suppose that A is infinite. If we have an indexing(A, f), hence
f is a bijection between the set of naturals less than the cardinality of A (0
due to the implementation) and A. Then, A = f ‘{.. < card(A)} = f ‘{.. <
0} = f ‘{} = {}. However, we have supposed that A was infinite and {} is
not, so we have a contradiction and A is always finite.

lemma indexing_finite[simp]:

assumes indexing_A: "indexing (A,f)"

shows "finite A"

by (metis bij_betw_finite finite_lessThan

fst_conv indexing_def iset_to_set_def indexing_A)

After introducing the notion of indexed set, we need to intro-
duce two basic operations over indexed sets: insert and remove.
They will be generic with respect to the position where an element
can be inserted or removed. For instance, given an indexed set
{(a, 0), (b, 1), (c, 2)} if we are to insert an element d, we will admit index-
ing {(d, 0), (a, 1), (b, 2), (c, 3)}, {(a, 0), (d, 1), (b, 2), (c, 3)} and so on. In other
words, inserting an element in a sorted set preserves the order of the elements,
but maybe not their positions.

First we define the function which, for a given indexing A and an element

10.1 Sets indexation 85

a gives all possible indexings for the set insert a (iset to set A) preserving
(iset to index A):

n is the position where ’a’ will be inserted. It should be a natural number
between 0 (first position) and card A (last position).

definition indexing_ext :: "(’a iset) => ’a => (nat => nat => ’a)"

where
"indexing_ext A a =

(%n. %k. if k < n then (iset_to_index A) k

else if k = n then a

else (iset_to_index A) (k - 1))"

Now we present a basic property (it will be useful to be applied in in-
duction proofs): If one indexing_ext generated from an indexation F and
from one element a /∈ index_to_set F is good (is an indexing), then the
indexation of F is also good (an indexing).

It is a long lemma (about 300 lines). The proof of injectivity must be
separated in several different cases, depending on the position where we insert
the element (after, before or exactly in the nth position):

lemma indexing_indexing_ext:

assumes ob:

"indexing ((insert x (iset_to_set F)), (indexing_ext F x n))"

and n1: "0 ≤ n"

and n2: "n ≤ card (iset_to_set F)"

and x_notin_F: "x /∈ (iset_to_set F)"

shows "indexing F"

proof (unfold indexing_def bij_betw_def, intro conjI)

let ?h = "iset_to_index F"

let ?F = "iset_to_set F"

show inj_on_h:"inj_on ?h {..<card ?F}"

proof (unfold inj_on_def, rule ballI, rule ballI, rule impI)

fix xa y

assume xa: "xa ∈ {..<card ?F}"

and y: "y ∈ {..<card ?F}" and h: "?h xa = ?h y"

show "xa = y"

proof (rule inj_onD

[of "(indexing_ext F x n)" "{..<card (insert x ?F)}"])

...

qed

86 Linear combinations

next
show "indexing_ext F x n xa = indexing_ext F x n y"

proof (cases "xa < n")

...

qed
qed

qed
show "?h ‘ {..<card ?F} = ?F"

proof -

...

qed
qed

From the above definitions we can define the operation insert for indexed
sets. We don’t assume that the new element (which is going to be inserted in
the set) is not in the set, this will appear as a premise in the corresponding
results.

Given any indexed set A, an element a and a position n, the operation
insert iset will introduce a in iset to set A in the position n (modifying
accordingly the original indexation iset to index A).

definition insert_iset :: "’a iset => ’a => nat => ’a iset"

where
"insert_iset A a n

= (insert a (iset_to_set A), indexing_ext A a n)"

Next lemma claims that if we insert an element in an indexing, we are
increasing the cardinality of the set in a unit. Logically, we need to assume
that the element which is going to be inserted is not in the set.

lemma insert_iset_increase_card:

assumes indexing_A: "indexing (A,f)"

and a_notin_A: "a /∈ A"

shows "card (iset_to_set (insert_iset (A,f) a n)) = card A + 1"

by (metis a_notin_A card.insert fst_conv indexing_A

indexing_finite insert_iset_def iset_to_set_def nat_add_commute)

Given an indexing (A, f), an element a /∈ A and a position n ≤ card(A),
the result of inserting a in A in position n will be an indexing:

lemma insert_iset_indexing:

assumes indexing_A: "indexing (A,f)"

10.1 Sets indexation 87

and a_notin_A: "a /∈ A"

and n2: "n ≤ (card A)"

shows "indexing (insert_iset (A,f) a n)"

proof (unfold indexing_def,unfold bij_betw_def, rule conjI)

have finite_A: "finite A" using indexing_finite[OF indexing_A] .
have card_insert: "card (insert a A)=card A + 1"

using a_notin_A card_insert_if[OF finite_A] by force

have descomposicion_conjunto:

"{..< card (insert a A)}={..<n}∪{n}∪{n<..<card (insert a A)}"

using n2

by (metis Suc_eq_plus1 Un_commute Un_empty_right

Un_insert_right

atLeastLessThanSuc_atLeastAtMost

atLeastSucAtMost_greaterThanAtMost

atLeastSucLessThan_greaterThanLessThan card_insert

ivl_disj_un(9) lessThan_Suc lessThan_Suc_atMost)

show surj: "iset_to_index (insert_iset (A, f) a n) ‘

{..<card (iset_to_set (insert_iset (A, f) a n))}

= iset_to_set (insert_iset (A, f) a n)"

proof (unfold insert_iset_def, simp)

...

qed
show "inj_on (iset_to_index (insert_iset (A, f) a n))

{..<card (iset_to_set (insert_iset (A, f) a n))}"

proof (rule eq_card_imp_inj_on) — We need to have proved previously the
injectivity

...

qed
qed

We introduce the definition of a generic function remove_iset which re-
moves the nth element of an indexed set. Logically, the position of the
element which is going to be removed must be less than the cardinality of
the set. The indexing must be also modified in such a way that every element
above n will decrease its position in one unit. For instance, if we have the
indexed set {(a, 0), (b, 1), (c, 2)} and we remove the position 0, we will obtain
{(b, 0), (c, 1)}.
definition remove_iset :: "’a iset => nat => ’a iset"

where "remove_iset A n = (fst A - {(snd A) n},

(λk. if k < n then (snd A) k else (snd A) (Suc k)))"

88 Linear combinations

The following lemma proves that, for any indexing, the result of removing
an element in a valid position will be again an indexing. This is a long lemma
(about 150 lines).

lemma
indexing_remove_iset:

assumes i: "indexing (B, h)"

and n: "n < card B"

shows "indexing (remove_iset (B, h) n)"

proof (unfold indexing_def bij_betw_def, intro conjI, simp)

have fin_B: "finite B" using indexing_finite[OF i] .
have h_n_in_B: "h n ∈ B"

using n i unfolding indexing_def bij_betw_def by auto

have eq_i: "
∧
x y. [[x ∈ {..<card B}; y ∈ {..<card B}; h x = h y]]

=⇒ x = y"

using i unfolding indexing_def bij_betw_def inj_on_def

by auto

show "inj_on (snd (remove_iset (B, h) n))

{..<card (fst (remove_iset (B, h) n))}"

...

show "iset_to_index (remove_iset (B, h) n) ‘

{..<card (iset_to_set (remove_iset (B, h) n))}

= iset_to_set (remove_iset (B, h) n)"

...

qed

The result of inserting an element in an indexed set in position n and
then removing the element in position n is the original indexed set.

lemma
remove_iset_insert_iset_id:

assumes x_notin_A: "x /∈ A"

and n_l_c: "n < card A"

shows "remove_iset (insert_iset (A, f) x n) n = (A, f)"

unfolding insert_iset_def

using x_notin_A

unfolding indexing_ext_def

unfolding remove_iset_def by (auto simp add: fun_eq_iff n_l_c)

Next lemma is a good example of proof by acumulation of facts, and it is
ideal to structure it using moreover and finish it with ultimately. However,
we can use [[A; B; C; D]] =⇒ A ∧ B ∧ C ∧ D to abridge it. The lemma

10.1 Sets indexation 89

claims that given an indexing (X, f), there exists an indexing (insert x X, h)
which places x in the last position (and keeps the elements of X in their
original places).

lemma indexation_x_union_X:

assumes finite: "finite X" and x_not_in_X: "x /∈ X"

and f_buena:"f ∈ {i. i < (card X)} → X" and ordenFX: "f ‘ {i. i

< (card X)} = X"

shows "∃ h. (h ∈ {i. i < (card (insert x X))} → (insert x X)

∧ h‘{i. i < (card (insert x X))} = (insert x X)

∧ h (card X) = x ∧ (∀ i. i<card(X) −→ h i = f i))"

proof (rule exI [of _ "(λi::nat. if i<(card X) then f(i) else x)"],

rule conjI4)

let ?h = "(λi::nat. if i<(card X) then f(i) else x)"

show "?h ∈ {i. i < card (insert x X)} → insert x X"

using f_buena unfolding Pi_def by auto

show "?h ‘ {i. i < card (insert x X)} = insert x X"

using ordenFX

unfolding card_insert_disjoint [OF finite x_not_in_X]

unfolding less_than_Suc_union

unfolding image_Un by auto

show "(if card X < card X then f (card X) else x) = x" by simp

show "(∀ i<card X. (if i < card X then f i else x) = f i)" by
simp

qed

This is an indispensable lemma to prove the theorem that claims that an
independent set can be completed to a basis. Given any pair of (disjoint)
sets A and B, there exists an indexing function h which places the elements
of A in the first card(A) positions and then the elements of B. In the proof,
the indexing function is explicitly provided:

lemma indexing_union:

assumes disjuntos: "A∩B={}"
and finite_A: "finite A"

and A_not_empty: "A 6={}" — If not the result is trivial.
and finite_B: "finite B"

shows "∃ h. indexing (A∪B,h) ∧ h‘ {..<card(A)}= A

∧ h‘ ({..<(card(A)+card(B))}-{..<card(A)})=B"

proof -

have "∃ f. indexing (A,f)" using obtain_indexing[OF finite_A] .

90 Linear combinations

from this obtain f where indexing_A_f: "indexing (A,f)" by auto

have "∃ g. indexing (B,g)" using obtain_indexing[OF finite_B] .
from this obtain g where indexing_B_g: "indexing (B,g)" by

auto

show ?thesis

proof (rule exI[of _ "(λx. if x∈ {..<card(A)}

then f(x) else g(x-card(A)))"])

...

show "indexing(A ∪ B,?h) ∧
?h ‘{..<card A} = A ∧
?h ‘({..<card A + card B} - {..<card A}) =

B" using indexing surj_h_A surj_h_B by auto

qed
qed

Now we are going to define a new function which returns the position
where an element a is in a set A. When we use this function, it is very im-
portant to assume that a ∈ A, since functions are total in HOL, and without
the premise a ∈ A we would obtain an undefined value of the righ type. An
alternative definition could be made writing LEAST instead of THE and then
we could remove n < card A. Note that both THE and LEAST are based on
the Hilbert’s ε operator, which, in general, places us out of a constructive
setting.

This function will be very important for the proof that each basis of a
vector space has the same cardinality.

definition obtain_position :: "’c ⇒’c iset ⇒ nat"

where "obtain_position a A = (THE n. (snd A) n = a

∧ n < card (fst A))"

Under the right premises, this natural number exists and is smaller than
card(A) which ensures that obtain_position is well-defined.

lemma exists_n_and_less_card_obtain_position:

assumes a_in_A: "a ∈ A"

and indexing_A: "indexing (A,f)"

shows "∃ n::nat. f n = a ∧ n < (card A)"

proof -

have "A 6={}" using a_in_A by blast

hence cardA_g_0: "card A > 0"

using card_gt_0_iff and indexing_finite[OF indexing_A]

10.1 Sets indexation 91

by blast

thus ?thesis

using a_in_A indexing_A

unfolding indexing_def bij_betw_def by force

qed

Thanks to the previous lemma and the injectivity of indexing functions,
we can prove the existence and the unicity of obtain_position :

lemma exists_n_and_is_unique_obtain_position:

assumes a_in_A: "a∈ A"

and indexing_A: "indexing (A,f)"

shows "∃ !n::nat. f n = a ∧ n < (card A)"

proof (rule ex_ex1I)

show "∃ n. f n = a ∧ n < card A"

using exists_n_and_less_card_obtain_position

[OF a_in_A indexing_A] .
show "

∧
n y. [[f n = a ∧ n < card A; f y = a ∧ y < card A]]

=⇒ n = y "

...

qed

Now that we have proved that obtain_position is well-defined, we prove
that its result satisfies the required properties. The number which is returned
by obtain_position is less than the cardinal of the set:

lemma obtain_position_less_card:

assumes a_in_A: "a ∈ A"

and indexing_A: "indexing (A,f)"

shows "(obtain_position a (A,f)) < card A"

proof (unfold obtain_position_def)

let ?P = "(λn. f n = a ∧ n < card A)"

have exK: "(∃ !k. ?P k)"

using exists_n_and_is_unique_obtain_position

[OF a_in_A indexing_A] .
have ex_THE: "?P (THE k. ?P k)"

using theI’ [OF exK] .
def n≡"(THE k. ?P k)"

have "n < card A" unfolding n_def

by (metis ex_THE)

thus "(THE n. snd (A, f) n = a ∧ n < card (fst (A, f))) < card A"

by (metis ex_THE fst_conv n_def snd_conv)

92 Linear combinations

qed

The function really returns the position of the element.

lemma obtain_position_element:

assumes a_in_A: "a ∈ A"

and indexing_A: "indexing (A,f)"

shows "f (obtain_position a (A,f)) = a"

proof (unfold obtain_position_def)

let ?P = "(λn. f n = a ∧ n < card A)"

have exK: "(∃ !k. ?P k)"

using exists_n_and_is_unique_obtain_position

[OF a_in_A indexing_A] .
have ex_THE: "?P (THE k. ?P k)"

using theI’ [OF exK] .
def n≡"(THE k. ?P k)"

have "f n = a" unfolding n_def

by (metis ex_THE)

thus "f (THE n. snd (A, f) n = a ∧ n < card (fst (A, f))) = a"

by (metis ex_THE fst_conv n_def snd_conv)

qed

An element will not be in the set returned by the function remove_iset

called with the position of that element.

lemma a_notin_remove_iset:

assumes a_in_A: "a ∈ A"

and indexing_A: "indexing (A,f)"

shows "a /∈ fst (remove_iset (A,f) (obtain_position a (A,f)))"

unfolding remove_iset_def

using obtain_position_element[OF a_in_A indexing_A] by simp

Finally an important theorem to prove future properties of indexed sets.
Isabelle has an induction rule to prove properties of finite sets. Unfortunately,
this rule is of little help for proving properties of indexed sets, since the set
and the indexing function must behave accordingly in the induction rule,
and their inherent properties. Consequently, we have to introduce a special
induction rule for indexed sets.

This induction rule is similar to the proper of finite sets, [[finite F; P {};∧
x F. [[finite F; x /∈ F; P F]] =⇒ P (insert x F)]] =⇒ P F, but taking

into account the indexing. Thus, if a property P holds for the empty set

10.1 Sets indexation 93

and one of its indexing functions, and when it holds for a given set A and
an indexing function f , we know how to prove it for the pair insert a A
(with a /∈ A) and any of the extensions of f , then P holds for every indexing
(A, f). The proof of the property is completed by induction over the set A,
but keeping f free for later instantiation with the right indexing functions.

lemma
indexed_set_induct2 [case_names indexing finite empty insert]:

assumes "indexing (A, f)"

and "finite A"

and "!!f. indexing ({}, f) ==> P {} f"

and step: "!!a A f n. [|a /∈ A;

[| indexing (A, f) |] ==> P A f;

finite (insert a A);

indexing ((insert a A), (indexing_ext (A, f) a n));

0 ≤ n; n ≤ card A |] ==>

P (insert a A) (indexing_ext (A, f) a n)"

shows "P A f"

using ‘finite A‘ and ‘indexing (A, f)‘

proof (induct arbitrary: f)

case empty

show ?case using empty (1) by fact

next
case (insert x F h’)

show ?case

proof -

obtain n h

where h’_def: "h’ = (indexing_ext (F, h) x) n"

and n1: "0 ≤ n"

and n2: "n ≤ card F" using exists_indexing_ext

[OF insert.prems] by blast

show ?case

unfolding h’_def

proof (rule step)

show "x /∈ F" by fact

have i_F_h: "indexing (F, h)"

apply (rule indexing_indexing_ext [of x "(F, h)" n])

using insert.prems unfolding h’_def

using n1 n2 insert.hyps (2) by simp_all

show "P F h" by (rule insert.hyps (3)) (rule i_F_h)

94 Linear combinations

show "0 ≤ n" using n1 .
show "n ≤ card F" using n2 .
show "finite (insert x F)" using insert.hyps (1) by simp

show "indexing (insert x F, indexing_ext (F, h) x n)"

using insert.prems unfolding h’_def .
qed

qed
qed

10.2 Linear combinations

The notion of linear combination has been implementend in the previous
chapter in order to define the concept of linear dependence and independence.

Nevertheless, we will prove some properties of linear combinations in this
chapter, but firstly we must say that the main objective of this chapter is to
prove following theorem labelled as Theorem 1 in Halmos, section 6:

Theorem 10.2.1 The set of non-zero vectors x1, . . . , xn is linearly depen-
dent if and only if some xk, 2 ≤ k ≤ n, is a linear combination of the
preceding ones.

At this point, we realized that we had to solve a big problem: Halmos is
assuming the existence of an inherent order to a set, but this is not imple-
mented so in Isabelle. We had to implement something to define the order
of a set or look for an equivalent or similar theorem, not using orders. The
next theorem looks like similar and it doesn’t need the order of a set, but
it is not useful for the proof of theorem 10.2.1 because we are not proving
that there exists one element which is a linear combination of the preceding
ones, but that there exists an element which is a linear combination of the
rest elements of the set (nevertheless, we will also prove it in our develope-
ment because we will use it in the future in order to prove some properties
in chapter 11).

Theorem 10.2.2 If the finite set X of non-zero vectors is linearly dependent
then there exists an element x ∈ X such that x is a linear combination of
X − {x}.

10.2 Linear combinations 95

However, this was not our unique attempt. We were stuck for a time
thinking how we could prove the theorem and future theorems which use it
(specially, how to complete an independent set up to a basis).

We did three attempts more to demonstrate it before defining the indexed
sets in Isabelle/HOL. It took up several code lines which finally was not
useful and we count with ideas of Julio Rubio and Tobias Niphow. We had
to reject them because we found that we were defining functions which were
not commutative3, we lost the unicity of the elements, the proofs were getting
difficult because we had to move to the quotient space [16] . . . Finally we
followed the development of the book, although it involved a great deal of
work and made a sudden stop to generate the theory of indexed sets.

As we pretended to follow Halmos and this is a very important theorem
which will be used by him in future proofs, we realized the relevance of having
made the definition of indexing and indexed sets.

During the developement, we thought that a good alternative proof for
theorem 10.2.1 (theorem 1 in section 6 in Halmos) could be the next one. It
seems easier (to implement) and shorter:

• Case empty: If A = {} we have a contradiction, at the same time we
obtain that A is linearly dependent and independent.

• Case insert: Suppose that it is true for A = {f(1), . . . , f(m)}, so
there exists one element that is a linear combination of the preceding
ones and let be k the position of that element (logically k is between
1 and m). We have to prove that if we insert an element in this set,
the result is also true. Suppose that we insert a new element a in the
position 1 ≤ n ≤ m = card(A), so the new set is

(insert a A) = {f(1), . . . , f(n− 1), a︸︷︷︸
nth position

, f(n), . . . , f(m)}

3 For instance, we defined the following function in order to prove theorem 11.2.1:
f x A = (if linear independent (insert x A) then (insert x A) else A) but we realized that
it wasn’t left-commutative: f x (f y Z) 6= f y (f x Z). For example, if we take x = (0, 1),
y = (1, 1) and Z = {(1, 0)} we have that:

f x (f y Z) = {(1,0),(1,1)} 6= {(0,1),(1,1)}= f y (f x Z)

The problem was that the result (the set obtained) depends on the order that we apply
the function.

96 Linear combinations

Note that we have now a set of m+1 elements where a is in the position
n (and the element which was in the position n of A is now in position
n + 1 of the new set). We will obtain the result depending on the
position (denoted by k) of the element which is a linear combination
of the preceding ones: the element a.

– If k < n, the proof of the result will be more or less easy: the
element which will be a linear combination of the preceding ones
is the same. Example, let be:

A = {f(1), . . . , f(k)︸︷︷︸, . . . , f(n), . . . , f(m)}

Where f(k) is the element which is a linear combination of the
preceding ones. Hence, if we insert the element a in a position n
after k, we will have:

(insert a A) = {f(1), . . . , f(k)︸︷︷︸, . . . , f(n−1), a︸︷︷︸
nth position

, f(n), . . . , f(m)}

Logically, f(k) is also the element which will be a linear combina-
tion of the preceding ones and it will be also in the position k of
the set obtained inserting a in A.

– If k = n the case is similar: We have that f(k) is a linear combi-
nation of the preceding elements of A.

A = {f(1), . . . , f(k − 1), f(k)︸︷︷︸, f(k + 1), . . . , f(m)}

If we insert a exactly in the position k:

(insert a A) = {f(1), . . . , f(k−1),

n position︷︸︸︷
a , f(k)︸︷︷︸, f(k+1), . . . , f(m)}

Then the element f(k) will be now in the position k+1 and it will
be also a combination of the preceding ones (if f(k) was a linear
combination of f(1), . . . , f(k − 1) then f(k) will be also a linear
combination of f(1), . . . , f(k − 1), a).

– If k ≥ n, the reasoning is as above. Really, the previous reasoning
is a particular case of this one:

A = {f(1), . . . , f(k − 1), f(k)︸︷︷︸, f(k + 1), . . . , f(m)}

10.2 Linear combinations 97

Then:

(insert a A) = {f(1), . . . , a, f(n), . . . , f(k), . . . , f(m)}

f(k) was a linear combination of f(1), . . . , f(n−1), f(n), . . . , f(k−
1) and hence also of f(1), . . . , f(n− 1), a, f(n), . . . , f(k − 1).

We tried to formalize the previous proof in Isabelle/HOL. However, when
we were making it we found a new case which we had not considered: In
the case insert, we have supposed tacitly that A is dependent to apply the
induction hypothesis. However we can not suppose it, we can not prove
it using our premises (in this case we have that (insert a A) is linearly
dependent, but from this we can not prove that A is linearly dependent). So
we also have to prove the theorem in this case and the proof of it is very
similar to the demonstration which has been followed in the book without
induction.

In conclusion, instead of what looks firstly, the proof is longer and more
difficult with induction than without it. In fact, one case of the induction
proof is very similar to the whole non-inductive proof. Nevertheless, we made
both proofs in Isabelle/HOL.

Finally, we present the proof of theorem 10.2.1 without induction. We
explain it line by line, comparing the Halmos’ proof with the formalized one
in Isabelle/HOL.

First, we are going to write the theorem in Isabelle. Due to the definition
of an indexed set, our element will be between 1 and card(A − 1) and not
between 2 and card(A) (or n in the notation of the book). Halmos represents
the second element as x2 and we do it as x1.

The wording of the theorem in Isabelle is as follows. Note that as a
premise we are assuming a certain order (indexing) to the set (in our first
attemps we proved that there exists an order where the property is true, but
really it holds for any order):
theorem
linear_dependent_set_sorted_contains_linear_combination2:

assumes ld_A: "linear_dependent A"

and not_zero: "0V /∈ A"

and i: "indexing (A, f)"

shows "∃ y∈A. ∃ g. ∃ k::nat.
g ∈ coefficients_function (carrier V)

98 Linear combinations

∧ (1::nat) ≤ k ∧ k < (card A)

∧ f k = y ∧ y = linear_combination g (f‘{i::nat. i<k})"

We are assuming three premises: we have a linearly independent set in
which the zero is not contained and as we have already said, a certain in-
dexing of the set. The result in the book (theorem 10.2.1) claims that there
exists an element in the linearly dependent set A (this element is represented
as y) which is in a position k (f(k) = y) between 2 and card(A) (1 ≤ k ∧
k < card(A) due to our representation of indexed sets) which is a linear com-
bination of the preceding ones (y = linear combination g (f ‘{i :: nat. i <
k})).

Now the proof. We are writing in italic letters the lines of the proof in the
book and after that we will present how we have implemented it in Isabelle.

Let us suppose that the vectors x1, . . . , xn are linearly dependent.

We have assumed it in the premises. From this, we can obtain a linear
combination equal to zero where not all scalars are zero (this is obvious, but
in Isabelle we have to make it step by step). We also prove that the set is a
good set and we take the function which indexes it (we have given an order
to the set in the premises with the assumption i):
proof -

have good_set_A: "good_set A" using l_dep_good_set[OF ld_A] .
from ld_A obtain h

where cf_h: "h ∈ coefficients_function (carrier V)"

and sum_zero: "linear_combination h A=0V"
and not_all_zero: "¬ (∀ x∈A. h x =0K)"
unfolding linear_dependent_def by auto

have 1: "f ‘ {..<(card A)} = A" using i

unfolding indexing_def unfolding bij_betw_def

unfolding iset_to_index_def by auto

Let k the first integer between 2 and n for which x1, . . . , xn are linearly
dependent (if worse comes to worst, our assumption assures us that k=n will
do).

We will change a little bit the proof. As A = {x1, . . . , xn} is linearly
dependent, then every linear combination of A equal to zero has scalars not
equal to zero. Then we take the last scalar which is not zero (so after it, all
scalars will be zero). For that, first of all we have to take the set of the scalars

10.2 Linear combinations 99

which are not zero, prove that this set is not empty (this is obvious because
the set A was linearly dependent) and then we can obtain the maximum (the
book takes the least, but the proof is easier if we take the maximum because,
as we have said before, all scalars after the maximun will be zero).

let ?A="{k∈{..<card A}. h (f k) 6= 0K}"
have finite_A: "finite ?A" by auto

have A_not_empty: "?A 6={}"

using not_all_zero using 1 by force

def m ≡ "Max ?A"

have m_in_A: "m ∈ ?A"

using Max.closed[OF finite_A A_not_empty]

unfolding m_def by force

have "∀ x∈{..<card A}. (x<card A)" by auto

hence m_le_card_aA: "m<(card A)"

using Max_less_iff [OF finite_A A_not_empty]

unfolding m_def by auto

have "¬ (∃ x∈?A. m < x)"

using Max_less_iff [OF finite_A A_not_empty]

unfolding m_def by auto

hence h_indexing_m_card_zero: "∀ x∈{m<..<(card A)}. h (f x) = 0K"
by auto

Then α1x1 + · · ·+ αmxm = 0 for a suitable set of α’s (not all zero).

In Isabelle this line requires a lot of work. We have to divide the linear
combination of the whole set into two linear combinations: one until m and
the other until the end. The second linear combination will be zero because
every scalar is zero. The first will be also zero (this is what we want to prove
and it is true because the sum of both linear combinations is zero and if the
second is zero, then the first will be also zero).

have indexing_m_in_aA: "f m ∈ A" using 1

using m_le_card_aA by auto

have descomposicion_conjunto:

"{..<(card A)} = {..m} ∪ {m<..<(card A)}"

using m_le_card_aA unfolding m_def by auto

have "f ‘{..<(card A)}= f ‘ ({..m}∪{m<..<(card A)})"

unfolding descomposicion_conjunto ..
also have"...= f ‘ {..m} ∪ f ‘{m<..<(card(A))}" by auto

finally have descomposicion_indexing_ext:

100 Linear combinations

"f ‘ {..<card A} = f ‘ {..m} ∪ f ‘ {m<..<card A}" .
have descomposicion_conjunto2: "{..m}=insert m {..<m}" by auto

hence descomposicion_indexing_ext2:

"f ‘ {..m} = (insert (f m) (f ‘ {..<m}))"

by auto

have cb_l_m: "good_set (f ‘ {..m})"

proof -

have "f ‘ {..m} ⊆ f ‘ {..<card (A)}"

using m_le_card_aA by auto

hence "f ‘ {..m} ⊆ A" using 1 by simp

thus ?thesis

using good_set_A unfolding good_set_def by auto

qed
have i_m_in_V: "f m ∈ carrier V"

using cb_l_m unfolding good_set_def by auto

have "0V=linear_combination h (f ‘ {..<card A})"

using sum_zero 1 by auto

also have
"...=linear_combination h (f ‘ {..m} ∪ f ‘ {m<..<card A})"

using descomposicion_indexing_ext by auto

also have "...= linear_combination h (f ‘ {..m})

⊕V linear_combination h (f ‘ {m<..<card A})"

proof (unfold linear_combination_def, rule

finsum_Un_disjoint,force)

show "finite (f ‘ {m<..<card A})" using m_le_card_aA by auto

show "f ‘ {..m} ∩ f ‘ {m<..<card A} = {}"

...

show "(λy. h y · y) ∈ f ‘ {..m} → carrier V"

proof (auto,rule mult_closed)

...

qed
show "(λy. h y · y) ∈ f ‘ {m<..<card (A)} → carrier V"

proof (auto,rule mult_closed)

...

qed
qed
also have "...= linear_combination h (f ‘ {..m}) ⊕V 0V"
proof -

...

qed

10.2 Linear combinations 101

also have "...=linear_combination h (f‘ {..m})"

proof (rule V.r_zero, rule linear_combination_closed)

show "good_set (f ‘ {..m})" using cb_l_m .
show "h ∈ coefficients_function (carrier V)" using cf_h .

qed

Moreover, whatever the α’s, we can not have αk = 0, for then we should
have a linear dependence relation among x1, . . . , xk−1, contrary to the defini-
tion of k.

In our proof, we have denoted m where the book uses k. This part is
proved with our definition of m (the last scalar which is not zero). Remember:

let ?A="{k∈{..<card A}. h (f k) 6= 0K}"
def m ≡ "Max ?A"

Hence:

xk =
−α1

αk

x1 + . . .
−αk−1

αk

xk−1

as was to be proved.

This is the end of the proof. It is basic and trivial doing it “by hand”,
but in Isabelle requires more work. We descompose the linear combination
until m into two sums: a linear combination until the element m − 1 and
the m − th element multiplicated by it scalar. Hence we can work out the
value of xk (f(m) in our development). To do it we make use of an auxiliary
lemma created by us and named word out the value of.

Once we have proved it, we also have to prove that the position is between
2 and card(A) (in our case between 1 and card(A−1)). Halmos doesn’t prove
it in his book. Proving that m ≤ card(A) is trivial because m ∈ {0 ≤ .. <
card(A)} (see the definition of ?A above). To demonstrate that 1 ≤ m we
will do it by reductio ad absurdum: if not 1 ≤ m then m = 0. By the
definition of m, we have that f(m) 6= 0V . Nevertheless, we have proved that
f(m) is a linear combination of the preceding ones, and as f(m) is the first
element (m = 0), then it is a linear combination of the empty set. But we
have a contradiction: f(m) is not zero and the linear combination of the
empty set is equal to zero.

also have "...

=h (f m) · (f m) ⊕V linear_combination h (f ‘ {..<m})"

102 Linear combinations

proof -

...

qed
finally have descomposicion_lc:

"0V=h (f m) · f m ⊕V linear_combination h (f ‘ {..<m})" .
have "∃ w. w ∈ coefficients_function (carrier V)

∧ linear_combination w (f ‘ {..<m}) = f m"

proof (rule work_out_the_value_of_x)

show "good_set (f ‘ {..<m})" using cb_l_m unfolding
good_set_def by auto

...

qed
from this obtain w

where cf_w: "w ∈ coefficients_function (carrier V)" and
lc_w: "linear_combination w (f ‘ {..<m}) = f m" by auto

have one_le_m: "1≤m"
proof (cases "1≤m")

case True thus ?thesis .
next

case False show ?thesis

proof (rule FalseE)

have m_zero: "m=0" using False by auto

hence not_zero:"f m 6= 0V" using m_in_A

by (metis indexing_m_in_aA not_zero)

have zero: "linear_combination w (f ‘ {..< m})=0V"
using m_zero by auto

show False using lc_w and zero and not_zero by auto

qed
qed
let ?y="f m"

have "{i. i < m}={..<m}" by auto

hence "?y = linear_combination w (f ‘ {i. i < m})" using lc_w by
auto

thus ?thesis

using cf_w and one_le_m and m_le_card_aA and indexing_m_in_aA

by force

qed

Thus, we have completed the proof. As it can be observed, in Isabelle the

10.2 Linear combinations 103

proof gets complicated and longer, mainly due to the manipulation of finite
sums and some details not covered in Halmos.

From this, we are going to present the rest of the code that we have
created to implement this section.

As we have said before, to define the notion of linear dependence and
independence we already introduced the definition of linear combination.
Nevertheless, here we present some properties of linear combinations. We
could have used them to simplification the proofs of some theorems in the
previous section, but we have decided to keep the order of the sections in
Halmos.

A linear_combination is closed, when considering a set X ⊆ carrier V
and a proper coefficients function f :

lemma linear_combination_closed:

assumes good_set: "good_set X"

and f: "f ∈ coefficients_function (carrier V) "

shows "linear_combination f X ∈ carrier V"

proof (unfold linear_combination_def, rule finsum_closed)

show "finite X" using good_set unfolding good_set_def by auto

show "(λy. f y · y) ∈ X → carrier V"

proof (unfold Pi_def, auto)

fix y

assume y_in_X: "y ∈ X"

hence y_in_V: "y ∈ carrier V" using good_set unfolding
good_set_def by fast

show "f y · y ∈ carrier V" using fx_x_in_V[OF y_in_V f] .
qed

qed

A linear_combination over the empty set is equal to 0V.

lemma linear_combination_of_zero:

shows "linear_combination f {} = x ←→ x = 0V"
proof

assume l_combination_x: "linear_combination f {} = x"

have l_combination_zero: "linear_combination f {}=0V"
unfolding linear_combination_def

using finsum_empty by auto

show "x = 0V"
using l_combination_x and l_combination_zero by auto

104 Linear combinations

next
assume x_zero: "x = 0V"
have l_combination_x: "linear_combination f {} = 0V"

unfolding linear_combination_def

using finsum_empty by auto

show "linear_combination f {}=x"

using l_combination_x and x_zero by simp

qed

From previous lemma we can obtain a corollary which will be useful as a
simplify rule.

corollary linear_combination_empty_set [simp]:

shows "linear_combination f {} = 0V"
using linear_combination_of_zero by simp

The computation of the linear combination of a unipuntual set is direct:

lemma linear_combination_singleton:

assumes cf_f: "f ∈ coefficients_function (carrier V)"

and x_in_V: "x ∈ carrier V"

shows "linear_combination f {x} = f x · x"
proof -

...

qed

A linear_combination of insert x X is equal to f x · x ⊕V
linear_combination f X

lemma linear_combination_insert:

assumes good_set_X: "good_set X"

and x_in_V: "x ∈ carrier V"

and x_not_in_X: "x /∈ X"

and cf_f: "f ∈ coefficients_function (carrier V)"

shows "linear_combination f (insert x X)

= f x · x ⊕V linear_combination f X"

proof (unfold linear_combination_def, rule finsum_insert)

show "finite X" using good_set_X

unfolding good_set_def by simp

show "x /∈ X" using x_not_in_X .
show "(λy. f y · y) ∈ X → carrier V"

proof (unfold Pi_def,auto)

show "
∧
x. x ∈ X =⇒ f x · x ∈ carrier V"

10.2 Linear combinations 105

proof (rule fx_x_in_V)

fix y

assume y_in_X: "y ∈ X"

show "y ∈ carrier V"

using good_set_X

unfolding good_set_def using y_in_X by auto

show "f ∈ coefficients_function (carrier V)" using cf_f .
qed

qed
show "f x · x ∈ carrier V" using fx_x_in_V[OF x_in_V cf_f] .

qed

If each term of the linear combination is zero, then the sum is zero.

lemma linear_combination_zero:

assumes good_set_X: "good_set X"

and cf_f: "f ∈ coefficients_function (carrier V)"

and all_zero: "
∧
x. x ∈ X =⇒ f (x) · x = 0V"

shows "linear_combination f X = 0V"
proof -

have "linear_combination f X = (
⊕

Vy∈X. f y · y)"
unfolding linear_combination_def ..

also have "...=(
⊕

Vy∈X. 0V)"
proof (rule finsum_cong’,auto)

fix x

assume x_in_X: "x∈X"
show "f x · x = 0V"

using all_zero[OF x_in_X] .
qed
also have "...=0V" using finsum_zero good_set_X

unfolding good_set_def by blast

finally show ?thesis .
qed

This is an auxiliary lemma which we will use later to prove that
a · linear_combination f X = linear_combination (λi. a ⊗ f i) X. We
prove it doing induction over the finite set X. Firstly, we have to prove the
property in case that the set is empty. After that, we suppose that the result
is true for a set X and then we have to prove it for a set insert x X where x

/∈ X.

lemma finsum_aux:

106 Linear combinations

" [[finite X; X ⊆ carrier V; a∈ carrier K; f ∈ X→ carrier K]]
=⇒ a · (

⊕
Vy∈X. f y · y)=(

⊕
Vy∈X. a · (f y · y))"

proof (induct set: finite)

case empty then show ?case

using scalar_mult_zeroV_is_zeroV by auto

next
case (insert x X) then show ?case

proof -

have sum_closed: "(
⊕

Vy∈X. f y · y) ∈ carrier V"

proof (rule finsum_closed)

show "finite X" using insert.hyps (1) .
show "(λy. f y · y) ∈ X → carrier V"

using insert.prems (1) and insert.prems (3)

and mult_closed

by auto

qed
have fx_x_in_V: "f x · x∈ carrier V"

using insert.prems (1) and insert.prems (3)

and mult_closed

by auto

have "(
⊕

Vy∈insert x X. f y · y)=f(x) ·x ⊕V(
⊕

Vy∈X. f y · y)"
proof (rule finsum_insert)

show "finite X" using insert.hyps (1) .
show "x /∈ X" using insert.hyps (2) .
show "f x · x ∈ carrier V" using fx_x_in_V .
show "(λy. f y · y) ∈ X → carrier V"

using insert.prems (1) and insert.prems (3)

and mult_closed

by auto

qed
hence "a ·(

⊕
Vy∈insert x X. f y · y)

=a ·f(x) ·x ⊕V a ·(
⊕

Vy∈X. f y · y)"
using add_mult_distrib1[OF fx_x_in_V

sum_closed insert.prems(2)] by auto

also have " . . . =a ·f(x) ·x ⊕V (
⊕

Vy∈X. a · f y · y)"
proof -

have X_subset_V: "X ⊆ carrier V"

using insert.prems(1) by auto

have f1: "f∈ X→carrier K" using insert.prems(3) by auto

show ?thesis using insert.hyps(3)

10.2 Linear combinations 107

[OF X_subset_V insert.prems(2) f1] by auto

qed
also have " . . . =(

⊕
Vy∈insert x X. a · f y · y)"

proof (rule finsum_insert[symmetric])

show "finite X" using insert.hyps(1) .
show "x /∈ X" using insert.hyps(2) .
show "(λy. a · f y · y) ∈ X → carrier V"

...

qed
finally show ?thesis by auto

qed
qed

To multiply a linear combination by a scalar a is the same that multiplying
each term of the linear combination by a.

lemma linear_combination_rdistrib:

" [[good_set X; f ∈ coefficients_function (carrier V);

a ∈ carrier K]] =⇒ a · (linear_combination f X)

= linear_combination (%i. a ⊗ f(i)) X"

proof -

assume good_set: "good_set X"

and coefficients_function_f:

"f ∈ coefficients_function (carrier V)"

and a_in_K:"a ∈ carrier K"

have X_subset_V: "X⊆ carrier V"

using good_set unfolding good_set_def by auto

have finite_X: "finite X"

using good_set unfolding good_set_def by auto

have f: "f ∈ X→carrier K"

proof (unfold Pi_def, auto)

fix x

assume x_in_X: "x ∈ X"

show "f x∈ carrier K"

using x_in_X and X_subset_V and coefficients_function_f

unfolding coefficients_function_def by auto

qed
show "a · linear_combination f X

= linear_combination (λi. a ⊗ f i) X"

proof (unfold linear_combination_def)

have "(
⊕

Vy∈X. (a ⊗ f y) · y)=(
⊕

Vy∈X. a · f y · y)"

108 Linear combinations

proof (rule finsum_cong’)

...

qed
also have " . . . =a ·(

⊕
Vy∈X. f y · y)"

using finsum_aux

[OF finite_X X_subset_V a_in_K f, symmetric] .
finally show "a · (

⊕
Vy∈X. f y · y) = (

⊕
Vy∈X. (a ⊗ f y) · y)"

by auto

qed
qed

Now some useful lemmas which will be helpful to prove later ones.

lemma coefficients_function_g_f_null:

assumes cf_f: "f ∈ coefficients_function (carrier V)"

shows "(λx. if x ∈ Y then f(x) else 0K)
∈ coefficients_function (carrier V)" using cf_f

unfolding coefficients_function_def by auto

This lemma is a generalization of the idea through we have
proved linear_dependent_subset_implies_linear_dependent_set: [[Y ⊆
X; good_set X; linear_dependent Y]] =⇒ linear_dependent X. Using it we
could reduce its proof, but in Halmos the section of linear dependence goes
before the one about linear combinations. The proof is based on dividing the
linear combination into two sums, from which one of them is equal to 0V .
This lemma takes up about 130 code lines.

lemma eq_lc_when_out_of_set_is_zero:

assumes good_set_A: "good_set A" and good_set_Y: "good_set Y"

and cf_f: "f∈ coefficients_function (carrier V)"

shows "linear_combination (λx. if x ∈ Y then f(x) else 0K)
(Y∪A) = linear_combination f Y"

proof -

...

qed

Another auxiliary lemma. It will be very useful to prove properties
in future sections. If we have an equality of the form 0V = g x · x ⊕V
linear_combination g X, then we can work out the value of x (there exists
a coefficients function f such that x = linear combination f X). This coef-
ficients function is explicitly defined by dividing each of the values g(y) by
g(x).

10.2 Linear combinations 109

lemma work_out_the_value_of_x:

assumes good_set: "good_set X"

and coefficients_function_g:

"g ∈ coefficients_function (carrier V)"

and x_in_V: "x ∈ carrier V"

and gx_not_zero: "g x 6= 0K"
and lc_descomposicion: "0V = g(x) ·x ⊕V linear_combination g X"

shows "∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = x"

proof -

...

qed

Now we are going to prove a property presented in Halmos, section 6: if
{xi}i∈N is linearly independent, then a necessary an sufficient condition that
x be a linear combination of {xi}i∈N is that the enlarged set, obtained by
adjoining x to {xi}i∈N, be linearly dependent.

Here the first implication. The proof is based on definig a linear com-
bination of the set insert x X equal to 0V . As long as we know that
linear combination f X = x we define a coefficients function for insert
x X where the coefficients of y ∈ X are f(y) and the coefficient of x is −1.
A detail that is omitted in Halmos is that not every coefficient is zero since
the coefficient of x is −1. The complete proof requires 102 lines of Isabelle
code.

lemma lc1:

assumes linear_independent_X: "linear_independent X"

and x_in_V:"x ∈ carrier V" and x_not_in_X:"x /∈ X"

shows "(∃ f. f∈ coefficients_function (carrier V) ∧
linear_combination f X = x) =⇒ linear_dependent (insert x X)"

proof -

...

qed

And now we present the second implication. The proof is based on ob-
taining a linear combination of insert x X in which not all scalars are zero
(we can do it since X is linearly dependent). Hence we prove that the scalar
of x is not zero (if it is, hence X would be dependent and independent so
a contradiction). Then, we can express x as a linear combination of the
elements of X.

110 Linear combinations

lemma lc2:

assumes linear_independent_X: "linear_independent X"

and x_in_V: "x ∈ carrier V"

and x_not_in_X: "x /∈ X"

shows "linear_dependent (insert x X)

=⇒ (∃ f. f∈ coefficients_function (carrier V)

∧ linear_combination f X = x)"

proof -

...

qed

Finally, the theorem proving the equivalence of both definitions.

lemma lc1_eq_lc2:

assumes linear_independent_X: "linear_independent X"

and x_in_V:"x ∈ carrier V" and x_not_in_X:"x /∈ X"

shows "linear_dependent (insert x X) ←→
(∃ f. f∈ coefficients_function (carrier V)

∧ linear_combination f X = x) "

using assms lc1 lc2 by blast

This lemma doesn’t appears in Halmos (but it seems to be a similar result
to the theorem 10.2.1). The proof is based on obtaining a linear combination
of the elements of X ∪ Y equal to 0V where not all scalars are equal to 0K.
Hence we can express an element y ∈ (X ∪Y) such that its scalar is not zero
as a linear combination of the rest elements of X ∪ Y . This is a long proof
of 180 lines.

lemma exists_x_linear_combination:

assumes li_X: "linear_independent X"

and ld_XY: "linear_dependent (X ∪ Y)"

shows "∃ y∈Y. ∃ g. g ∈ coefficients_function (carrier V)

∧ y = linear_combination g (X ∪ (Y - {y}))"

proof -

...

qed

A corollary of the previous lemma claims that if we have a linearly de-
pendent set, then there exists one element which can be expressed as a linear
combination of the other elements of the set.

corollary exists_x_linear_combination2:

10.2 Linear combinations 111

assumes ld_Y: "linear_dependent Y"

shows "∃ y∈Y. ∃ g. g ∈ coefficients_function (carrier V)

∧ y = linear_combination g (Y - {y})"

proof -

have ld_empty_Y: "linear_dependent({} ∪ Y)" using ld_Y by simp

have "∃ y∈Y. ∃ g. g ∈ coefficients_function (carrier V)

∧ y = linear_combination g ({} ∪ (Y - {y}))"

using exists_x_linear_combination

[OF empty_set_is_linearly_independent ld_empty_Y] .
thus ?thesis by simp

qed

Every singleton set is linearly independent. This lemma could be in pre-
vious section, however we have to make use of some properties of linear com-
binations. We can repeat the proof without these properties, but it would
be longer. We will use that a · x = 0 =⇒ a = 0 because x 6= 0.

lemma unipuntual_is_li:

assumes x_in_V: "x ∈ carrier V" and x_not_zero: "x 6= 0V"
shows "linear_independent {x}"

proof (cases "linear_independent {x}")

case True show ?thesis using True .
next

case False show ?thesis

proof -

have cb: "good_set {x}"

using x_in_V unfolding good_set_def by simp

have "linear_dependent {x}"

using False

using not_independent_implies_dependent[OF cb False]

by auto

from this obtain f

where cf_f: "f ∈ coefficients_function (carrier V)"

and lc: "linear_combination f {x} = 0V"
and not_all_zero: " ¬ (∀ x∈{x}. f x = 0)"
unfolding linear_dependent_def by auto

have fx_not_zero: "f x 6= 0" using not_all_zero by auto

have "(f x) · x = 0V" thm finsum_insert

proof -

— We could have used [[fa ∈ coefficients_function (carrier V); xa

∈ carrier V]] =⇒ linear_combination fa {xa} = fa xa · xa directly or

112 Linear combinations

next calculation:
have "linear_combination f (insert x {})

= (f x) · x ⊕V linear_combination f {}"

using linear_combination_insert[OF _ x_in_V _ cf_f]

by auto

also have " . . . = (f x) · x ⊕V 0V"
using linear_combination_of_zero by auto

also have " . . . = (f x) · x"
using V.r_zero[OF fx_x_in_V[OF x_in_V cf_f]] .
finally show ?thesis using lc by auto

qed
hence "f x = 0K"

using mult_zero_uniq and x_in_V and x_not_zero and cf_f

unfolding coefficients_function_def by auto

thus ?thesis using fx_not_zero by contradiction

qed
qed

Now we are ready to prove the theorem 1 in section 6 in Halmos. It
will be useful (really indispensable) in future proofs and it is basic in our
developement. The theorem claims that in a linear dependent set there
exists an element which is a linear combination of the preceding ones.

NOTE: As we are assuming that 0V is not in the set, the element which
is a linear combination of the preceding ones will be between the second and
the last position of the set (1 and card(A)− 1 with the notation used in our
implementation of indexed sets). The element in the first position (position
0) can’t be a linear combination of the preceding ones because it would be a
linear combination of the empty set, hence this element would be 0V and it
is not in the set.

The following lemma was the first attempt to prove the theorem 10.2.1.
We make the proof using induction (we don’t follow the proof of the book).
At first, it seemed easier this way.
lemma

linear_dependent_set_contains_linear_combination:

assumes ld_X: "linear_dependent X"

and not_zero: "0V /∈ X"

shows "∃ y ∈ X. ∃ g. ∃ k::nat.
∃ f ∈ {i. i<(card X)} → X. f‘{i. i<(card X)} = X

10.2 Linear combinations 113

∧ g ∈ coefficients_function (carrier V)

∧ (1::nat) ≤ k ∧ k < (card X) ∧ f k = y

∧ y = linear_combination g (f‘{i::nat. i<k})"

proof -

...

qed

Really, the result that we need to prove in this section correspond closer
to the next lemma than the one we have proved in the previous theorem
linear_dependent_set_contains_linear_combination. We have to assume
that the indexation is known beforehand. This will be necessary in the future,
because we will remove dependent elements in regard a gived indexation of
one set (so the removed element will be unique). We will apply this theorem
iteratively to a set in future proofs, so if we didn’t fix the order beforehand
we won’t have unicity of the result (because the indexing could change in
each step).

Then, the following theorem is the proof of 10.2.1. We will use the induc-
tion rule for indexed sets that we introduced before (indexed_set_induct2).
This is a laborious and large theorem, of about 400 code lines. The proof
was explained in detail at the begining of this section (10.2.)

theorem
linear_dependent_set_sorted_contains_linear_combination:

assumes ld_A: "linear_dependent A"

and not_zero: "0V /∈ A"

and i: "indexing (A, f)"

shows "∃ y∈A. ∃ g. ∃ k::nat.
g ∈ coefficients_function (carrier V)

∧ (1::nat) ≤ k ∧ k < (card A)

∧ f k = y ∧ y = linear_combination g (f‘{i::nat. i<k})"

using i and ld_A and not_zero

proof (induct A f rule: indexed_set_induct2)

...

qed

The proof can be also done without induction and then the proof of the
theorem is shorter: “only” 200 code lines. The proof is a generalization of
one of the cases in the induction above and it has been explained line by line
at the begining of this section.

114 Linear combinations

Chapter 11

Bases

11.1 Definitions

The objective of this section is to present the notions of basis and finite
dimensional vector space as presented in Halmos and how we can implement
them in Isabelle/HOL.

Definition 11.1.1 A basis in a vector space V is a set X of linearly indepen-
dent vectors such that every vector in V is a linear combination of elements
of X.

We are not going to implement this definition literally, but through the
concept of spanning set. There are some concepts that Halmos doesn’t in-
troduce and we consider that they are important. We are talking about the
notions of span and spanning set.

Definition 11.1.2 The span of a set A is the set of all linear combinations
of the elements of A. In other words, if A = {a1, . . . , an}, then

span(A) = {λ1a1 + · · ·+ λnan|λ1, . . . , λn ∈ K}

We present its implementation in Isabelle/HOL. The span of a set A will
be the set of the elements x ∈ carrier V for which there exists a coefficients
function such that we can write x as a linear combination of the elements of
A.

116 Bases

definition span :: "’b set => ’b set"

where "span A = {x. ∃ g ∈ coefficients_function (carrier V). x =

linear_combination g A}"

We first prove some properties of the span of a set.

First of all, we prove the behavior of span with respect to {}.

lemma
span_empty [simp]:

shows "span {} = {0V}"
unfolding span_def

unfolding linear_combination_def

using V.finsum_empty

unfolding coefficients_function_def by auto

One auxiliary result says that 0V is in the span of every set.

lemma
span_contains_zero [simp]:

assumes fin_A: "finite A"

and A_in_V: "A ⊆ carrier V"

shows "0V ∈ span A"

proof -

have "0V = linear_combination (λx. 0K) A"

proof (unfold linear_combination_def,

subst finsum_zero [symmetric, OF fin_A], — Be careful applying
unfold, we enter in a loop.

rule finsum_cong’)

show "A = A" by (rule refl)

show "op · 0 ∈ A → carrier V"

unfolding Pi_def

using mult_closed using A_in_V by auto

show "
∧
i. i ∈ A =⇒ 0V = 0 · i"

using zeroK_mult_V_is_zeroV using A_in_V by auto

qed
thus ?thesis

unfolding span_def

unfolding coefficients_function_def

unfolding Pi_def using zero_closed by auto

qed

11.1 Definitions 117

Now we are going to prove that if we remove an element of a set which
is a linear combination of the rest of elements then the span of the set is the
same than the span of the set minus the element. This will be a fundamental
property to be applied in the future. First of all, we do two auxiliary proofs.

This auxiliary lemma claims that given a coefficients funcion g of A−{a}
hence there exists another one (denoted by ga) such that linear_combination
g (A - {a}) = linear_combination ga A. The coefficients function ga will
be defined as follows: λx. if x = a then 0 else g x.

lemma exists_function_Aa_A:

assumes cf_g: "g ∈ coefficients_function (carrier V)"

and good_set_A: "good_set A"

and a_in_A: "a ∈ A"

shows "∃ ga ∈ coefficients_function (carrier V).

(
⊕

Vy∈A - {a}. g y · y) = (
⊕

Vy∈A. ga y · y)"
proof
...

qed

This auxiliary lemma is similar to the previous one. It claims
that given a coefficients function h and another one g such that a =

linear_combination g (A - {a}), there exists a coefficients function ga such
that linear_combination h A = linear_combination ga (A - {a}). This
coefficients funcion ga is defined as follows: λx. h a ⊗ g x ⊕ h x. In other
words, with these premises every linear combination of elements of A can be
expressed as a linear combination of elements of A− {a}.

lemma exists_function_A_Aa:

assumes cf_h:"h ∈ coefficients_function (carrier V)"

and cf_g: "g ∈ coefficients_function (carrier V)"

and a_lc_g_Aa: "a = linear_combination g (A-{a})"

and good_set_A: "good_set A" and a_in_A: "a∈A"
shows "∃ ga ∈ coefficients_function (carrier V).

(
⊕

Vy∈A. h y · y) = (
⊕

Vy∈A - {a}. ga y · y)"
proof
...

qed

118 Bases

Now we present the theorem. The proof is done by double content of
both span sets and we make use of the two previous lemmas.

theorem
span_minus:

assumes good_set_A: "good_set A"

and a_in_A: "a ∈ A"

and exists_g: "∃ g. g∈ coefficients_function (carrier V)

∧ a = linear_combination g (A - {a})"

shows "span A = span (A - {a})"

proof
show "span (A - {a}) ⊆ span A"

unfolding span_def

unfolding linear_combination_def

using assms and exists_function_Aa_A by auto

next
from exists_g obtain g

where cf_g: "g ∈ coefficients_function (carrier V)"

and a_lc: "a = linear_combination g (A-{a})" by auto

show "span A ⊆ span (A - {a})"

proof (unfold span_def, unfold linear_combination_def,auto)

fix f

assume cf_f: "f∈ coefficients_function (carrier V)"

show "∃ ga ∈ coefficients_function (carrier V).

(
⊕

Vy∈A. f y · y) = (
⊕

Vy∈A - {a}. ga y · y)"
using exists_function_A_Aa

[OF cf_f cf_g a_lc good_set_A a_in_A] .
qed

qed

A corollary of this theorem claims that for every linearly dependent set
A, then ∃ a∈A. span A = span (A - {a}).

We also need to use linear_dependent Y =⇒ ∃ y∈Y. ∃ g. g ∈
coefficients_function (carrier V) ∧ y = linear_combination g (Y

- {y})

corollary
span_minus2:

assumes ld_A: "linear_dependent A"

shows "∃ a∈A. span A = span (A - {a})"

proof -

11.1 Definitions 119

have "∃ a∈A. ∃ g. g ∈ coefficients_function (carrier V) ∧ a =

linear_combination g (A - {a})"

using exists_x_linear_combination2[OF ld_A] .
thus ?thesis using span_minus l_dep_good_set[OF ld_A] by auto

qed

If an element y is not in the span of a set A, hence that element is not
in that set. The proof is completed by reductio ad absurdum. If a ∈ A, then
there is a linear combination of the elements of A, and thus a ∈ span(A),
which is a contradiction with one of the premises.

lemma not_in_span_impl_not_in_set:

assumes y_notin_span: "y /∈ span A"

and cb_A: "good_set A"

and y_in_V: "y ∈ carrier V"

shows "y /∈ A"

proof (cases "y /∈ A")

case True thus ?thesis .
next

case False

show ?thesis

proof -

def g≡"(%x. if x=y then 1 else 0)"
have cf_g: "g ∈ coefficients_function (carrier V)"

unfolding g_def coefficients_function_def using y_in_V

by simp

have "linear_combination g A = y"

proof -

have igualdad_conjuntos: "A=(insert y (A-{y}))"

using False by fast

hence "linear_combination g A

=linear_combination g (insert y (A-{y}))"

using arg_cong2 by force

also have "...=g(y) ·y ⊕V linear_combination g (A-{y})"

proof (rule linear_combination_insert)

show "good_set (A - {y})" using cb_A

unfolding good_set_def by fast

show "y ∈ carrier V" using False cb_A

unfolding good_set_def by fast

show "y /∈ A - {y}" by simp

show "g ∈ coefficients_function (carrier V)" using cf_g .

120 Bases

qed
also have "...=g(y) ·y ⊕V 0V "

proof -

have "linear_combination g (A-{y})=0V"
proof -

have "(
⊕

Vy∈A - {y}. g y · y)=(
⊕

Vy∈A - {y}. 0V)"
apply (rule finsum_cong’) apply auto

unfolding g_def apply simp

apply (rule zeroK_mult_V_is_zeroV)

using cb_A unfolding good_set_def by blast

also have "...= 0V"
using finsum_zero cb_A

unfolding good_set_def by blast

finally show ?thesis unfolding linear_combination_def .
qed
thus ?thesis by simp

qed
also have "...=g(y) ·y"

using r_zero and mult_closed and False cb_A

unfolding good_set_def g_def by auto

also have "...=y"

using mult_1 False cb_A

unfolding good_set_def g_def by auto

finally show ?thesis .
qed
thus ?thesis

using cf_g y_notin_span unfolding span_def by fast

qed
qed

If we have an element which is not in the span of an independent set, then
the result of inserting this element into that set is a linearly independent set.
The proof is done dividing the goal into cases. The case where A 6= {} again
is divided in cases with respect to the boolean linear_independent (insert

y A). In the case where linear_independent (insert y A) is false, again we
proceed by reductio ad absurdum. It is a long lemma of 129 lines.

lemma insert_y_notin_span_li:

assumes y_notin_span: "y /∈ span A"

and y_in_V: "y ∈ carrier V"

and li_A: "linear_independent A"

11.1 Definitions 121

shows "linear_independent (insert y A)"

proof (cases "A={}")

case True thus ?thesis — If A is empty it is trivial.
using insertI1 span_empty

unipuntual_is_li y_in_V y_notin_span by auto

next
case False note A_not_empty=False

show ?thesis

proof (cases "linear_independent (insert y A)")

case True thus ?thesis .
next

case False show ?thesis

proof -

...

qed
qed

qed

Now we present the definition of a spanning set.

Definition 11.1.3 We say that a finite set A = {a1, . . . , an} is a spanning
set of a vector space V if span(A) = V .

We have implemented it in Isabelle in the following way:
definition spanning_set :: "’b set ⇒ bool"

where "spanning_set X = (good_set X

∧ (∀ x. x ∈ carrier V

−→ (∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = x)))"

The definition consists of two assumptions: first we have that the set is a
good set (it is finite and in V) and the second is the condition to have that
span(A) = V .

Moreover, we can generalize this concept for infinite sets:

Definition 11.1.4 We say that a set A (finite or infinite) is a spanning set
of a vector space V if for every x ∈ V it is possible to choose a1, . . . , an ∈ A
and λ1, . . . , λn ∈ K such that x = λ1a1 + · · ·+ λnan. In other words: we can
write every element of V as a linear combination of a finite subset (which
will depend on the element x) of A.

122 Bases

Now we show how we have implemented it in Isabelle/HOL:

definition spanning_set_ext :: "’b set ⇒ bool"

where "spanning_set_ext X = (∀ x. x ∈ carrier V

−→ (∃ A. ∃ f. good_set A ∧ A ⊆ X

∧ f ∈ coefficients_function (carrier V)

∧ linear_combination f A = x))"

As we have said before, sums are always finite: we can not talk about
an infinite sum of vectors without adding some concepts and more structure
(the axioms of vector space do not allow it).

Now we prove that every spanning_set is a spanning_set_ext :

lemma spanning_imp_spanning_ext:

assumes sp_X: "spanning_set X"

shows "spanning_set_ext X"

unfolding spanning_set_ext_def

using sp_X

by (auto simp add: mem_def spanning_set_def subset_refl)

Whenever we have a spanning_set_ext which is finite and X ⊆ carrier

V then it is a spanning_set.

lemma gs_spanning_ext_imp_spanning:

assumes sp_X: "spanning_set_ext X"

and gs_X: "good_set X"

shows "spanning_set X"

proof (unfold spanning_set_def, rule conjI)

show "good_set X" using gs_X .
show "∀ x. x ∈ carrier V

−→ (∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f X = x)"

proof (auto)

fix x

assume x_in_V: "x ∈ carrier V"

from sp_X obtain A and f where A_in_X: "A ⊆ X"

and gs_A: "good_set A"

and cf_f: "f ∈ coefficients_function (carrier V)"

and lc_fA: "linear_combination f A = x"

unfolding spanning_set_ext_def using x_in_V by blast

def g ≡ "(λx. if x ∈ A then f x else 0)"

11.1 Definitions 123

have cf_g: "g ∈ coefficients_function (carrier V)"

using cf_f

unfolding coefficients_function_def g_def by force

have "linear_combination g X = x"

proof -

have "x=linear_combination f A" using lc_fA by blast

also have "...=linear_combination g (A∪X)" unfolding g_def

proof (rule eq_lc_when_out_of_set_is_zero[symmetric])

show "good_set X" using gs_X .
show "good_set A" using gs_A .
show "f ∈ coefficients_function (carrier V)" using cf_f .

qed
also have "...=linear_combination g X"

using arg_cong2 [of g g "A∪X" X "linear_combination"]

using A_in_X by fast

finally show ?thesis by fast

qed
thus "∃ g. g ∈ coefficients_function (carrier V)

∧ linear_combination g X = x" using cf_g by auto

qed
qed

From the previous definitions, we can introduce an alternative definition
of basis. We will use in Isabelle/HOL this one, and later we will prove the
equivalence with the definition 11.1.1.

Definition 11.1.5 A set A in a vector space V is a basis if it is linearly
independent and a spanning set.

Note that A could be finite or infinite (if the set is infinite then we have
to take the generalized notions of independence and spanning set).

We show the implementation of the concept of basis in Isabelle:

definition basis :: "’b set ⇒ bool"

where "basis X = (X ⊆ carrier V

∧ linear_independent_ext X ∧ spanning_set_ext X)"

We can unify the concepts of spanning_set, span and basis and illustrate
the relationships that exist among them.

124 Bases

The span of a spanning_set is carrier V.

lemma span_basis_implies_spanning_set:

assumes span_A_V: "span A = carrier V"

and good_set_A: "good_set A"

shows "spanning_set A"

unfolding spanning_set_def

using span_A_V good_set_A

unfolding span_def good_set_def by force

The opposite implication:

lemma spanning_set_implies_span_basis:

assumes sg_A: "spanning_set A"

shows "span A = carrier V"

using sg_A and linear_combination_closed

unfolding spanning_set_def and span_def

by fast

Now we present the relationship between spanning_set and span : if
span A = carrier V then A is a spanning set.

lemma span_V_eq_spanning_set:

assumes cb_A: "good_set A"

shows "span A = carrier V ←→ spanning_set A"

using span_basis_implies_spanning_set

and spanning_set_implies_span_basis

and cb_A by auto

Now we can introduce in Isabelle a new definition of basis (in the case
of finite dimensional vector spaces). A finite basis will be a set A which
is linear_independent and satisfies span A = carrier V. We use the previ-
ous lemma to check that it is equivalent to basis X = (X ⊆ carrier V ∧
linear_independent_ext X ∧ spanning_set_ext X).

lemma basis_def’:

assumes cb_A: "good_set A"

shows "basis A ←→ (linear_independent A ∧ span A = carrier V)"

using assms basis_def fin_ind_ext_impl_ind good_set_def

good_set_in_carrier gs_spanning_ext_imp_spanning

independent_imp_independent_ext

span_V_eq_spanning_set spanning_imp_spanning_ext

spanning_set_implies_span_basis by auto

11.2 Theorems 125

If we have a finite basis, we can forget extended versions of linear inde-
pendence and spanning set:

lemma finite_basis:

assumes fin_A: "finite A"

shows "basis A ←→ (linear_independent A ∧ spanning_set A)"

using assms basis_def basis_def’ fin_ind_ext_impl_ind

l_ind_good_set span_V_eq_spanning_set spanning_set_implies_span_basis

by metis

Finally we present the definition of a finite dimensional vector space:

Definition 11.1.6 A vector space V is finite dimensional if it has a finite
basis.

The definition of finite dimensional vector spaces in Isabelle/HOL is di-
rect. It consists of a vector space in which we assume that there exists a finite
basis. Note that we have not proved yet that every vector space contains a
basis.1

locale finite_dimensional_vector_space = vector_space +

fixes X :: "’c set"

assumes finite_X: "finite X"

and basis_X: "basis X"

We are fixing a finite set X as the basis of the vector space (now on, X
will be a finite basis, not any set). We open this context in order to work
with this structure:

context finite_dimensional_vector_space

begin

11.2 Theorems

Once we are in the context of a finite dimensional vector space we can present
the proof of some theorems proposed by Halmos and another ones that don’t
appear in the book. Our objective will be to prove the following theorems:

1We will later prove that, for instance, Kn has a (canonical) finite basis, thus making
the previous definition consistent.

126 Bases

• The coordinates of a vector in a given basis are uniquely determined.

• Any linearly independent set can be extended to a basis.

• The proof that every vector space V where V is finite has a basis.2

We start with the result that claims that the coordinates of a vector in a
basis are unique.

The proof consists in supposing that we have two linear combinations of
the elements of one fixed basis equal to the same element x ∈ V . Hence if we
define the difference between them, we will obtain another linear combination
equal to zero. Due to the basis being independent, then all scalars (which
will be the difference between the scalars of the first linear combination and
the second one) will be zero, so the scalars of the first linear combination
and the second ones are equal and then we have the result.
lemma unique_coordenates:

assumes x_in_V: "x ∈ carrier V"

and cf_f: "f ∈ coefficients_function (carrier V)"

and lc_f: "x = linear_combination f X"

and cf_g: "g ∈ coefficients_function (carrier V)"

and lc_g: "x = linear_combination g X"

shows "∀ x ∈ X. g x = f x"

proof -

have "linear_combination f X ⊕V 	V linear_combination g X

= x ⊕V 	V x"

using lc_f and lc_g by auto

hence "0V = linear_combination f X

⊕V ((K 1K) · linear_combination g X)"

using V.r_neg [OF x_in_V]

negate_eq[OF linear_combination_closed[OF good_set_X cf_g]]

by auto

also have " . . . =linear_combination f X

⊕V linear_combination (%i. (K 1K)⊗ g(i)) X"

using linear_combination_rdistrib[OF

good_set_X cf_g K.a_inv_closed[OF K.one_closed]] by auto

also have " . . . =linear_combination (%x. f(x) ⊕K 	Kg(x)) X"

2We are saying that V is a finite set, not that V is a finite dimensional vector space
(if V is finite then it is a finite dimensional vector space, but the opposite implication is
false).

11.2 Theorems 127

unfolding linear_combination_def

proof -

...

qed
finally have
lc_fg: "0V=linear_combination (%x. f(x) ⊕K 	Kg(x)) X"

by simp

have cf_fg: " (%x. (f(x) ⊕K 	K g(x)))

∈ coefficients_function (carrier V)"

proof (unfold coefficients_function_def, auto)

...

qed
hence fg_0:"∀ x∈X. f(x) ⊕K 	K g(x)=0K"

using linear_independent_X and lc_fg[symmetric]

unfolding linear_independent_def by auto

show "∀ x ∈ X. g(x)=f(x)"

proof
fix y

assume y_in_X: "y∈X"
hence y_in_V: "y∈carrier V"

using good_set_X unfolding good_set_def

by auto

have fg_y0: "f y ⊕ 	 g y = 0"
using y_in_X and fg_0 by auto

have fy_in_K: "f(y)∈ carrier K"

using cf_f and y_in_V

unfolding coefficients_function_def by auto

have gy_in_K: "g(y)∈ carrier K"

using cf_g and y_in_V

unfolding coefficients_function_def by auto

hence "	K(K g y)=f y"

using K.minus_equality

[OF fg_y0 K.a_inv_closed[OF gy_in_K] fy_in_K]

by auto

thus "g(y)=f(y)" using K.minus_minus[OF gy_in_K] by auto

qed
qed

Now we present the result which claims that we can complete a linearly
independent set to a basis. First of all, let us see the wording of the theorem

128 Bases

(as it appears in Halmos):

Theorem 11.2.1 If V is a finite-dimensional vector space and if
A = {y1, . . . , ym} is any set of linearly independent vectors in V , then, unless
the y′s already form a basis, we can find vectors ym+1, . . . , ym+p so that the
totality of the y′s, that is, {y1, . . . , ym, ym+1, . . . , ym+p}, is a basis. In other
words, every linearly independent set can be extended to a basis.

We are going to see how we have made the proof in Isabelle/HOL compar-
ing it with the proof presented in Halmos. We have to make several auxiliary
and previous results to complete it (for example, as we will see later, we have
to define a function which removes the first element which is a linear combi-
nation of the preceding ones in a set, iterate it until achieve an independent
set, prove some properties of this function, . . .).

First we present the theorem with the proof in case that the independent
set is not the empty set. The wording is easy:

lemma extend_not_empty_independent_set_to_a_basis:

assumes li_A: "linear_independent A"

and A_not_empty: "A 6={}"

shows "∃ B. basis B ∧ A ⊆ B"

We are going to follow the proof in Halmos line by line explaining how
we have implemented it in Isabelle. We write in Italics the proof in the book
and after that we show the Isabelle code with its explanation.

Since V is a finite-dimensional, it has a finite basis, say {x1, . . . , xn}.
Let us suppose that the linear independent set is A = {y1, . . . , ym}. In

our definition of finite-dimensional vector space, we have fixed a finite basis,
denoted by X. We can define a new set C as C = (X −A). In the next step
we will explain why we have defined this set this way.
proof -

have cb_A: "good_set A" using l_ind_good_set[OF li_A] .
def C ≡"X-A"
have igualdad_conjuntos: "A∪X=A∪C" using C_def by auto

have finite_C: "finite C"

using finite_X and cb_A C_def unfolding good_set_def by auto

have disjuntos: "A∩C={}" using C_def by auto

11.2 Theorems 129

We consider the set S of vectors: {y1, . . . , ym, x1, . . . , xn} in this order.

Here we realize one question that Halmos doesn’t explain...what hap-
pens if exist elements of A = {y1, . . . , ym} that are also in the basis
X = {x1, . . . , xn}? We would have a multiset, since some elements may
appear in S more than once. We avoid this problem considering the set
C = (X ∩ A) and doing A ∪ C = A ∪ (X − A) instead of A ∪ X. Now the
union is disjoint. To obtain its indexing we make use of an auxiliary lemma
created by us in the section 10.1 named indexing union.

have "∃ h. indexing (A ∪ C, h) ∧ h ‘ {..<card A} = A ∧ h ‘

({..<card A + card C} - {..<card A}) = C"

using indexing_union [OF disjuntos _ A_not_empty finite_C]

using cb_A unfolding good_set_def by auto

from this obtain h

where indexing_AC_h: "indexing ((A∪C),h)"
and surj_h_A: "h ‘ {..<card A} = A"

and surj_h_B: "h ‘ ({..<card A + card C} - {..<card A}) = C"

by auto

We apply to this set the theorem 10.2.1 several times in succession.

Firstly, we define a function called called remove ld which does the next:
given an indexed set it returns another one where we have removed the first
element which is a linear combination of the preceding ones (and the indexing
has been accordingly modified).

Now we present the implementation of this function in Isabelle/HOL:

In the definition, making use of previous theorem:

[[linear_dependent Xa; 0V /∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k. ∃ f∈{i.
i < card Xa} → Xa. f ‘ {i. i < card Xa} = Xa ∧ g ∈
coefficients_function (carrier V) ∧ 1 ≤ k ∧ k < card Xa ∧ f k

= y ∧ y = linear_combination g (f ‘ {i. i < k}), we remove the least
element that verifies the property that it can be expressed as a linear com-
bination of the preceding ones. The existence of this element is guaranteed
by the fact that the set is linearly dependent. If we iterate the function
remove_ld we can be sure that it will terminate because sooner or later we
will achieve a linearly independent set.

It is important to note that we have to provide a fixed indexation f for
the elements to be removed are uniquely determined.

130 Bases

The function remove_ld must be only applied to an indexation of a lin-
early dependent set that does not contain 0V, since these are the uniques
conditions where we have ensured the existence of the element to be removed
using:

linear_dependent_set_contains_linear_combination :
[[linear_dependent Xa; 0V /∈ Xa]] =⇒ ∃ y∈Xa. ∃ g k. ∃ f∈{i.
i < card Xa} → Xa. f ‘ {i. i < card Xa} = Xa ∧ g ∈
coefficients_function (carrier V) ∧ 1 ≤ k ∧ k < card Xa ∧ f k

= y ∧ y = linear_combination g (f ‘ {i. i < k}).

The definition of remove ld, for a set with an indexing A, is as follows:

definition remove_ld :: "’c iset => ’c iset"

where "remove_ld A =

(let n = (LEAST k::nat. ∃ y∈(fst A). ∃ g.
g ∈ coefficients_function (carrier V)

∧ (1::nat) ≤ k ∧ k < (card (fst A))

∧ (snd A) k = y

∧ y = linear_combination g ((snd A) ‘ {i::nat. i<k}))

in remove_iset A n)"

Once we have the definition of the function remove ld, we want to apply
it iteratively to a linearly dependent set until we achieve a linearly indepen-
dent set. To do that we have defined a function named iterate remove ld.
This function takes an indexed set and removes the first element of it which
is a linear combination of the preceding ones until we achieve a linearly in-
dependent set. We have to make use of the partial function package, which
permits the definition in Isabelle/HOL of functions which termination can-
not be proved. We remember here that HOL is a logic of total functions and
thus every recursive function must be terminating. The trick here consist in
defining a domain predicate for the function, where it will always terminate.
Results can be proved about this definition as long as we include this domain
conditions. For instance, in our case, iterate remove ld terminates if we have
a finite set which is a subset of carrier V and f is a proper indexing. More
information on the function package and the definition of partial functions
can be found in [37].

partial function (tailrec) iterate_remove_ld :: "’c set => (nat =>

’c) => ’c set"

where "iterate_remove_ld A f

11.2 Theorems 131

= (if linear_independent A then A

else iterate_remove_ld (fst (remove_ld (A, f)))

(snd (remove_ld (A, f))))"

In the first place, the set is linearly dependent, since the y’s are (as are
all vectors) linear combinations of the x’s. Hence some vector of S is a
linear combination of the preceding ones. Let z be such vector. Then z
is different from any yi, i = 1 . . .m (since y’s are linearly independent).
So that z is equal to some x, say z = xi. We consider the new set S’
of vectors: {y1, . . . , ym, x1, . . . , xi−1, xi+1, . . . , xn}. We observe that every
vector in B is a linear combination of vectors in S’, since by means of
{x1, . . . , xi−1, xi, xi+1, . . . , xn} we may express any vector (The x’s form a
basis). If S’ is linearly independent, we are done.

This paragraph could be summed up in two properties that must be
satisfied by our function iterate remove ld : that it preserves the span and
that its result is a linear independent set.

We have proved such properties auxiliary lemmas, called lin-
ear independent iterate remove ld and iterate remove ld preserves span. To
use this auxiliary lemmas in our theorem, we only have to prove that their
premises hold.

have li_iterate: "linear_independent(iterate_remove_ld (A∪C) h)"

proof (rule linear_independent_iterate_remove_ld)

show "A ∪ C ⊆ carrier V"

...

show "0V /∈ A ∪ C"

using li_A zero_not_in_linear_independent_set C_def by auto

show "indexing (A ∪ C, h)" using indexing_AC_h .
qed
have "span(iterate_remove_ld (A∪C) h)=span(A∪C)"
proof (rule iterate_remove_ld_preserves_span)

show "A ∪ C ⊆ carrier V"

...

show "indexing (A ∪ C, h)" using indexing_AC_h .
show "0V /∈ A ∪ C"

using li_A zero_not_in_linear_independent_set C_def by auto

qed
also have "...=carrier V"

132 Bases

using span_union_basis_is_V cb_A igualdad_conjuntos

unfolding good_set_def by force

finally have span_iterate_remove_V:

"span(iterate_remove_ld (A∪C) h)=carrier V" .
have basis_iterate: "basis (iterate_remove_ld (A∪C) h)"

proof (unfold basis_def, rule conjI3)

show "iterate_remove_ld (A ∪ C) h ⊆ carrier V"

using igualdad_conjuntos l_ind_good_set li_iterate

unfolding good_set_def

by presburger

show "linear_independent_ext (iterate_remove_ld (A ∪ C) h)"

unfolding linear_independent_ext_def

using li_iterate good_set_finite l_ind_good_set C_def

using independent_set_implies_independent_subset by blast

show "spanning_set_ext (iterate_remove_ld (A ∪ C) h)"

using l_ind_good_set li_iterate span_V_eq_spanning_set

span_basis_implies_spanning_set[OF span_iterate_remove_V]

spanning_imp_spanning_ext

by presburger

qed

If is not, we apply the theorem 10.2.1 again and again the same way till
we reach a linearly independent set containing {y1, . . . , ym} in terms of which
we may express every vector in V .

With the function iterate remove ld we are applying the theorem again
and again. Last thing we have to prove is that the independent set A is
contained in the result that the function returns. This is another auxiliary
lemma, named A in iterate remove ld. In our theorem, we prove its premises.

have A_in_iterate: "A ⊆ (iterate_remove_ld (A∪C) h)"

proof (rule A_in_iterate_remove_ld)

show "indexing (A ∪ C, h)" using indexing_AC_h .
show "C ⊆ carrier V" using cb_A C_def good_set_X

unfolding good_set_def by auto

show "h ‘ {..<card A} = A" using surj_h_A .
show " h ‘ ({..<card A + card C} - {..<card A}) = C"

using surj_h_B .
show "linear_independent A" using li_A .
show "0V /∈ A ∪ C"

using li_A zero_not_in_linear_independent_set C_def by auto

11.2 Theorems 133

show "A ∩ C = {}" using disjuntos .
qed

This last set is a basis containing the y’s.

The result that returns the function iterate remove ld is the required
basis; we have proved the three properties that we needed:

• The result is a linearly independent set

(using the lemma linear independent iterate remove ld)

• The result is a spanning set (using the lemma iter-
ate remove ld preserves span).

• The independent set A is contained in the result of the function (using
the lemma A in iterate remove ld).

So we can finish the proof with the next sentence:

show ?thesis using A_in_iterate and basis_iterate by auto

qed

Just a little comment: in the case that A is the empty set, then the
result is trivial, we only have to consider the finite basis X (fixed by the
assumptions of a finite-dimensional vector space) and then A = {} ⊆ X.

In Isabelle it is also easy. We present the general statement, covering
both the cases where A = {} and A 6= {}:

theorem extend_independent_set_to_a_basis:

assumes li_A: "linear_independent A"

shows "∃ B. basis B ∧ A ⊆ B"

proof (cases "A={}")

case True show ?thesis

using basis_X True empty_subsetI by fast

next
case False show ?thesis

using extend_not_empty_independent_set_to_a_basis

[OF li_A False] .
qed

134 Bases

We have not shown the proofs of the auxiliary lemmas that we have used.
These lemmas are long and hard to be shown here and they need another
auxiliary results in order to prove them (we have to descompose much more
the results to be able to prove them in Isabelle/HOL). For example, to give
an idea of the effort made to prove them, we can say that all previous proofs
of auxiliary lemmas and results take up about 900 code lines (in the book
the proof is over 15 lines).

For example, we present the proof of the property lin-
ear independent iterate remove ld which requires a complex induction
reasoning and takes about 100 lines. This lemma claims that the result of
applying the function iterate remove ld to any finite set A in carrier V will
be always independent.

We are going to make the proof firstly by dividing in cases (with respect to
the condition linear_independent A) and after that by total induction over
the cardinal of the set: (

∧
x. (

∧
y. f y < f x =⇒ P y) =⇒ P x) =⇒ P

a.

With respect to the induction, it is important to note that we can not
make induction over the structure of the set, with the following induction
rule for indexed set that we have introduced in section 10.1:

indexed_set_induct2 : [[indexing (A, f); finite A;
∧
f. indexing

({}, f) =⇒ P {} f;
∧
a A f n. [[a /∈ A; indexing (A, f) =⇒ P A f;

finite (insert a A); indexing (insert a A, indexing_ext (A, f) a

n); 0 ≤ n; n ≤ card A]] =⇒ P (insert a A) (indexing_ext (A, f) a

n)]] =⇒ P A f

If we make induction over the structure, we will have to prove the case
insert a A and the induction hypothesis will say that the result is true for
A. However, independently of in what position of the indexation we place the
element a, we can not know if remove_ld (insert a A, indexing_ext (A,

f) a n) will return the same set A or it will return another set. In other
words: the result of inserting the element a in any position of the A set and
after that removing the least element which is a linear combination of the
preceding ones (remove_ld does it) is not equal to the original set. We can
not ensure it even when we insert the element a in the least position that
it can be expressed as a linear combination of the preceding ones: we can
not be sure that remove_ld will remove that element. For example, in the

11.2 Theorems 135

set {(1, 0), (2, 0), (0, 1)}, if we insert the element (0, 2) in the least
position where it is a linear combination of the preceding ones we achieve
the set {(1, 0), (2, 0), (0, 1), (0, 2)}. However, if we apply remove_ld

to this set, it will return {(1, 0), (0, 1), (0, 2)} and this is not equal to
the original set.

lemma
linear_independent_iterate_remove_ld:

assumes A_in_V: "A ⊆ carrier V"

and not_zero: "0V /∈ A"

and indexing_A_f: "indexing (A, h)"

shows "linear_independent (iterate_remove_ld A h)"

proof (cases "linear_independent A")

case True

show ?thesis using True by simp

next
case False

have fin_A: "finite A" using indexing_finite[OF indexing_A_f] .
have ld_A: "linear_dependent A"

using not_independent_implies_dependent [OF _ False]

unfolding good_set_def using fin_A A_in_V by fast

show ?thesis

using fin_A ld_A A_in_V not_zero indexing_A_f

— HERE WE APPLY THE INDUCTION RULE:
proof (induct A arbitrary: h rule:

measure_induct_rule [where f = "card"])

case (less B h)

show "linear_independent (iterate_remove_ld B h)"

proof (cases "B = {}")

case True

thus ?thesis by simp

next
case False

have not_lin_indep: "¬ linear_independent B"

using dependent_implies_not_independent

[OF less.prems (2)] .
obtain Y where Y_def: "Y = fst (remove_ld (B, h))"

and card_less: "card Y < card B"

using False

using remove_ld_decr_card2

136 Bases

[OF less.prems (2) less.prems (4) less.prems (5)]

by fast

def h’ == "snd (remove_ld (B, h))"

have i_Y_h’: "indexing (Y, h’)"

unfolding Y_def h’_def pair_collapse

by (rule indexing_remove_ld) fact+

show ?thesis

proof (cases "linear_independent (fst (remove_ld (B, h)))")

case True

show ?thesis

apply (subst iterate_remove_ld.simps)

apply (subst iterate_remove_ld.simps)

using not_lin_indep using True by simp

next
case False

show ?thesis

proof -

have "linear_independent (iterate_remove_ld Y h’)"

proof (rule less.hyps)

show "card Y < card B"

using card_less .
show "finite Y"

using Y_def good_set_finite l_dep_good_set

less(3) less(6) remove_ld_good_set by presburger

show "linear_dependent Y"

unfolding Y_def

apply (rule not_independent_implies_dependent

[OF _ False])

apply (rule remove_ld_good_set)

apply (unfold good_set_def, intro conjI)

by (rule less.prems (1), rule less.prems (3),

rule less.prems (5))

show "Y ⊆ carrier V"

unfolding Y_def

using remove_ld_preserves_carrier

[OF less.prems (3), of h] .
show "0V /∈ Y"

unfolding Y_def

using remove_ld_monotone [OF "less.prems" (3), of h]

using less.prems (4) by auto

11.2 Theorems 137

show "indexing (Y, h’)"

unfolding Y_def h’_def pair_collapse

by (rule indexing_remove_ld) fact+

qed
thus ?thesis

unfolding Y_def h’_def

by (subst iterate_remove_ld.simps,

simp add: not_lin_indep)

qed
qed

qed
qed

qed

We have proved that any independent set can be extended to a basis, but
we have not proved that there exists a basis (we have supposed it as a premise
in the case of finite dimensional vector spaces). The proof that every vector
space has a basis is not made in Halmos: some additional results as Zorn’s
lemma, chains or well-ordering are required. See [9] for a detailed proof.

However, we can prove the existence of a basis in a particular case: when
carrier V is finite.

To prove this result, we are going to apply the function
iterate_remove_ld to carrier V - {0V}. This function requires that
0V doesn’t belong to the set where we apply it, so we will not apply it to
carrier V, but to carrier V - {0V}. This function will return us a linearly
independent set which span is the same as the span of carrier V - {0V}.
Proving that span (carrier V - {0V}) = carrier V we will obtain the
result (because carrier V - {0V} is a spanning set).

Let’s see the proof. Firstly, we can see that the set V is a spanning_set.
It is trivial.

lemma spanning_set_V:

assumes finite_V: "finite (carrier V)"

shows "spanning_set (carrier V)"

using Un_absorb2 assms good_set_X good_set_def

span_union_basis_is_V span_basis_implies_spanning_set

subset_refl by metis

Thanks to that, the span of V is itself (trivially).

138 Bases

lemma span_V_is_V:

assumes finite_V: "finite (carrier V)"

shows "span (carrier V) = carrier V"

using assms good_set_def spanning_set_V span_V_eq_spanning_set

subset_refl by simp

Now we need to prove that spanning_set (carrier V - {0V}).

lemma spanning_set_V_minus_zero:

assumes finite_V: "finite (carrier V-{0V})"
shows "spanning_set (carrier V-{0V})"

proof (unfold spanning_set_def,auto)

show "good_set (carrier V - {0V})"
using finite_V unfolding good_set_def by blast

next
fix x

assume x_in_V: "x ∈ carrier V"

let ?g="(λa. if a=x then 1K else 0K)"
show "(∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f (carrier V - {0V}) = x)"

proof (cases "x=0V")
case True

let ?f="(λa. 0K)" show ?thesis

proof (rule exI[of _ ?f])

...

qed
next

case False show ?thesis

proof (rule exI[of _ ?g])

...

qed
qed

qed

As a corollary we have that span (carrier V - {0V}) = carrier V

corollary span_V_minus_zero_is_V:

assumes finite_V: "finite (carrier V-{0V})"
shows "span (carrier V-{0V})=carrier V"

using assms spanning_set_V_minus_zero

spanning_set_implies_span_basis by blast

11.2 Theorems 139

Finally, the theorem:

theorem finite_V_implies_ex_basis:

assumes finite_V: "finite (carrier V)"

shows "∃ B. basis B"

proof -

have finite_V_zero: "finite (carrier V - {0V})"
using finite_V by simp

from finite_V_zero obtain f

where indexing: "indexing (carrier V-{0V},f)"
using obtain_indexing by auto

have 1:"span (iterate_remove_ld (carrier V-{0V}) f)=carrier V"

using iterate_remove_ld_preserves_span[OF _ indexing _]

and span_V_minus_zero_is_V[OF finite_V_zero]

by auto

have 2:

"linear_independent (iterate_remove_ld (carrier V-{0V}) f)"

using DiffE Diff_subset indexing insertI1

linear_independent_iterate_remove_ld by metis

have 3:"good_set (iterate_remove_ld (carrier V-{0V}) f)"

using "2" l_ind_good_set by fast

have "basis (iterate_remove_ld (carrier V-{0V}) f)"

using 1 and 2 and 3 using basis_def’ by auto

thus ?thesis

by (rule exI[of _ "iterate_remove_ld (carrier V-{0V}) f"])

qed

A similar result than spanning_set_V_minus_zero is the next. We will
use this theorem in the future.

lemma spanning_set_minus_zero:

assumes finite_B: "finite B"

and B_in_V: "B ⊆ carrier V"

and sg_B: "spanning_set B"

shows "spanning_set (B-{0V})"
proof (unfold spanning_set_def,auto)

...

qed

Every finite or infinite vector space contains a spanning_set_ext (in par-
ticular, carrier V fullfills this condition):

lemma spanning_set_ext_carrier_V:

140 Bases

shows "spanning_set_ext (carrier V)"

proof (unfold spanning_set_ext_def, auto)

...

qed

lemma vector_space_contains_spanning_set_ext:

shows "∃ A. spanning_set_ext A ∧ A ⊆ carrier V"

using spanning_set_ext_carrier_V by blast

Chapter 12

Dimension

12.1 Theorems

Our objective in this section is to prove that every basis of a given vector
space V has the same cardinality (theorem 1 of section 8 in Halmos). The
proof is based on an iterative algorithm over a given set of elements Y , and
thus we will need to fix an indexation for it. We are not going to follow exactly
the proof presented in the book; we will obtain the result as a corollary of
the next theorem:

Theorem 12.1.1 (Swap theorem) If X is a linearly independent set of V
and Y is any spanning set of V , then card(X) ≤ card(Y).

The statement of theorem 12.1.1 can be also presented as “any set of
linearly independent elements will have cardinality smaller or equal than any
spanning set”.

Corollary 12.1.2 The number of elements in any basis of a finite-
dimensional vector space V is the same as in any other basis.

To prove the theorem 12.1.1 we will make use of the same iterative reason-
ing that Halmos makes in the book. (a proof of it is in [8]). Really, Halmos
is precisely proving theorem 12.1.1 inside his proof of 12.1.2.

The proof of the corollary is easy: let A and B two bases (so both of
them are linearly independent and spanning sets). We have:

142 Dimension

• As A is linearly independent and B is a spanning set, then

card(A) ≤ card(B)

• As B is linearly independent and A is a spanning set, then

card(B) ≤ card(A)

So we have the result: card(A) = card(B)

Now we present the proof of the corollary in Isabelle. We will follow the
proof presented above (we will use twice the swap theorem):

theorem eq_cardinality_basis:

assumes basis_B: "basis B"

and finite_B: "finite B"

shows "card X = card B"

proof -

have "∃ f. indexing (X,f)" using obtain_indexing[OF finite_X] .
from this obtain f where indexing_X: "indexing (X,f)" by fast

have "∃ g. indexing (B,g)" using obtain_indexing[OF finite_B] .
from this obtain g where indexing_B: "indexing (B,g)" by fast

have li_X: "linear_independent X" and sg_X: "spanning_set X"

using linear_independent_X and spanning_set_X by fast+

have gs_B: "good_set B"

using finite_basis_implies_good_set[OF basis_B finite_B] .
have li_B: "linear_independent B" and sg_B: "spanning_set B"

using basis_B finite_B unfolding basis_def

using fin_ind_ext_impl_ind

gs_spanning_ext_imp_spanning gs_B by blast+

have cardX_le_cardB: "card X ≤ card B"

proof (rule swap_theorem)

show "indexing (X, f)" using indexing_X .
show "indexing (B, g)" using indexing_B .
show "X ⊆ carrier V"

using finite_basis_implies_good_set[OF basis_X finite_X]

unfolding good_set_def by simp

show "B ⊆ carrier V"

using finite_basis_implies_good_set[OF basis_B finite_B]

unfolding good_set_def by simp

show "linear_independent X" using li_X .

12.1 Theorems 143

show "spanning_set B" using sg_B .
show "0V /∈ B"

using zero_not_in_linear_independent_set[OF li_B] .
qed
have cardX_ge_cardB: "card X ≥ card B"

proof (rule swap_theorem)

show "indexing (B, g)" using indexing_B .
show "indexing (X, f)" using indexing_X .
show "X ⊆ carrier V"

using finite_basis_implies_good_set[OF basis_X finite_X]

unfolding good_set_def by simp

show "B ⊆ carrier V"

using finite_basis_implies_good_set[OF basis_B finite_B]

unfolding good_set_def by simp

show "linear_independent B" using li_B .
show "spanning_set X" using sg_X .
show "0V /∈ X"

using zero_not_in_linear_independent_set[OF li_X] .
qed
show ?thesis

using cardX_le_cardB and cardX_ge_cardB by presburger

qed

corollary eq_cardinality_basis2:

assumes basis_A: "basis A"

and finite_A: "finite A"

and basis_B: "basis B"

and finite_B: "finite B"

shows "card A = card B"

by (metis basis_A basis_B eq_cardinality_basis finite_A finite_B)

Now is time to present the proof of the swap theorem in Isabelle. We
are going to define a new function which takes two indexed sets and returns
another two such that:

swap function ((A,f), (B,g)):

• First component: We remove the first element of A, in other words:
the function returns the set A− {f(0)} (and the corresponding index-
ation).

144 Dimension

• Second component:

– If f(0) ∈ B then simply we change the indexation moving that
element to the first position of B.

– If f(0) /∈ B, then we add it in the first position of B and after that
we will remove the first element which is a linear combination of
the preceding ones using the function remove ld1

The intuitive idea of this function is that given a tuple of a linearly
independent set A in the first component and a spanning set B in the second
one (with the corresponding indexing functions, so they are indexed sets),
then, the function returns us another two indexed sets: in the second one
the function adds the first element of A to B and then it removes the least
element which is a linear combination the preceding ones of this set. The
function also removes the first element of A in the first component of the
result. In other words:

swap function ({a1, . . . , an} × {b1, . . . , bm})
= ({a2, . . . , an} × {a1, b1, . . . , bi−1, bi+1, . . . , bm})

(12.1)

Where bi is the first element which is a linear combination of the preceding
ones (a1, . . . , bi−1)

This function preserves the linear independence of the first component
and the span of the second one (amongst other properties). In addition,
as in the proof that every independent set can be extended to a basis and
supposing that A is independent, we will be removing one element of B in
the second component (because we are adding elements of an independent
set in the first positions).

If A is linearly independent and B is a spanning set, then we have to
prove that card(A) ≤ card(B). Suppose that card(A) > card(B) and then
we apply swap function card(B) times. We will obtain that in the second
component of the result there will be only elements of A (but not all). This is
because we will have removed card B elements of B in the second component
(one in each iteration, so we will have removed all elements of B). Let be C
that set, we will have:

1This is the same function that we have used to make the proof that every independent
set can be extended to a basis.

12.1 Theorems 145

• C ⊂ A (strict).

• span(C) = V (because the second component was a spanning set and
the function preserves the span). So C is a spanning set.

Let be x ∈ A but x /∈ C (this element exists because C ⊂ A strictly).
As C is a spanning set, we can express x as a linear combination of elements
of C. However, this is a contradiction with A being linearly independent
(because C ∪ {x} would be linearly dependent and as C ∪ {x} ⊆ A then A
would be dependent).

Note that in the proof we are applying the function swap function
card(B) times. This will be a problem for our implementation: the power
(multiple composition with itself) of a function is not implemented in Is-
abelle. We have to define it. In addition, we have to prove each property of
swap function in general (as an invariant of the function) using induction (in
this case, structural induction over the natural numbers will be enough).

We also have to note why we have had to separate the second component
in cases, where f(0) ∈ B and not. We can’t apply the function remove ld to
an independent set, and we don’t know if B is it or not (is a spanning set
but it could be dependent or independent). If f(0) /∈ B then we are adding
the first element of A in B and as B is a spanning set, hence the result is
dependent and we can apply remove ld. However, if f(0) ∈ B then if we
add it to B the result will be B again, and we don’t know if it is dependent.
In this case, we move it to the first position of B (we want to situate the
elements of A in the first positions of B).

Now we are going to see how we implement it in Isabelle.
definition swap_function :: "(’c iset × ’c iset)

=> (’c iset × ’c iset)"

where "swap_function A = (remove_iset_0 (fst A),

if (((snd(fst A) 0)) ∈ fst(snd A)) then

insert_iset (remove_iset (snd A)

(obtain_position ((snd(fst A) 0)) (snd A))) (snd(fst A) 0) 0

else

remove_ld (insert_iset (snd A) ((snd(fst A) 0)) 0))"

In order to remove the first element in the first component of the result,
we have made use of a new function called remove iset 0. We just have a
function denoted by remove iset to remove one element of an indexed set (we
give an indexed set and one position to this function and it returns us a new

146 Dimension

indexed set without the element of that position), but we have to do this
redefinition because we can not iterate (compose over itself) the function (it
has two input arguments and returns only one: remove iset : iset×N→ iset).
For this reason we have to make a new function which can be iterated:
definition remove_iset_0 :: "’e iset => ’e iset"

where "remove_iset_0 A = remove_iset A 0"

As we have said before, the second component has been divided in cases.
If f(0) ∈ B, then we want to move this element to the first position of B.
How could we make it? Firstly, we will remove that element of the set using
the function remove iset (we need to know the position where it is, so we
will use also the function obtain position2). After that we will insert it in the
first position (position 0) using the function insert iset2.

The second case is if f(0) /∈ B and then we have to add this element
in the first position of B and after that remove the first element which is a
linear combination of the preceding ones. The implementation of this part is
simple: we will insert the element with the function insert iset and after that
we will apply to the result the function remove ld (we can apply it because
the result of the function insert iset will be in this case a linearly dependent
set).

We have seen that we want to iterate swap function a specific number of
times, so we need to implement the power of a function because (surprisingly)
it is not in the Isabelle library. We are interpreting the power of a function
as a composition with itself and for that we will do an instantiation of the
operation power (we define the product as the composition and the one as
the identity function).

We will have to be careful with the types: we can not iterate (compose)
every function: a function can be composed with itself if the result and the
arguments are of the same type (and the number of arguments is the same
as the number of arguments of the result).

We can do the instantiation out of our context, since it is more general:

instantiation "fun" :: (type, type) power

begin

definition one_fun :: "’a => ’a"

where one_fun_def: "one_fun = id"

2The functions obtain position and insert iset have been defined in section 10.1

12.1 Theorems 147

definition times_fun :: "(’a => ’a) => (’a => ’a) => ’a => ’a"

where "times_fun f g = (%x. f (g x))"

instance
proof
qed

end

Once we have finished the instatiation, we can prove some general prop-
erties about the power of a function.

For example: the power of the identity function is also the identity.

lemma id_n: shows "id ^ n = id"

apply (induct n)

apply auto

unfolding one_fun_def times_fun_def

unfolding id_def

apply auto

done

Any function power to zero is the identity.

lemma power_zero_id: "f^0=id"

by (metis one_fun_def power_0)

A corollary of this lemma will be indispensable for the proofs by induction.

lemma fun_power_suc: shows "f^(Suc n)= f ◦ (f^n)"

unfolding power.simps [of f]

apply (rule ext)

unfolding times_fun_def by simp

corollary fun_power_suc_eq:

shows "(f^(Suc n)) x = f ((f^n) x)"

using fun_power_suc by (metis id_o o_eq_id_dest)

Once we have defined the power of a function, then we can prove some
properties of swap function and generalize them by induction in case we
iterate the function n times. There are lot of properties that this function
verifies, for example: the first component preserves the independence, the

148 Dimension

second one preserves the span, both are indexings, in each iteration we reduce
in one the cardinality of first component . . .

One difficult that we have found is to prove the properties for the second
component: we have to prove it in the two cases that we have defined, when
f(0) ∈ B and when not. The effort to demonstrate all these properties was
very high, it took up about 1800 code lines (the whole theorem takes up 25
lines in Halmos).

Most of them are basic properties but we need to prove it in order to
be able to demonstrate another ones less simple. In addition, lot of them
are invariants of the swap_function, so first we prove the property in case
n = 1. To generalize it we will do by induction: we suppose that a property
is true for fn and we want to prove it for fSuc(n). By induction hypothesis, fn

satisfies the property and thanks to fun_power_suc_eq we can write fSuc n

x = f (fn x). As we have the property proved in case n = 1, we will obtain
the result generalized.

In order to give examples, here we present the proof of that the first
component of the function swap function preserves the independence of the
set.

First we prove in case that n = 1 (we apply the function once):
lemma fst_swap_function_preserves_li:

assumes li_A: "linear_independent A"

shows "linear_independent

(iset_to_set(fst(swap_function ((A,f),(B,g)))))"

unfolding swap_function_def remove_iset_0_def and remove_iset_def

using independent_set_implies_independent_subset

[of "A-{f 0}",OF _ li_A] by auto

After that, we can generalize it by induction (the property is preserved if
we apply the function n times).
lemma fst_swap_function_power_preserves_li:

assumes li_A: "linear_independent A"

shows "linear_independent

(iset_to_set(fst(((swap_function^(n))) ((A,f),(B,g)))))"

proof (induct "n")

case 0

show "linear_independent

(iset_to_set (fst ((swap_function ^ 0) ((A, f), B, g))))"

proof -

12.1 Theorems 149

have "iset_to_set (fst ((swap_function ^ 0) ((A, f), B, g)))

= iset_to_set (fst ((id) ((A, f), B, g)))"

using power_zero_id by metis

also have "...=A" using id_apply by simp

finally show ?thesis using li_A by presburger

qed
next

case Suc

fix n

assume hip_induct: "linear_independent

(iset_to_set (fst ((swap_function ^ n) ((A, f), B, g))))"

show "linear_independent

(iset_to_set (fst ((swap_function ^ Suc n) ((A, f), B, g))))"

proof -

have "(swap_function ^ Suc n) ((A, f), B, g)

= swap_function ((swap_function ^ n) ((A, f), B, g))"

using fun_power_suc_eq by metis

thus ?thesis

using fst_swap_function_preserves_li[OF hip_induct,

of "(iset_to_index (fst ((swap_function ^ n) ((A, f),

B, g))))"

"(iset_to_set (snd ((swap_function ^ n) ((A, f), B, g))))"

"(iset_to_index (snd ((swap_function ^ n) ((A, f), B, g))))"]

by simp

qed
qed

We find more difficulties while we were making the formalization
in Isabelle. There are properties that demand some assumptions over
swap function and we had to generalize these assumptions before.

For example, we want to prove that the first component is always an
indexing. In case n = 1 we have the following wording:
lemma fst_swap_function_indexing:

assumes indexing_A: "indexing (A,f)"

and A_in_V: "A ⊆ carrier V"

shows "indexing (fst(swap_function ((A,f),(B,g))))"

proof

. . .

qed

150 Dimension

Appart from the premise indexing(A, f) we have another one:
A ⊆ carrier V . Hence, we can generalize it:
lemma fst_swap_function_power_indexing:

assumes indexing_A: "indexing (A,f)"

and A_in_V: "A ⊆ carrier V"

shows "indexing (fst((swap_function^n) ((A,f),(B,g))))"

proof

. . .

qed

In order to prove it we want to apply the lemma
fst swap function indexing to swap functionn((A, f), (B, g)). By induction
hypothesis, we know that indexing(fst(swap functionn((A, f), (B, g)))).
However we need one property that we have not proved yet:
fst(fst(swap functionn((A, f), (B, g)))) ⊆ carrier V . For this reason, we
have to prove it first.

In the next lemma we prove some properties at same the time.
We have done like that because in the induction case the proper-
ties need each others. We can not prove one separately: for ex-
ample, to prove that 0V /∈ iset_to_set (snd (swap_functionSuc n ((A,

f), B, g))) we would write that swap_functionSuc n ((A, f), B, g) =

swap_function (swap_functionn ((A, f), B, g)) and we would apply the
theorem zero_notin_snd_swap_function:

[[indexing (A, f); indexing (B, g); B ⊆ carrier V; A 6= {};

linear_independent A; spanning_set B; 0V /∈ B]] =⇒ 0V /∈ iset_to_set

(snd (swap_function ((A, f), B, g)))

However, to apply this theorem we need that spanning_set (iset_to_set

(snd (swap_functionn ((A, f), B, g)))). To prove that we would need to
use swap_function_preserves_sg:

[[indexing (A, f); indexing (B, g); B ⊆ carrier V; A 6= {};

linear_independent A; spanning_set B; 0V /∈ B]] =⇒ spanning_set

(iset_to_set (snd (swap_function ((A, f), B, g))))

And a premise would be that 0V /∈ iset_to_set (snd (swap_functionn

((A, f), B, g)))...but this is what we want to prove. Bringing all together
in the same theorem we will have everything we need like induction hypoth-

12.1 Theorems 151

esis, so we can prove it. Next we will separate the properties.

lemma zeronotin_sg_carrier_indexing:

assumes indexing_A: "indexing (A,f)"

and indexing_B: "indexing (B,g)"

and A_in_V: "A ⊆ carrier V"

and B_in_V: "B ⊆ carrier V"

and A_not_empty: "A 6={}"

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

and n_l_cardA: "n < card A"

shows "0V /∈ iset_to_set (snd ((swap_function^n) ((A, f), B, g)))

∧ spanning_set(iset_to_set(snd((swap_function^n)((A,f),(B,g)))))

∧ (iset_to_set(snd((swap_function^n) ((A,f),(B,g)))))

⊆ carrier V

∧ indexing (snd((swap_function^n) ((A,f),(B,g))))"

using n_l_cardA

proof

. . .

qed

Now we can obtain the properties separately as corollaries, here we present
for example the first one:
corollary zero_notin_snd_swap_function_power:

assumes indexing_A: "indexing (A,f)"

and indexing_B: "indexing (B,g)"

and A_in_V: "A ⊆ carrier V"

and B_in_V: "B ⊆ carrier V"

and A_not_empty: "A 6={}"

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

and n_l_cardA: "n<card A"

shows
"0V /∈ iset_to_set (snd ((swap_function^n) ((A, f), B, g)))"

using zeronotin_sg_carrier_indexing assms by simp

152 Dimension

There are two important, longer and difficult auxiliary lemmas that we
have to prove to demonstrate the swap theorem. The first one represents
properties that the function has during the process of iterate and it is a
laborious and ugly lemma, of 400 code lines (we don’t present here the proof):
lemma aux_swap_theorem1:

assumes indexing_A: "indexing (A,f)" — In this set are the elements that
we have not included in second term yet.

and indexing_B: "indexing (B,g)"

and B_in_V: "B ⊆ carrier V"

and A_not_empty: "A 6={}"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

and li_Z: "linear_independent Z" — Z is the first independent set, the set
over we would apply our function the first time. A is the subset of Z where there
are the elements of Z that we have not added to B yet. The elements that we have
added to B are in C.

and A_union_C: "A∪C=Z" — Of course, the union of A and C is Z.
and disjoint: "A∩C={}" — The sets are disjoints.
and surj_g_C: "g‘{..<card C}= C" — In first positions of B there are ele-

ments of Z that we have already included. This set will be independent, so when
we apply remove_ld we will delete an element of (B-C)

shows "∃ y∈B. iset_to_set (snd(swap_function ((A,f),(B,g))))

=(insert (f 0) (B-{y}))

∧ y /∈ C

∧ iset_to_index (snd(swap_function ((A,f),(B,g))))

‘ {..<card (C) + 1} = C ∪ {f 0}"

proof

. . .

qed

The lemma claims, when applying swap function, in the second compo-
nent we are removing elements of B and introducing the first elements of Z
in the first positions.. Now we present the second auxiliary lemma, it takes
up to 200 code lines (we ommit the proof).

Applying the swap function n-times (with n < card(A)) to ((A, f), B,

g), where A is independent and B a spanning set, we will have that the first
n elements of A will be in the first positions of the second component of the
result. Of course, these elements come from A and thus they are independent.
We make use of aux_swap_theorem1 to prove this lemma.

12.1 Theorems 153

lemma aux_swap_theorem2:

assumes indexing_A: "indexing (A,f)"

and indexing_B: "indexing (B,g)"

and B_in_V: "B ⊆ carrier V"

and A_not_empty: "A 6={}"

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

and n_l_cardA: "n < card A"

shows "f‘{..<n}

= iset_to_index(snd((swap_function^(n)) ((A,f),(B,g))))‘{..<n}

∧ iset_to_index(snd((swap_function^(n)) ((A,f),(B,g))))‘{..<n}

⊂ A

∧ linear_independent

(iset_to_index(snd((swap_function^(n)) ((A,f),(B,g))))‘{..<n})

∧ n = (card (iset_to_index(snd((swap_function^(n))

((A,f),(B,g))))‘{..<n}))"

using n_l_cardA

proof (induct n)

. . .

qed

Finally we present the proof of swap theorem. We make use of the auxil-
iary lemmas presented above and as we have done in other proofs, we separe
the proof into cases, whether the independent set is not empty or is (this last
case is trivial, because card {} = 0 ≤ card B). In case that the indepen-
dent set is the empty one, then we follow literally the proof presented at the
beginning of this section:
theorem swap_theorem_not_empty:

assumes indexing_A: "indexing (A,f)"

and indexing_B: "indexing (B,g)"

and A_in_V: "A ⊆ carrier V"

and B_in_V: "B ⊆ carrier V"

and A_not_empty: "A 6={}"

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

shows "card A ≤ card B"

proof (cases "card A ≤ card B")

154 Dimension

case True thus ?thesis .
next

case False

have cardB_l_cardA: "card A > card B" using False by linarith

def C≡"iset_to_index(snd((swap_function^(card B))

((A,f),(B,g))))‘{..<card B}"

have C_eq: "C=iset_to_set(snd((swap_function^(card B))

((A,f),(B,g))))"

using snd_swap_function_power_indexing

[OF indexing_A indexing_B A_in_V B_in_V A_not_empty

li_A sg_B zero_notin_B cardB_l_cardA]

unfolding C_def indexing_def bij_betw_def

using snd_swap_function_power_preserves_card

[OF indexing_A indexing_B A_in_V B_in_V

A_not_empty li_A sg_B zero_notin_B cardB_l_cardA]

by simp

have surjf_B_C: "f‘{..<card B}=C"

and C_subset_A:"C ⊂ A"

and li_C:"linear_independent C"

and cB_eq_cC:"card B=card C"

using aux_swap_theorem2 assms cardB_l_cardA

unfolding C_def by auto

have spanning_set_C: "spanning_set C"

using swap_function_power_preserves_sg

[OF indexing_A indexing_B A_in_V B_in_V A_not_empty

li_A sg_B zero_notin_B cardB_l_cardA] C_eq

unfolding C_def by presburger

have "linear_dependent A"

proof -

have "∃ x. x∈A ∧ x /∈C" using C_subset_A by fast

from this obtain x where x_in_A: "x∈A" and x_notin_C: "x /∈C"
by blast

show ?thesis

proof (rule linear_dependent_subset_implies_linear_dependent_set

[of "insert x C"])

show "insert x C ⊆ A" using C_subset_A and x_in_A by simp

show "good_set A" using li_A linear_independent_def by blast

show "linear_dependent (insert x C)"

proof (rule lc1)

show "linear_independent C" using li_C .

12.1 Theorems 155

show x_in_V: " x ∈ carrier V"

by (metis good_set_def li_A linear_independent_def

subsetD x_in_A)

show "x /∈ C" using x_notin_C .
show "∃ f. f ∈ coefficients_function (carrier V)

∧ linear_combination f C = x"

using spanning_set_C x_in_V

unfolding spanning_set_def by blast

qed
qed

qed
hence "¬ linear_independent A"

using dependent_implies_not_independent by simp

thus ?thesis using li_A by contradiction

qed

Finally the theorem 12.1.2 (every independent set has cardinal less than
or equal to every spanning set) and some corollaries:

theorem swap_theorem:

assumes indexing_A: "indexing (A,f)"

and indexing_B: "indexing (B,g)"

and A_in_V: "A ⊆ carrier V"

and B_in_V: "B ⊆ carrier V"

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

shows "card A ≤ card B"

proof (cases "A={}")

case True show ?thesis by (metis True card_eq_0_iff le0)

next
case False show ?thesis using swap_theorem_not_empty assms False

by force

qed

The next corollary omits the need of indexing functions for A and B
(these are obtained through auxiliary lemmas).

corollary swap_theorem2:

assumes finite_B: "finite B"

and B_in_V: "B ⊆ carrier V"

and A_in_V: "A ⊆ carrier V"

156 Dimension

and li_A: "linear_independent A"

and sg_B: "spanning_set B"

and zero_notin_B: "0V /∈ B"

shows "card A ≤ card B"

proof -

have "∃ f. indexing (A,f)" using obtain_indexing

by (metis good_set_finite l_ind_good_set li_A)

from this obtain f where indexing_A: "indexing (A,f)" by fast

have "∃ g. indexing (B,g)" using obtain_indexing[OF finite_B] .
from this obtain g where indexing_B: "indexing (B,g)" by fast

show ?thesis using swap_theorem

[OF indexing_A indexing_B A_in_V B_in_V

li_A sg_B zero_notin_B] .
qed

12.2 Definition and other dimension theo-

rems

Now we present the definition of dimension as presented in Halmos and its
implementation in Isabelle/HOL.

Definition 12.2.1 The dimension of a finite-dimensional vector space V is
the number of elements in a basis of V .

As we are in the context finite dimensional vector space in Isabelle/HOL,
we have a finite basis fixed denoted by X. So that, the definition of dimension
is easy: it will be the cardinality of X.

definition dimension :: "nat"

where "dimension = card X"

If we have another basis, the dimension is equal to its cardinality (thanks
to lemma eq cardinality basis that we presented before).

lemma eq_dimension_basis:

assumes basis_A: "basis A"

and finite_A: "finite A"

shows "dimension = card A"

12.2 Definition and other dimension theorems 157

by (metis basis_A dimension_def eq_cardinality_basis finite_A)

Now we present the proofs of theorems about dimension and the relation
between this concept and the notions of linear dependence and independence.

Whenever we have an independent set, we will know that its cardinality
is less than the dimension of the vector space.

lemma card_li_le_dim:

assumes li_A: "linear_independent A"

shows "card A ≤ dimension"

proof -

have "∃ f. indexing (X,f)" using obtain_indexing[OF finite_X] .
from this obtain f where indexing_X: "indexing (X,f)" by fast

have finite_A: "finite A"

by (metis assms good_set_finite l_ind_good_set)

have "∃ g. indexing (A,g)" using obtain_indexing[OF finite_A] .
from this obtain g where indexing_A: "indexing (A,g)" by fast

have li_X: "linear_independent X" and sg_X: "spanning_set X"

by auto

show ?thesis

proof (unfold dimension_def, rule swap_theorem)

show "indexing (A, g)" using indexing_A .
show "indexing (X, f)" using indexing_X .
show "A ⊆ carrier V"

by (metis assms good_set_in_carrier l_ind_good_set)

show "X ⊆ carrier V"

by (metis good_set_X good_set_in_carrier)

show "linear_independent A" using li_A .
show "spanning_set X" using sg_X .
show "0V /∈ X"by (metis li_X zero_not_in_linear_independent_set)

qed
qed

Halmos presents this theorem:

Theorem 12.2.2 Every set of n+1 vectors in an n-dimensional vector space
V is linearly dependent. A set of n vectors in V is a basis if and only if it is
linearly independent.

We make a generalization of the first part of it in Isabelle (the theorem
12.2.2 is a particular case). For the second line (A set of n vectors in V is

158 Dimension

a basis if and only if it is linearly independent we need to proof firstly some
lemmas).

Whenever the cardinality of a set is greater (strictly) than the dimension
of V then the set is dependent.

corollary card_g_dim_implies_ld:

assumes card_g_dim: "card A > dimension"

and A_in_V: "A ⊆ carrier V"

shows "linear_dependent A"

proof -

have finite_A: "finite A"

using card_g_dim finite_X unfolding dimension_def

by (metis card.empty card_g_dim

card_infinite card_li_le_dim dimension_def

empty_set_is_linearly_independent linorder_not_le)

hence cb_A: "good_set A"

using A_in_V unfolding good_set_def by fast

thus ?thesis using card_li_le_dim

by (metis card_g_dim dependent_if_only_if_not_independent

dimension_def less_not_refl xt1(8))

qed

The following lemma proves that the cardinality of any spanning set is
greater than the dimension. In the infinite case (when A is not finite but
is a spanning_set_ext) it would be trivial, but Isabelle assigns 0 as the
cardinality of an infinite set.

We will use swap_theorem, so 0V must not be in the spanning_set over
we apply it.

lemma card_sg_ge_dim:

assumes sg_A: "spanning_set A"

shows "card A ≥ dimension"

proof -

have finite_A: "finite A" and A_in_V: "A ⊆ carrier V"

using sg_A unfolding spanning_set_def and good_set_def

by fast+

have "∃ f. indexing (X,f)" using obtain_indexing[OF finite_X] .
from this obtain f where indexing_X: "indexing (X,f)" by fast

have "∃ g. indexing (A-{0V},g)" using obtain_indexing finite_A

by blast

12.2 Definition and other dimension theorems 159

from this obtain g where indexing_A: "indexing (A-{0V},g)"
by fast

have li_X: "linear_independent X" and sg_X: "spanning_set X"

by auto

have "card (A-{0V}) ≥ dimension"

proof (unfold dimension_def, rule swap_theorem)

show "indexing (A-{0V}, g)" using indexing_A .
show "indexing (X, f)" using indexing_X .
show "(A-{0V}) ⊆ carrier V" using A_in_V by blast

show "linear_independent X" by simp

show "X ⊆ carrier V"

by (metis good_set_X good_set_in_carrier)

show "spanning_set (A-{0V})"
by (metis A_in_V finite_A sg_A spanning_set_minus_zero)

show "0V /∈ (A-{0V})" by fast

qed
thus ?thesis by (metis card_Diff1_le finite_A le_trans)

qed

There not exists a spanning_set with cardinality less than the dimension.

corollary card_less_dim_implies_not_sg:

assumes cardA_l_dim: "card A < dimension"

shows "¬ spanning_set A"

by (metis assms card_sg_ge_dim dimension_def

less_not_refl3 xt1(8))

If we have a set which cardinality is equal to the dimension of a finite
vector space, then it is a finite set. We have to assume that the basis is not
empty: if X is empty, then card(X) = 0 = card(A). However and due to
the implementation of cardinality in Isabelle (giving 0 as the cardinality of
an infinite set), we could only prove that either A is infinite or empty.

lemma card_eq_not_empty_basis_implies_finite:

assumes cardA_dim: "card A = dimension"

and X_not_empty: "X 6={}"

shows "finite A"

by (metis X_not_empty cardA_dim card_eq_0_iff

card_infinite dimension_def finite_X)

Assuming that A is in V , the problem is solved.

lemma card_eq_basis_implies_finite:

160 Dimension

assumes cardA_dim: "card A = dimension"

and A_in_V: "A ⊆ carrier V"

shows "finite A"

proof (cases "X={}")

case True show ?thesis

by (metis A_in_V True finite.insertI finite_X

finite_subset span_basis_is_V span_empty)

next
case False show ?thesis

using card_eq_not_empty_basis_implies_finite

[OF cardA_dim False] .
qed

If a set has cardinality equal to the dimension, if it is a basis then is
independent.

lemma card_eq_basis_imp_li:

assumes cardA_dim: "card A = dimension"

shows "basis A =⇒ linear_independent A"

proof -

assume basis_A: "basis A"

hence A_in_V: "A ⊆ carrier V" unfolding basis_def by fast

show "linear_independent A"

proof (cases "X={}")

case False show ?thesis

using card_eq_not_empty_basis_implies_finite

[OF cardA_dim False]

and basis_A

unfolding basis_def linear_independent_ext_def

by (metis subset_refl)

next
case True

have "A={}" using A_in_V True

unfolding basis_def spanning_set_def

by (metis all_not_in_conv assms card.empty

card_eq_0_iff dimension_def finite.emptyI

finite.insertI finite_subset mem_def

span_basis_is_V span_empty)

thus ?thesis

using empty_set_is_linearly_independent by simp

qed

12.2 Definition and other dimension theorems 161

qed

If we have an independent set with cardinality equal to the dimension,
then this set is a basis.

lemma card_li_set_eq_basis_imp_li:

assumes card_eq_dim: "card A = dimension"

shows "linear_independent A =⇒ basis A"

proof -

assume li_A: "linear_independent A"

have finite_A: "finite A"

by (metis good_set_finite l_ind_good_set li_A)

have cb_A: "good_set A" using l_ind_good_set[OF li_A] .
show ?thesis

proof (unfold basis_def, rule conjI3)

show "A ⊆ carrier V"

using cb_A unfolding good_set_def by fast

show "linear_independent_ext A"

using independent_imp_independent_ext[OF li_A] .
show "spanning_set_ext A"

proof (cases "spanning_set A")

case True thus ?thesis

using spanning_imp_spanning_ext by fast

next
case False

show ?thesis

proof -

have "∃ y. y ∈ (carrier V - span A)"

using False cb_A

unfolding span_def spanning_set_def by fast

from this obtain y

where y_in_V_minus_span: "y ∈ (carrier V - span A)"

by fast

hence "linear_independent (insert y A)"

using insert_y_notin_span_li[OF _ _ li_A]

y_in_V_minus_span by fast

hence "card (insert y A) ≤ dimension"

using card_li_le_dim by simp

hence "card A + 1 ≤ dimension"

using y_in_V_minus_span card_insert_if[OF finite_A]

not_in_span_impl_not_in_set[OF _ cb_A]

162 Dimension

by simp

thus ?thesis using card_eq_dim by linarith

— Contradiction: we have proved that card(A+1)≤dimension and
card(A)=dimension.

qed
qed

qed
qed

If a spanning set has cardinality equal to the dimension, then is indepen-
dent (so a basis).

lemma card_sg_set_eq_basis_imp_li:

assumes card_eq_dim: "card A = dimension"

shows "spanning_set A =⇒ linear_independent A"

proof-
assume sg_A: "spanning_set A"

hence A_in_V: "A ⊆ carrier V"

unfolding spanning_set_def good_set_def by fast

show ?thesis

proof (cases "linear_independent A")

case True thus ?thesis .
next

case False

show ?thesis

proof (cases "X={}")

case True

have "A={}"

by (metis A_in_V True bot_apply card_eq_0_iff card_eq_dim

dimension_def ext finite.emptyI finite.insertI

rev_finite_subset span_basis_is_V span_empty)

thus ?thesis using empty_set_is_linearly_independent by simp

next
case False

have finite_A: "finite A"

by (metis False card_eq_dim

card_eq_not_empty_basis_implies_finite dimension_def)

have ld_A: "linear_dependent A"

by (metis A_in_V ‘¬ linear_independent A‘ good_set_def

dependent_if_only_if_not_independent finite_A)

have "∃ y∈A. ∃ g. g ∈ coefficients_function (carrier V)

12.2 Definition and other dimension theorems 163

∧ y = linear_combination g (A - {y})"

using exists_x_linear_combination2[OF ld_A] .
from this obtain y g where y_in_A: "y∈A"

and cf_g: "g ∈ coefficients_function (carrier V)"

and y_lc_Ay: "y = linear_combination g (A - {y})" by blast

have "span A = span (A-{y})"

proof (rule span_minus)

show "good_set A"

by (metis l_dep_good_set ld_A)

show "y ∈ A" using y_in_A .
show "∃ g. g ∈ coefficients_function (carrier V)

∧ y = linear_combination g (A - {y})"

by (metis cf_g y_lc_Ay)

qed
hence sg_Ay: "spanning_set (A-{y})" using sg_A

by (metis A_in_V Diff_subset finite_A finite_Diff

good_set_def span_V_eq_spanning_set

spanning_set_implies_span_basis subset_trans)

have "¬ spanning_set (A-{y})"

proof (rule card_less_dim_implies_not_sg)

show "card (A - {y}) < dimension"

by (metis False card_Diff_singleton_if card_eq_dim

card_gt_0_iff diff_less dimension_def finite_A

finite_X y_in_A zero_less_one)

qed
thus ?thesis using sg_Ay by contradiction

— CONTRADICTION: we have proved that the set A minus the element
y is a spanning_set and at the same time that it is not.

qed
qed

qed

corollary card_sg_set_eq_basis_imp_basis:

assumes card_eq_dim: "card A = dimension"

shows "spanning_set A =⇒ basis A"

by (metis assms card_li_set_eq_basis_imp_li

card_sg_set_eq_basis_imp_li)

Finally we present the last part of the theorem 12.2.2. We make use of
some previous lemmas:
lemma basis_iff_linear_independent:

164 Dimension

assumes card_eq: "card A = dimension"

shows "basis A ←→ linear_independent A"

by (metis assms card_eq_basis_imp_li

card_li_set_eq_basis_imp_li)

Chapter 13

Isomorphism

The development of this chapter was hard and it takes up 3500 code lines.
Of course, we don’t show here the complete development but only the most
representative and main definitions and theorems. The reason of so many
lines is that there are some concepts that in the eyes of a mathematician are
simply but in Isabelle/HOL are hard to be implemented, for example the
definition of Kn or a canonical basis.

The objective is to prove that there exists an isomorphism between any
n-dimensional vector space V over a field K and Kn.

First of all, we define the concept of Kn:

Definition 13.0.3 The cartesian power of a set K can be defined as the set
of n-tuples which k-th element belongs to K, in other words:

Kn = K×K× · · · ×K︸ ︷︷ ︸
n

= {(x1, . . . , xn)|xi ∈ K ∀i.1 ≤ i ≤ n}

As K is a field, hence Kn is so if we consider the natural operations
(componentwise defined).

This definition looks like simple,however its implementation in Is-
abelle/HOL can be done in very different ways. Now we introduce the con-
cept of the canonical basis of Kn.

Definition 13.0.4 The canonical basis of Kn is the set of n-tuples
{(1K, 0K, . . . , 0K), (0K, 1K, 0K, . . . , 0K), . . . , (0K, . . . , 0K, 1K)}

166 Isomorphism

We present the definition of linear map following [11] (Halmos introduces
this concept in his chapter number two, although he uses the properties of a
linear map in his proof).

Definition 13.0.5 A linear map from V to W (with V and W vector spaces
over a field K) is a function T : V → W with the following properties:

• additivity: T (u⊕V v) = Tu⊕W Tv for all u, v ∈ V

• homogeneity: T (a ·V v) = a ·W (Tv) for all a ∈ K and all v ∈ V

And finally the notion of isomorphism between two vector spaces :

Definition 13.0.6 Two vector spaces V and W over the same field K are
isomorphic if there exists a linear map f : V → W such that is a bijection.

Let X = {x1, . . . , xn} be a basis of V . The isomorphism between V and
Kn is easy to understand:

x = α1x1 ⊕V · · · ⊕V αnxn ∈ V

f

((
(α1, . . . , αn) ∈ Kn

f−1

hh

However, in Isabelle/HOL is difficult to be implemented.

STEP ONE: FROM V TO Kn

Let X a basis of V . As X is a finite set, we can give it an indexing, for
example: X = {x1, . . . , xn}. In order to do that, we will define a function
named indexing X which will return us some function that gives an order
to the set (we will fixed this indexing, since we have to keep it through the
proof).

Let x be any element of V . Hence we can write x as a linear combination of
the elements of the basis X: x = α1x1⊕V · · ·⊕V αnxn for some α1, . . . , αn ∈ K.
We know that this linear combination is uniquely determined. We will obtain
this linear combination of the elements of the basis X with one function
that we will call lin comb (it returns us the function f which makes x =
linear combination f X)1. The function lin comb is well-defined since we

1In other words: x = linear combination (lin comb x) X

13.1 Definition of Kn 167

have proved previously that for every x in carrier V , its decomposition is
unique. Note that we have to use again the ε definite operation.

The n scalars of this linear combination will be the components of the
vector of Kn that we are looking for, in other words: (α1, . . . , αn).

We need to manage to represent (α1, . . . , αn) using that x = α1x1 ⊕V

· · · ⊕V αnxn. We will do it in the next way: we can write (α1, . . . , αn) as a
finite sum of elements of the canonical basis of Kn:

(α1, . . . , αn) = α1 · (1, 0, . . . , 0)⊕Kn · · · ⊕Kn αn · (0, . . . , 0, 1)

Hence the result is easy, we only have to take the scalars of the linear
combination obtained with lin comb for x and multiply them (with the scalar
product of Kn) with the corresponding vector of the canonical basis. Finally
we will sum all.

We will do it with a function named iso V K n. To complete the proof
we have to demonstrate that this function is also a linear map.

STEP TWO: FROM Kn TO V

Let v = (α1, . . . , αn) be a vector of Kn. Hence, the corresponding x ∈ V
will be x = α1x1⊕V · · ·⊕V αnxn. How could we make it in Isabelle? We have
to use again that {xi}i∈{1...n} are a basis and thus every x can be uniquely
determined as the finite sum

∑n
i=1 αi ·V xi This time is easier: we only have to

multiply each component of v = (α1, . . . , αn) with the corresponding element
of the basis X = {x1, . . . , xn} and finally sum all again to obtain the linear
combination which will be equal to x.

In order to do that we will define a function named iso K n V. To ter-
minate the proof we have to demonstrate that this function is also a linear
map.

From this we begin to implement all concepts presented above:

13.1 Definition of Kn

First we make a type definition of the notion of vector which will be useful to
represent the elements of Kn. The definition consists of a pair of a function
f which maps natural numbers to the elements of the vector and a natural
number which expresses the length of the vector minus one, that is to say,
the natural which image by the function is the last element. In effect, the

168 Isomorphism

last element of the vector is a4 and f(3) = a4.

The following definition of vector has been obtained from the AFP, where
a similar one is defined over real, instead of ’a, for defining the Cauchy-
Schwarz Inequality [10].

types ’a vector = "(nat => ’a) * nat"

For example, to represent (a1, a2, a3, a4) we have a vector (f, 3) where
f(0) = a1, f(1) = a2, f(2) = a3 and f(3) = a4. The length of the vector
is 4, so the second component will be 3. Note that we don’t have unicity of
representation. For example, two functions like those:

• A function f such that f(0) = a1, f(1) = a2, f(2) = a3, f(3) = a4 and
for all n ≥ 4 then f(n) = 0.

• Another function g such that g(0) = a1, g(1) = a2, g(2) = a3, g(3) = a4
and for all n ≥ 4 then g(n) = 1.

Hence (f, 3) and (g, 3) represent the same vector (a1, a2, a3, a4), but their
functions are different. We will have to fix this situation later, in such a way
that we can use traditional HOL equality to compare vectors. Two vectors
will be equal if both their functions and their lengths are equal.

Now we can define another two functions: the first one returns the ith
component of a vector and the second one returns the second component of
the pair (the length minus one). They are simply abbreviations.

definition
ith :: "’a vector => nat => ’a"

where "ith v i = fst v i"

definition
vlen :: "’a vector => nat"

where "vlen v = snd v"

We have defined the notion of a vector, so now we can do the same with
the concept of Kn. The following definition represents the carrier set of the
vector space:

definition K_n_carrier :: "’a set => nat => (’a vector) set"

13.1 Definition of Kn 169

where "K_n_carrier A n = {v. ((∀ i<n. ith v i ∈ A))

∧ (∀ i≥n. ith v i = 0) ∧ (vlen v = (n - 1))}"

The carrier is represented as the set of vectors of n components (vlen
n − 1) which are elements of K (or A with the notation of the definition).
As we need to have unicity of representation of elements in Kn, we give
a canonical representative to the elements of the carrier imposing that the
function of the vector maps the natural numbers greater or equal to n to 0.

For the elements in K n carrier A 0 we must note that its first component
will be 0 and the second one will be also 0, so the only element in K0 is the
0 (K0 = {0K}).

We have the definition of the carrier, but now we also need to define the
operations of the vector space Kn (the addition and the scalar product). Here
we present the first one:

definition
K_n_add :: " nat => ’a vector => ’a vector => ’a vector"

(infixr "⊕ı" 65)

where "K_n_add n = (λv w. ((λi. ith v i ⊕R ith w i), n - 1))"

The explanation is easy: given two vectors of Kn, then we obtain another
one of Kn (vlength = n− 1) in which the components are added one by one.

The next definition that we need is the concept of zero of Kn which will
be (0, . . . , 0)︸ ︷︷ ︸

n components

:

definition K_n_zero :: "nat => ’a vector"

where "K_n_zero n = ((λi. 0R), n - 1)"

We are now forced to define also operations K_n_mult and K_n_one for our
abelian group Kn. This is due to the fact that the abelian group predicate
in the Algebra Library is defined over rings, and even if we have no interest
in using that operations (they are not required to prove that an algebraic
structure is an abelian group), they must be defined somehow. In our case
this is not a major problem, since they can be defined just following the
previous definitions of K_n_zero and K_n_add.

170 Isomorphism

definition K_n_mult :: "nat => ’a vector => ’a vector => ’a vector"

where "K_n_mult n = (λv w. ((λi. ith v i ⊗R ith w i),

n - 1))"

definition K_n_one :: "nat => ’a vector"

where "K_n_one n = ((λi. 1R), n - 1)"

Finally using the definition of carrier, add, zero, mult and one we can define
the concept of Kn:

definition K_n :: "nat => ’a vector ring"

where
"K_n n = (| carrier = K_n_carrier (carrier R) n,

mult = (λv w. K_n_mult n v w),

one = K_n_one n,

zero = K_n_zero n,

add = (λv w. K_n_add n v w) |)"

We can prove that Kn is an (additive) abelian group:

lemma abelian_group_K_n:

shows "abelian_group (K_n n)"

unfolding K_n_def

proof (intro abelian_groupI)

...

qed

We are later to consider K_n like one abelian group over which R gives place
to a vector space. We must define first the scalar product between both
structures.

definition
K_n_scalar_product :: "’a => ’a vector => ’a vector"

(infixr "�" 65)

where "a � b = (λn::nat. a ⊗R ith b n, vlen b)"

This scalar product is an operation which satisfies the properties presented
in chapter 6. It is an operation K×Kn → Kn where we are multiplying each

13.2 Canonical basis 171

component of a vector b ∈ Kn by a scalar a ∈ K. In other words:

a� (b1, . . . , bn) = (a · b1, . . . , a · bn)

Finally we can prove that Kn is a vector space. It takes up 81 lines, but we
ommit the proof:

lemma
vector_space_K_n:

shows "vector_space R (K_n n) (op �)"
unfolding K_n_def

proof (intro vector_spaceI)

...

qed

13.2 Canonical basis

In the following section we introduce the elements that generate the canonical
basis of the vector space K_n n and prove some properties of them.

The elements of the canonical basis of K_n are the following ones:

definition x_i :: "nat => nat => ’a vector"

where "x_i j n = ((λi. if i = j then 1 else 0), n - 1)"

This function return us the j − th vector of the canonical basis in dimension
n. For example, the three vectors of the canonical basis of K3 are (1, 0, 0),
(0, 1, 0) and (0, 0, 1) and we can obtain them with x i 0 3, x i 1 3 an x i 2 3
respectively. We prove some properties of these elements:
Any two elements of the basis are different:

lemma x_i_ne_x_j:

assumes i_ne_j: "i 6= j"

shows "x_i i n 6= x_i j n"

proof (rule ccontr, simp)

assume eq: "x_i i n = x_i j n"

have "fst (x_i i n) i = 1"
unfolding x_i_def by simp

moreover have "fst (x_i j n) i = 0"
unfolding x_i_def using i_ne_j by force

172 Isomorphism

ultimately show False using eq by simp

qed

In the following lemma we can even omit the premise of i being smaller than
n, so the result is also true for vectors which are not part of the canonical
basis. It claims that an element of the canonical basis is not equal to 0Kn .

lemma x_i_ne_zero:

shows "x_i i n 6= 0K_n n"

proof (rule ccontr, simp)

assume eq: "x_i i n = 0K_n n"

have "fst (x_i i n) i = 1"
unfolding x_i_def by simp

moreover have "fst (0K_n n) i = 0"
unfolding K_n_def K_n_zero_def by force

ultimately show False using eq by simp

qed

We now prove that the set which is composed by one element of the canonical
basis is linearly independent:

lemma x_i_li:

assumes j_l_n: "j < n"

shows "vector_space.linear_independent R (K_n n) (op �)
{(x_i j n)}"

proof (unfold vector_space.linear_independent_def [OF

vector_space_K_n], intro conjI)

...

end

We prove the same property but considering the set composed by any two
different elements of the canonical basis:
lemma x_i_x_j_li:

assumes j_l_n: "j < n"

and i_l_n: "i < n"

and i_ne_j: "i 6= j"

shows "vector_space.linear_independent R (K_n n) (op �)
{(x_i i n), (x_i j n)}"

proof -

...

qed

13.2 Canonical basis 173

We did not find a better way to define the elements of the canonical basis
than accumulating them iteratively. In order to define them as a range, from
x_i 0 n up to x_i (n - 1) n, the underlying type, in this case ’a vector,
should be of sort ”order” (which in general is not, only the elements of the
basis have some notion of order.)

The following fuction iteratively joins all the elements of the form x_i k n

in order to create the canonical basis of K_n n.

We have considered as a special case the situation where both indexes are
equal to 0. This case will give us the basis of K_n 0, which is the empty set.
Note that a linear combination over an empty set is equal to (λi. 0K, 0),
which is the only element in carrier (K_n 0).

fun canonical_basis_acc :: "nat => nat => ’a vector set"

where
"canonical_basis_acc 0 0 = {}"

| "canonical_basis_acc 0 n = {x_i 0 n}"

| "canonical_basis_acc (Suc i) n

= (if (Suc i < n) then

insert (x_i (Suc i) n) (canonical_basis_acc i n) else {})"

We now prove some lemmas trying to establish the relation between the
elements of the form x_i i n and the ones in canonical_basis_acc .

lemma
finite_canonical_basis_acc:

shows "finite (canonical_basis_acc k n)"

by (induct k, induct n, auto)

lemma
canonical_basis_acc_closed:

assumes i_l_j: "i < j"

shows "canonical_basis_acc i j ⊆ carrier (K_n j)"

In addition, we can prove that the k − th element of the canonical basis
is not in the set created by the function canonical basis acc j n whenever
j < k < n.

lemma
canonical_basis_acc_insert:

174 Isomorphism

assumes j_l_k: "j < k"

and k_l_n: "k < n"

shows "x_i k n /∈ canonical_basis_acc j n"

using j_l_k k_l_n proof (induct j)

case 0

show ?case

unfolding canonical_basis_acc.simps

using "0.prems" (1) using x_i_ne_x_j [of 0 k n]

by (cases n, auto)

next
case (Suc j)

show ?case

proof (cases "j < k")

case True

show ?thesis

apply (subst canonical_basis_acc.simps)

using Suc.hyps [OF True Suc.prems (2)]

using Suc.prems

using x_i_ne_x_j [of "Suc j" k n]

using x_i_ne_x_j [of j k n] by force

next
case False

with Suc.prems have False by linarith

thus ?thesis by fast

qed
qed

This lemma claims that the cardinality of the set created by the function
canonical basis acc k n is k + 1.
lemma

card_canonical_basis_acc:

assumes k_le_n: "k < n"

shows "card (canonical_basis_acc k n) = Suc k"

using k_le_n

proof (induct k)

case 0

show ?case using 0 by (cases n, auto)

next
case (Suc k)

13.2 Canonical basis 175

have k_l_n: "k < n" using Suc.prems by presburger

show ?case

apply (subst canonical_basis_acc.simps)

using Suc.prems

using canonical_basis_acc_insert [OF _ Suc.prems, of k]

using card.insert [OF finite_canonical_basis_acc [of k n],

of "x_i (Suc k) n"]

using Suc.hyps [OF k_l_n] by simp

qed

The canonical basis in dimension n is given by all elements ranging from x_i

0 n up to x_i (n - 1) n

definition canonical_basis_K_n :: "nat => ’a vector set" where
"canonical_basis_K_n n = canonical_basis_acc (n - 1) n"

From this definition and using the previous results, we can prove that the
canonical basis is contained in the carrier of Kn and its cardinality is n.
The following lemmas are true for dimension 0 thanks to the special case
canonical_basis_acc 0 0 = {} previously introduced:

lemma
canonical_basis_K_n_closed:

shows "canonical_basis_K_n n ⊆ carrier (K_n n)"

proof (cases n)

case 0

show ?thesis

unfolding 0

unfolding canonical_basis_K_n_def by simp

next
case (Suc n)

show ?thesis

unfolding Suc canonical_basis_K_n_def

by (rule canonical_basis_acc_closed [OF n_minus_one_l_n], fast)

qed

lemma
card_canonical_basis_K_n:

shows "card (canonical_basis_K_n n) = n"

proof (cases n)

176 Isomorphism

case 0

show ?thesis unfolding 0

unfolding canonical_basis_K_n_def by simp

next
case (Suc n)

show ?thesis unfolding Suc

unfolding canonical_basis_K_n_def

using card_canonical_basis_acc

[OF n_minus_one_l_n [of "Suc n"]] by fastsimp

qed

There exists more properties and facts that the canonical basis satisfies. We
want to proof that {x i n|i ∈ {0, . . . , n − 1}} = canonical basis K n. In
order to do the first implication (⊆), we present the following two lemmas:
the n− th element of the canonical basis is in the canonical basis (obviously)
and that the canonical basis is a good set. We present the wording but
not the proofs (we have make them by cases and they are not interesting
to be explained). The other implication (⊇) is proved later (and named
canonical basis acc K n).

lemma
canonical_basis_K_n_elements:

assumes j_in_n: "j ∈ {..<n}"

shows "x_i j n ∈ canonical_basis_K_n n"

proof (cases n)

...

qed

lemma
canonical_basis_K_n_good_set:

shows "vector_space.good_set (K_n n) (canonical_basis_K_n n)"

proof (unfold vector_space.good_set_def [OF vector_space_K_n],

rule)

...

qed

Now we make a brief disgression: we need to prove the following lemma
which is a generic version of the theorem finsum_cong :

[[A = B; (f ∈ B → carrier G) = True;
∧
i. i ∈ B =simp=> f i = g i]]

13.2 Canonical basis 177

=⇒ finsum G f A = finsum G g B in the case where finite sums are defined
over sets of different type, but isomorphic (in finsum_cong only the case
where both sets of both finite sums are equal is considered).

lemma finsum_cong’’:

assumes fB: "finite B"

and bb: "bij_betw h B A"

and f: "f : A -> carrier G" and g: "g : B -> carrier G"

and eq: "(
∧
x. x ∈ B =simp=> g x = f (h x))"

shows "finsum G f A = finsum G g B"

proof -

have "finsum G g B = finsum G (f ◦ h) B"

by (rule finsum_cong, simp_all add: g) (rule eq)

also have "... = (
⊕

x∈B. f (h x))"

proof (rule finsum_cong)

show "B = B" ..
show "

∧
i. i ∈ B =simp=> (f ◦ h) i = f (h i)" by simp

show "(f ◦ h ∈ B → carrier G) = True"

using bij_betw_imp_funcset [OF bb] using f by auto

qed
also have "... = finsum G f (h ‘ B)"

proof (rule finsum_reindex [symmetric])

show "finite B" by fact

show "f ∈ h ‘ B → carrier G"

using f using bij_betw_imp_funcset [OF bb] by auto

show "inj_on h B" using bb unfolding bij_betw_def by fast

qed
also have "... = finsum G f A"

proof (rule finsum_cong)

show "h ‘B = A" using bb unfolding bij_betw_def by fast

show "(f ∈ A → carrier G) = True" using f by fast

show "
∧
i. i ∈ A =simp=> f i = f i" by simp

qed
finally show ?thesis by simp

qed

The following lemma gives a different representation of the elements of K_n n ;
this representation will be later used to prove that the elements of K_n n can
be expressed as linear combinations of the elements of canonical_basis_K_n
n.

lemma

178 Isomorphism

x_in_carrier:

assumes x: "x ∈ carrier (K_n n)"

shows "x = (λi. if i ∈ {..<n} then fst x i else 0, n - 1)"

using x

unfolding K_n_def K_n_carrier_def

unfolding ith_def vlen_def

apply (subst surjective_pairing)

unfolding snd_in_carrier [OF x] apply simp

apply (rule ext)

by (metis less_Suc_eq_le not_less_eq)

The following lemma was later unused; every element can be “embedded”
into a smaller dimension by means of “forgetful” function (we forget the last
position of the vector).

lemma
K_n_carrier_embed:

assumes x: "x ∈ carrier (K_n (Suc k))"

shows "((λn. if n ∈ {..<k} then fst x n else 0), k - 1)

∈ carrier (K_n k)"

using x

unfolding K_n_def K_n_carrier_def ith_def vlen_def by auto

The following lemma is rather important, since it shows how to express any
element in carrier (K_n k) in a canonical way: it proves that any element
in carrier (K_n k) can be expressed as a finite sum of the elements x_i j

k.

It is important to note that in the proof we have introduced an extra natural
variable n, with n ≤ k, which permits to prove the result by induction in n

over the field K_n k.

If we do not use the extra variable n and we apply induction directly over
k, the induction step will produce two different algebraic structures, K_n k,
where the property holds, and K_n (Suc k), where the property must be
proved, but then the induction hypothesis cannot be used.

lemma
lambda_finsum:

assumes cl: "∀ i∈{..<n}. x i ∈ carrier R"

and n_le_k: "n ≤ k"

shows "(λi. if i ∈ {..<n} then x i else 0, k - 1) =

finsum (K_n k) (λi. x i � x_i i k) {..<n}"

using cl n_le_k proof (induct n)

13.2 Canonical basis 179

case 0

show ?case

unfolding lessThan_0

unfolding abelian_monoid.finsum_empty [OF abelian_monoid_K_n

[of k]]

unfolding K_n_def K_n_zero_def by simp

next
case (Suc n)

have prem: "∀ i∈{..<n}. x i ∈ carrier R" and prem2: "n ≤ k"

and x_n: "x n ∈ carrier R"

and hypo: "(λi. if i ∈ {..<n} then x i else 0, k - 1)

= (
⊕

K_n ki∈{..<n}. x i � x_i i k)"

using Suc.prems Suc.hyps by simp_all

show ?case

proof -

have "(
⊕

K_n ki∈{..<Suc n}. x i � x_i i k)

= (
⊕

K_n ki∈(insert n {..<n}). x i � x_i i k)"

unfolding lessThan_Suc ..
also have "... = (x n � x_i n k)

⊕K_n k (
⊕

K_n ki∈{..<n}. x i � x_i i k)"

proof (rule abelian_monoid.finsum_insert

[OF abelian_monoid_K_n])

...

qed
also have "... = (x n � x_i n k)

⊕K_n k (λi. if i ∈ {..<n} then x i else 0, k - 1)"

unfolding Suc.hyps [symmetric, OF prem prem2] ..
also have "... = (λi. if i = n then x n else 0, k - 1)

⊕K_n k (λi. if i ∈ {..<n} then x i else 0, k - 1)"

unfolding x_i_def [of n k]

unfolding K_n_scalar_product_def ith_def

vlen_def fst_conv snd_conv

unfolding mult_if unfolding r_null [OF x_n] r_one [OF x_n] ..
also have "... = (λi. (if i = n then x n else 0)
⊕ (if i < n then x i else 0), k - Suc 0)"

unfolding K_n_def K_n_add_def ith_def by simp

also have "... = ((λi. if i < (Suc n) then x i else 0), k - 1)"

proof (rule, intro conjI)

...

qed

180 Isomorphism

finally show ?thesis by simp

qed
qed

Now, as a corollary of the previous result, we obtain that any element of K_n
n can be expressed as a finite sum of the elements of the form x_i j n.

lemma lambda_finsum_n:

assumes cl: "∀ i∈{..<n}. x i ∈ carrier R"

shows "(λi. if i ∈ {..<n} then x i else 0, n - 1) =

finsum (K_n n) (λi. x i � x_i i n) {..<n}"

using lambda_finsum [OF cl, of n] by fast

Finally, we get the lemma that states tha any element of the set K_n_carrier
n is a linear combination of elements of canonical_basis_K_n n :

lemma
K_n_carrier_finsum_x_i:

assumes x: "x ∈ carrier (K_n n)"

shows "x = finsum (K_n n) (λj. fst x j � x_i j n) {..<n}"

apply (subst x_in_carrier [OF x])

apply (rule lambda_finsum_n)

using x unfolding K_n_def K_n_carrier_def ith_def vlen_def

by force

13.3 Bijection between basis

In the following lemmas we try to establish an explicit bijection between
the sets X, which is a basis of V, and the set canonical_basis_K_n n. This
bijection will be later extended, by linearity, to a bijection between carrier

V and carrier (K_n n)

The first lemma claims that if we have an element x in the set created by the
function canonical basis acc k n (where k < n) hence there exists a natural
number j less than k + 1 such that x is the j − th element of the canonical
basis.
lemma canonical_basis_acc_eq_x_i:

assumes x: "x ∈ canonical_basis_acc k n"

and k_l_n: "k < n"

shows "∃ j∈{..<Suc k}. x_i j n = x"

using x k_l_n

proof (induct k)

13.3 Bijection between basis 181

case 0 thus ?case

unfolding canonical_basis_acc.simps

by (cases n, auto)

next
case (Suc k)

show ?case

proof (cases "x = x_i (Suc k) n")

case False

have k_l_n: "k < n" and cb: "x ∈ canonical_basis_acc k n"

and hypo: "∃ j∈{..<(Suc k)}. x_i j n = x"

using Suc.prems Suc.hyps False by simp_all

thus ?thesis by fastsimp

next
case True

show ?thesis

using True by fast

qed
qed

Using the previous lemma, we can prove that if x ∈ canonical basis K n n
then x is one element produced by the function x i j n (for a determinated
j < n). In other words, is an element of the canonical basis. As a corollary
we can prove that j is unique.
lemma

canonical_basis_is_x_i:

assumes x: "x ∈ canonical_basis_K_n n"

shows "∃ j∈{..<n}. x = x_i j n"

using x

unfolding canonical_basis_K_n_def

using canonical_basis_acc_eq_x_i [of x "n - 1" n] by (cases n,

auto)

corollary
canonical_basis_isom_x_i:

assumes x: "x ∈ canonical_basis_K_n n"

shows "∃ !j∈{..<n}. x = x_i j n"

proof -

obtain j :: nat where j: "j ∈ {..<n}" and x: "x = x_i j n"

using canonical_basis_is_x_i [OF x] by blast

show ?thesis

182 Isomorphism

proof (rule ex1I [of _ j], rule conjI)

show "j ∈ {..<n}" by fact

show "x = x_i j n" by fact

fix ja

assume ja: "ja ∈ {..<n} ∧ x = x_i ja n"

show "ja = j"

using x ja unfolding x_i_def

by (metis ja x x_i_ne_x_j)

qed
qed

The function preim maps vectors of the basis canonical_basis_K_n n to their
index.

definition
preim :: "’a vector => nat => nat"

where "preim x n = (THE j. j ∈ {..<n} ∧ x = x_i j n)"

We present some properties of this function and its relationship with x i.
Next two lemmas show that both functions are inverse of each other:

lemma
preim_x_i_x_eq_x:

assumes x_l_n: "x < n"

shows "preim (x_i x n) n = x"

unfolding preim_def

proof
show "x ∈ {..<n} ∧ x_i x n = x_i x n"

using x_l_n by fast

fix j :: nat

assume j: "j ∈ {..<n} ∧ x_i x n = x_i j n"

show "j = x"

using j

unfolding x_i_def by (metis j x_i_ne_x_j)

qed

lemma
preim_eq_x_i_acc:

assumes x: "x ∈ canonical_basis_acc k n"

13.3 Bijection between basis 183

and k_l_n: "k < n"

shows "x_i (preim x n) n = x"

unfolding preim_def

using theI’ [OF canonical_basis_acc_isom_x_i2 [OF x k_l_n]]

by presburger

Note that the previous function will be later used to define the bijection
between canonical basis K n and X, mapping x i j n (in Kn) to xj (in V).

The following function is to be used as the inverse function of field.preim ;
this function and field.preim will be defined to prove an isomorphism be-
tween field.canonical_basis_K_n K (card X) and {..<card X}. It returns
us the n− th vector of the canonical basis of Kn.

definition iso_nat_can :: "nat => ’a vector"

where "iso_nat_can n = (x_i n (dimension))"

The composition of the functions field.preim K and iso_nat_can over the
set {..<dimension} is equal to the identity.

lemma preim_iso_nat_can_id:

assumes x: "x ∈ {..<dimension}"

shows "preim (iso_nat_can x) (dimension) = x"

unfolding iso_nat_can_def

using preim_x_i_x_eq_x [of x "dimension"]

unfolding x_i_def using x by blast

In a very similar way, the composition of field.preim K and iso_nat_can

over the set field.canonical_basis_K_n K dimension is equal to the iden-
tity:

lemma iso_nat_can_preim_id:

assumes y: "y ∈ canonical_basis_K_n (dimension)"

shows "iso_nat_can (preim y (dimension)) = y"

using preim_eq_x_i [OF y]

unfolding x_i_def iso_nat_can_def .

We can prove that there exists a bijection between the image by iso nat can
of the set {.. < dimension} and canonical basis K n (dimension):
lemma

bij_betw_iso_nat_can:

184 Isomorphism

shows "bij_betw iso_nat_can {..<dimension}

(canonical_basis_K_n (dimension))"

proof (intro bij_betwI [of _ _ _ "(λi. preim i (dimension))"])

interpret field K by intro_locales

show "iso_nat_can

∈ {..<dimension} → field.canonical_basis_K_n K (dimension)"

proof
fix x

assume x: "x ∈ {..<(dimension)}"

show "iso_nat_can x

∈ field.canonical_basis_K_n K (dimension)"

unfolding iso_nat_can_def

using canonical_basis_K_n_elements [OF x]

unfolding x_i_def .
qed
show "(λi. preim i (dimension))

∈ canonical_basis_K_n (dimension) → {..<dimension}"

proof
fix x

assume x: "x ∈ canonical_basis_K_n (dimension)"

show "preim x (dimension) ∈ {..<dimension}"

by (rule preim_lessThan [OF x])

qed
fix x

assume x: "x ∈ {..<dimension}"

show "preim (iso_nat_can x) (dimension) = x"

by (rule preim_iso_nat_can_id [OF x])

next
interpret field K by intro_locales

fix y

assume y: "y ∈ canonical_basis_K_n (dimension)"

show "iso_nat_can (preim y (dimension)) = y"

by (rule iso_nat_can_preim_id [OF y])

qed

lemma
bij_betw_preim:

shows "bij_betw (λi. preim i (dimension))

(canonical_basis_K_n (dimension)) {..<dimension}"

proof (intro bij_betwI [of _ _ _ "iso_nat_can"])

13.4 Properties of Canonical Basis 185

interpret field K by intro_locales

show "iso_nat_can

∈ {..<dimension} → canonical_basis_K_n (dimension)"

proof
fix x

assume x: "x ∈ {..<(dimension)}"

show "iso_nat_can x ∈ canonical_basis_K_n (dimension)"

unfolding iso_nat_can_def

using canonical_basis_K_n_elements [OF x]

unfolding x_i_def .
qed
show "(λi. preim i (dimension))

∈ canonical_basis_K_n (dimension) → {..<dimension}"

proof
fix x

assume x: "x ∈ canonical_basis_K_n (dimension)"

show "preim x (dimension) ∈ {..<dimension}"

by (rule preim_lessThan [OF x])

qed
fix x

assume x: "x ∈ {..<dimension}"

show "preim (iso_nat_can x) (dimension) = x"

by (rule preim_iso_nat_can_id [OF x])

next
interpret field K by intro_locales

fix y

assume y: "y ∈ canonical_basis_K_n (dimension)"

show "iso_nat_can (preim y (dimension)) = y"

by (rule iso_nat_can_preim_id [OF y])

qed

13.4 Properties of Canonical Basis

Here we present more properties and facts that canonical basis K n n sat-
isfies. The following lemma proves that two different ways of writing down
an element of K_n n as a linear combination of the elements of the basis
canonical_basis_K_n n are equivalent. We will make the proof using the
lemma finsum cong” proved in previous section. We ommit it (it takes up
80 lines).

186 Isomorphism

lemma
finsum_canonical_basis_acc_finsum_card:

assumes k_l_n: "k < n"

and f: "f ∈ carrier (K_n n) → carrier R"

shows "(
⊕

K_n nx∈canonical_basis_acc k n. f x � x)

= (
⊕

K_n nk∈{..<Suc k}. f (x_i k n) � x_i k n)"

proof (rule abelian_monoid.finsum_cong’’ [of _ _ "(λk. x_i k n)"])

...

qed

The space generated by the vector_space.span of canonical_basis_K_n n

is equal to the vector space K_n n. The complete proof takes up 120 lines.

lemma
span_canonical_basis_K_n_carrier_K_n:

shows "vector_space.span R (K_n n) (op �)
(canonical_basis_K_n n) = carrier (K_n n)"

proof
interpret vector_space R "K_n n" "op �" using vector_space_K_n .
show "span (canonical_basis_K_n n) ⊆ carrier (K_n n)"

...

show "carrier (K_n n) ⊆ span (canonical_basis_K_n n)"

...

qed

The elements of canonical_basis_acc j n are linearly independent.

lemma
canonical_basis_acc_linear_independent_ext:

assumes j_l_n: "j < n"

shows "vector_space.linear_independent_ext R (K_n n) (op �)
(canonical_basis_acc j n)"

proof -

...

qed

As a corollary, the set of all elements in the canonical base is lin-
early independent ext.

lemma

13.4 Properties of Canonical Basis 187

canonical_basis_K_n_linear_independent_ext:

shows "vector_space.linear_independent_ext R (K_n n) (op �)
(canonical_basis_K_n n)"

unfolding canonical_basis_K_n_def

using canonical_basis_acc_linear_independent_ext [of "n - 1" n]

using vector_space.linear_independent_ext_empty

[OF vector_space_K_n]

by (cases n, auto)

We finally prove that canonical_basis_K_n n is a basis for K_n, and, more-
over, that it has a finite basis with cardinality n.

lemma
canonical_basis_K_n_basis:

shows "vector_space.basis R (K_n n) (op �)
(canonical_basis_K_n n)"

unfolding vector_space.basis_def [OF vector_space_K_n]

using canonical_basis_K_n_linear_independent_ext [OF]

using canonical_basis_K_n_spanning_set [OF]

by (metis canonical_basis_K_n_closed vector_space.spanning_imp_spanning_ext

vector_space_K_n)

corollary
canonical_basis_K_n_basis_card_n:

shows "vector_space.basis R (K_n n) (op �)
(canonical_basis_K_n n) ∧ card (canonical_basis_K_n n) = n"

using canonical_basis_K_n_basis [OF]

and card_canonical_basis_K_n [OF] by fastsimp

After proving the most relevant properties of field.K_n K n, we fix one in-
dexing of the basis elements (of X) that will allow us to define later the
function which given any element of the carrier set decomposes it into the
coefficients for each term if the indexation (i.e.,

∑n
i1
αi ·V xi).

The theorem obtain_indexing : finite A =⇒ ∃ f. indexing (A, f) and
the premise that the vector space is finite, and so is its basis X, ensures
that the following definition is sound.

definition indexing_X :: "nat => ’c"

where indexing_X_def: "indexing_X = (SOME f. indexing (X, f))"

Relying in the fact that at least one indexing of the basis X exists, we can

188 Isomorphism

prove that indexing_X satisfies the properties of every indexing.

lemma indexing_X_is_indexing:

shows "indexing (X, indexing_X)"

using obtain_indexing [OF finite_X]

using some_eq_ex [of "(λf. indexing (X, f))"]

unfolding indexing_X_def by auto

The following function will be used to define an isomorphism between the
sets {..<dimension} and X, which inverse will be the inverse of the indexing
function indexing_X. This function will return the n−th element of the basis
X of V .

definition
iso_nat_X :: "nat => ’c"

where "iso_nat_X n = indexing_X n"

The inverse function of the previous iso_nat_X is the following function,
which properties we are to prove first:

definition
preim2 :: "’c => nat"

where "preim2 x = (THE j. j ∈ {..<dimension}

∧ x = indexing_X j)"

The preim2 function needs to be completed, since otherwise we can not
ensure for the elements out of the basis X that their value preim2 x is not in
the set {..<dimension}. If the value preim2 x could be in {..<dimension}

for elements out of X, then the function fst x (preim2 y), for y /∈ X could
take values different from 0.

The way to complete it is a bit artificial, since we can not use 0 to complete
it, but some element a with dimension ≤ a, which are the natural numbers
that are mapped to 0 by coefficients_function. In particular, we have
chosen a = dimension.

definition
preim2_comp :: "’c => nat"

where "preim2_comp x = (if x ∈ X then (THE j. j ∈ {..<dimension}

∧ x = indexing_X j) else dimension)"

There exists a bijection between the image by the function indexing X of the
set {.. < dimension} and X.

13.4 Properties of Canonical Basis 189

lemma
indexing_X_bij:

shows "bij_betw indexing_X {..<dimension} X"

proof -

have f1: "finite X" and f2: "finite {..<dimension}"

by (metis finite_X, simp)

have ex: "∃ f. bij_betw f {..<dimension} X"

using BIJ [OF f2 f1] unfolding dimension_def by simp

thus ?thesis

using some_eq_ex [of "(λf. bij_betw f {..<dimension} X)"]

unfolding indexing_X_def indexing_def dimension_def by simp

qed

As a corollary we can obtain that if x ∈ X hence there exists only one
j ∈ {.. < dimension} such that x = indexing X j:
lemma

indexing_X_preimage:

assumes x: "x ∈ X"

shows "∃ j. j ∈ {..<dimension} ∧ x = indexing_X j"

proof
...

qed

corollary
indexing_X_preimage_unique:

assumes x: "x ∈ X"

shows "∃ !j. j ∈ {..<dimension} ∧ x = indexing_X j"

proof -

obtain j :: nat

where j: "j ∈ {..<dimension}" and x: "x = indexing_X j"

using indexing_X_preimage [OF x] by fast

show ?thesis

proof (rule ex1I [of _ j], rule conjI)

show "j ∈ {..<dimension}" by fact

show "x = indexing_X j" by (rule x)

fix ja

assume ja: "ja ∈ {..<dimension} ∧ x = indexing_X ja"

show "ja = j"

using x j ja indexing_X_bij

unfolding bij_betw_def

190 Isomorphism

by (metis inj_onD)

qed
qed

With the next five lemmas we can prove that the functions preim2_comp and
iso_nat_X are inverse of each other, over the sets X and {..<dimension}

lemma
preim2_comp_is_indexing_X:

assumes x: "x ∈ X"

shows "x = indexing_X (preim2_comp x)"

using preim2_is_indexing_X [OF x] x

unfolding preim2_def preim2_comp_def by presburger

lemma iso_nat_X_preim2_id:

assumes x: "x ∈ X"

shows "iso_nat_X (preim2 x) = x"

using theI’ [OF indexing_X_preimage_unique [OF x]]

unfolding preim2_def

unfolding iso_nat_X_def by presburger

lemma iso_nat_X_preim2_comp_id:

assumes x: "x ∈ X"

shows "iso_nat_X (preim2_comp x) = x"

using iso_nat_X_preim2_id [OF x]

unfolding preim2_def preim2_comp_def using x by presburger

lemma preim2_iso_nat_X_id:

assumes n: "n ∈ {..<dimension}"

shows "preim2 (iso_nat_X n) = n"

proof -

have i: "iso_nat_X n ∈ X"

unfolding iso_nat_X_def iso_nat_X_def

using indexing_X_is_indexing using n

unfolding indexing_def dimension_def

unfolding bij_betw_def image_def by auto

show ?thesis

unfolding preim2_def iso_nat_X_def

apply (rule the1_equality)

using indexing_X_preimage_unique [OF i] n

unfolding iso_nat_X_def by fast+

qed

13.4 Properties of Canonical Basis 191

lemma preim2_comp_iso_nat_X_id:

assumes n: "n ∈ {..<dimension}"

shows "preim2_comp (iso_nat_X n) = n"

proof -

have i: "iso_nat_X n ∈ X"

unfolding iso_nat_X_def iso_nat_X_def

using indexing_X_is_indexing using n

unfolding indexing_def dimension_def

unfolding bij_betw_def image_def by auto

show ?thesis

using preim2_iso_nat_X_id [OF n] using i

unfolding preim2_comp_def preim2_def by presburger

qed

Therefore, we can prove that there exists a bijection between them:

lemma
bij_betw_iso_nat_X:

shows "bij_betw iso_nat_X {..<dimension} X"

proof (intro bij_betwI [of _ _ _ preim2])

show "iso_nat_X ∈ {..<dimension} → X"

proof
fix x assume x: "x ∈ {..<dimension}"

show "iso_nat_X x ∈ X"

unfolding iso_nat_X_def

using indexing_X_is_indexing using x

unfolding indexing_def bij_betw_def image_def dimension_def

by auto

qed
show "preim2 ∈ X → {..<dimension}"

proof
fix x assume x: "x ∈ X"

show "preim2 x ∈ {..<dimension}"

using theI’ [OF indexing_X_preimage_unique [OF x]]

unfolding preim2_def by fast

qed
fix x assume x: "x ∈ {..<dimension}"

show "preim2 (iso_nat_X x) = x"

by (rule preim2_iso_nat_X_id [OF x])

192 Isomorphism

next
fix y assume y: "y ∈ X"

show "iso_nat_X (preim2 y) = y"

by (rule iso_nat_X_preim2_id [OF y])

qed

lemma
bij_betw_preim2:

shows "bij_betw preim2 X {..<dimension}"

proof (intro bij_betwI [of _ _ _ iso_nat_X])

show "preim2 ∈ X → {..<dimension}"

proof
fix x assume x: "x ∈ X"

show "preim2 x ∈ {..<dimension}"

using theI’ [OF indexing_X_preimage_unique [OF x]]

unfolding preim2_def by fast

qed
show "iso_nat_X ∈ {..<dimension} → X"

proof
fix x assume x: "x ∈ {..<dimension}"

show "iso_nat_X x ∈ X"

unfolding iso_nat_X_def

using indexing_X_is_indexing using x

unfolding indexing_def bij_betw_def image_def dimension_def

by auto

qed
fix y assume y: "y ∈ X"

show "iso_nat_X (preim2 y) = y"

by (rule iso_nat_X_preim2_id [OF y])

next
fix x assume x: "x ∈ {..<dimension}"

show "preim2 (iso_nat_X x) = x"

by (rule preim2_iso_nat_X_id [OF x])

qed

In the previous section we proved that there exists an isomorphism between
{.. < dimension} and canonical basis K n n. Here we have proved the ex-
istence of an isomorphism between {.. < dimension} and X. We will later
compose the isomorphism through {.. < dimension} to build the isomor-
phism from X to canonical basis K n n (i.e., between the basis of V and

13.5 Linear maps 193

Kn).

13.5 Linear maps

In this section we are going to introduce the notion of linear map between
vector spaces. This is a previous step for the definition of an isomorphism
between vector spaces. Then, we will have to prove the existence of an
isomorphism between the vector spaces K_n dimension and V.

We need another vector space in addition to V . We will call this additional
vector space W (it will be also over K). We will try to implement definition
13.0.5 of linear map in Isabelle/HOL. First of all we make the definition of
the locale for linear map (because we need to fix two vector spaces over a
field) and after that we will define it.
The next definition would be the expected and desired one. Unfortunately,
it introduces changes in the namespace that are really inconvenient. The
second locale hides the names of constants in the first locale, demanding
long names for the first locale constants. We do not know how to control
this behaviour.

locale linear_map’ = KV: vector_space K V f + KW: vector_space K W g

for K (structure) and V (structure) and W (structure) and f

(infixl " ·V" 60) and g (infixl " ·W" 60)

Thus, we preferred the long version, in which locale interpretation has to be
done later by hand. We present the definition that we finally will use:

locale linear_map =

fixes K :: "(’a, ’b) ring_scheme"

and V :: "(’c, ’d) ring_scheme"

and W :: "(’e, ’f) ring_scheme"

and scalar_product1 :: "’a => ’c => ’c" (infixr " ·V" 70)

and scalar_product2 :: "’a => ’e => ’e" (infixr " ·W" 70)

assumes V: "vector_space K V (op ·V)"
and W: "vector_space K W (op ·W)"

In this definition we are fixing three algebraic structures: K, V and W and
two scalar products (one over V and another over W). The structures V and
W together with its scalar product will be vector spaces over K.

194 Isomorphism

Linear maps, as characterised in [11], have to satisfy the additivity and ho-
mogeneity properties:

definition additivity :: "(’c => ’e) => bool"

where "additivity T

= (∀ x∈carrier V. ∀ y ∈ carrier V. T (x ⊕V y) = T x ⊕W T y)"

definition homogeneity :: "(’c => ’e) => bool"

where "homogeneity T

= (∀ k∈carrier K. ∀ x∈carrier V. T (k ·V x) = k ·W T x)"

definition linear_map :: "(’c => ’e) => bool"

where "linear_map T = (additivity T ∧ homogeneity T)"

With this last definition, we have implemented the concept of linear map.
We introduce a new locale for finite dimensional vector spaces, just imposing
that there is a finite basis for one ot the vector spaces.

locale linear_map_fin_dim = linear_map +

fixes X

assumes fin_dim: "finite_dimensional_vector_space K V (op ·V) X"

We produce two different sublocales, or interpretations,
of the locale linear_map_fin_dim by means of the locale
finite_dimensional_vector_space. They allow us to later define lin-
ear maps from V to K_n and also the opposite way, from K_n to V. The
system forces us to make them named interpretations, just to avoid colliding
names. Interpretation is a mechanism to import every result and definition
provided in a locale to a given instance. In our setting, we have proved that
K n n is a vector space, and thus we can produce such interpretation (and
some others).

sublocale finite_dimensional_vector_space <

V_K_n: linear_map_fin_dim K V "K_n dimension" "op ·"
K_n_scalar_product X

proof (unfold linear_map_fin_dim_def, intro conjI)

show "linear_map K V (field.K_n K dimension) op ·
(field.K_n_scalar_product K)"

proof (unfold linear_map_def, intro conjI)

show "vector_space K (K_n dimension) K_n_scalar_product"

using vector_space_K_n .

13.5 Linear maps 195

show "vector_space K V op ·" by (intro_locales)

qed
next

show "linear_map_fin_dim_axioms K V op · X"
proof (unfold linear_map_fin_dim_axioms_def

finite_dimensional_vector_space_def,

intro conjI)

show "vector_space K V op ·"by intro_locales

show "finite_dimensional_vector_space_axioms K V op · X"
proof

show "finite X" by (rule finite_X)

show "basis X" by (rule basis_X)

qed
qed

qed

sublocale finite_dimensional_vector_space < K_n_V:

linear_map_fin_dim K "K_n dimension" V

K_n_scalar_product "op ·" "canonical_basis_K_n dimension"

proof (intro_locales)

interpret K: field K by intro_locales

interpret V: vector_space K V "op ·" by intro_locales

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show "Vector_Space_K_n.linear_map K (K_n dimension) V

(K_n_scalar_product) op ·" by unfold_locales

show "linear_map_fin_dim_axioms K (K_n dimension)

(K_n_scalar_product) (canonical_basis_K_n dimension)"

proof unfold_locales

show "finite (canonical_basis_K_n dimension)"

by (rule finite_canonical_basis_K_n)

show "K_n.basis (canonical_basis_K_n dimension)"

using canonical_basis_K_n_basis [of dimension] by fast

qed
qed

196 Isomorphism

13.6 Defining the isomorphism between Kn

and V

Firstly we prove a theorem similar to unique_coordenates :

[[x ∈ carrier V; f ∈ coefficients_function (carrier V); x =

linear_combination f X; g ∈ coefficients_function (carrier V); x

= linear_combination g X]] =⇒ ∀ x∈X. g x = f x. It claims that the
coordinates are unique in a basis.

lemma
linear_combination_unique:

assumes x: "x ∈ carrier V"

shows "∃ !f. f ∈ coefficients_function X

& linear_combination f X = x"

proof -

obtain f_cf

where cf_fc: "f_cf ∈ coefficients_function (carrier V)"

and lc_cf: "linear_combination f_cf X = x"

using x using spanning_set_X

unfolding spanning_set_def by (metis mem_def)

def f == "(λx. if x ∈ X then f_cf x else 0)"
have cf: "f ∈ coefficients_function X"

and lc: "linear_combination f X = x"

...

show ?thesis

proof (rule ex1I [of _ f])

show "f ∈ coefficients_function X

& linear_combination f X = x" using cf lc ..
fix g

assume "g ∈ coefficients_function X

& linear_combination g X = x"

hence cfg: "g ∈ coefficients_function X"

and lcg: "linear_combination g X = x" by fast+

...

show "g = f"

...

qed
qed

qed

13.6 Defining the isomorphism between Kn and V 197

The previous lemma ensures the existence of only one function f satisfying
to be a linear combination and a coefficients function which generates any x

belonging to carrier V. We define this function f as the lin comb of a given
x.

definition lin_comb :: "’c => (’c => ’a)"

where "lin_comb x = (THE f. f ∈ coefficients_function X

∧ linear_combination f X = x)"

The mathematical wording of the previous function is the function that for
each x and a given basis X = {x1, . . . , xn} such that x =

∑n
i=1 αi ·V xi, the

function lin comb returns the coefficients α1 . . . αn.
A lemma stating that every element of the carrier set can be expressed as a
finite sum over the elements of the set {..<dimension} thanks to the function
lin_comb.

lemma
lin_comb_is_the_linear_combination_indexing:

assumes x: "x ∈ carrier V"

shows "x = finsum V (λi.
lin_comb x (indexing_X i) · indexing_X i) {..<dimension}"

proof -

have "x = linear_combination (lin_comb x) X"

by (rule lin_comb_is_the_linear_combination [OF x])

also have "... = finsum V (λy. lin_comb x y · y) X"

unfolding linear_combination_def ..
also have "... = finsum V (λi.
lin_comb x (indexing_X i) · indexing_X i) {..<dimension}"

proof (rule finsum_cong’’ [of _ "indexing_X"])

show "finite {..<dimension}" by fast

show "bij_betw indexing_X {..<dimension} X"

by (rule indexing_X_bij)

show "(λy. lin_comb x y · y) ∈ X → carrier V"

proof
...

qed
show "(λi. lin_comb x (indexing_X i) · indexing_X i)

∈ {..<dimension} → carrier V"

proof
...

198 Isomorphism

qed
show "

∧
xa. xa ∈ {..<dimension} =simp=>

lin_comb x (indexing_X xa) · indexing_X xa =

lin_comb x (indexing_X xa) · indexing_X xa" by simp

qed
finally show ?thesis .

qed

A lemma on how the elements of the basis are mapped by lin_comb :

lemma
lin_comb_basis:

assumes x: "x ∈ X"

shows "lin_comb x = (λi. if i = x then 1 else 0)"
unfolding lin_comb_def

proof (rule the1_equality)

have x1: "x ∈ carrier V"

using good_set_X x

unfolding good_set_def by fast

show "∃ !f. f ∈ coefficients_function X

∧ linear_combination f X = x"

using linear_combination_unique [OF x1] .
show "(λi. if i = x then 1 else 0) ∈ coefficients_function X

∧ linear_combination (λi. if i = x then 1 else 0) X = x"

proof (rule conjI)

show "(λi. if i = x then 1 else 0) ∈ coefficients_function X"

unfolding coefficients_function_def using x by fastsimp

show "linear_combination (λi. if i = x then 1 else 0) X = x"

proof -

...

qed
qed

qed

The following functions are the candidates to be proved to define the isomor-
phism between the vector spaces V and field.K_n K dimension. They have
to be proved to be linear maps between the vector spaces, and inverse one of
each other.

definition iso_K_n_V :: "’a vector => ’c"

where "iso_K_n_V x

= finsum V (λi. fst x i · indexing_X i) {..<dimension}"

13.6 Defining the isomorphism between Kn and V 199

definition iso_V_K_n :: "’c => ’a vector"

where "iso_V_K_n x =

finsum (K_n dimension) (λi. (K_n_scalar_product (lin_comb (x)

(indexing_X i)) (x_i i dimension))) {..<dimension}"

We prove that iso_K_n_V is a linear map, this means both additive and
homogeneous. It is a long proof of 150 lines.

lemma linear_map_iso_K_n_V: "K_n_V.linear_map iso_K_n_V"

proof (unfold K_n_V.linear_map_def, intro conjI)

show "additivity iso_K_n_V"

proof (unfold additivity_def, rule ballI, rule ballI)

...

qed
show "homogeneity iso_K_n_V"

proof (unfold homogeneity_def, rule ballI, rule ballI)

...

qed
qed

The following lemma states that the function lin_comb satisfies the additivity
condition. It will be later used to prove that the function iso_V_K_n is also
an additive function.

lemma
lin_comb_additivity:

assumes x: "x ∈ carrier V"

and y: "y ∈ carrier V"

shows "lin_comb (x ⊕V y) = (λi. lin_comb x i ⊕ lin_comb y i)"

apply (subst lin_comb_def)

proof (rule the1_equality)

...

qed

The following lemma states that the function lin_comb satisfies the homoge-
neous property. It will be later used to prove that the function iso_V_K_n is
homogeneous:

lemma
lin_comb_homogeneity:

assumes k: "k ∈ carrier K"

and x: "x ∈ carrier V"

200 Isomorphism

shows "lin_comb (k · x) = (λi. k ⊗ lin_comb x i)"

apply (subst lin_comb_def)

proof (rule the1_equality)

show "∃ !f. f ∈ coefficients_function X

∧ linear_combination f X = k · x"
using linear_combination_unique [OF mult_closed [OF x k]] .

next
show "(λi. k ⊗ lin_comb x i) ∈ coefficients_function X ∧
linear_combination (λi. k ⊗ lin_comb x i) X = k · x"

proof (rule conjI)

show "(λi. k ⊗ lin_comb x i) ∈ coefficients_function X"

using lin_comb_is_coefficients_function [OF x]

unfolding coefficients_function_def

using k by auto

show "linear_combination (λi. k ⊗ lin_comb x i) X = k · x"
proof -

have "linear_combination (λi. k ⊗ lin_comb x i) X =

(
⊕

Vy∈X. (k ⊗ lin_comb x y) · y)"
unfolding linear_combination_def ..

also have "... = k · (
⊕

Vy∈X. (lin_comb x y) · y)"
apply (rule finsum_mult_assocf [OF _ finite_X k])

using lin_comb_is_coefficients_function [OF x]

using good_set_X

unfolding good_set_def coefficients_function_def by blast+

also have "... = k · x"
unfolding linear_combination_def [symmetric]

unfolding lin_comb_is_the_linear_combination

[symmetric, OF x] ..
finally show ?thesis .

qed
qed

qed

The following lemma proves that the application iso_V_K_n is a linear map
between V and field.K_n K dimension. Is a long lemma of 150 code lines.

lemma linear_map_iso_V_K_n: "V_K_n.linear_map iso_V_K_n"

proof (unfold V_K_n.linear_map_def, intro conjI)

interpret field K by intro_locales

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show "V_K_n.additivity iso_V_K_n"

13.6 Defining the isomorphism between Kn and V 201

proof (unfold V_K_n.additivity_def, rule ballI, rule ballI)

...

qed
show "V_K_n.homogeneity iso_V_K_n"

proof (unfold V_K_n.homogeneity_def, rule ballI, rule ballI)

...

qed
qed

The functions iso_K_n_V and iso_V_K_n behave correctly in their respective
domains:

lemma iso_V_K_n_Pi: "iso_V_K_n

∈ carrier V → carrier (K_n dimension)"

proof -

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show ?thesis

proof
fix x assume x: "x ∈ carrier V"

show "iso_V_K_n x ∈ carrier (K_n dimension)"

unfolding iso_V_K_n_def

proof (rule K_n.finsum_closed)

show "finite {..<dimension}" by simp

show "(λi. K_n_scalar_product (lin_comb x

(indexing_X i)) (field.x_i K i dimension))

∈ {..<dimension} → carrier (K_n dimension)"

proof
fix xa assume xa: "xa ∈ {..<dimension}"

show "K_n_scalar_product (lin_comb x (indexing_X xa))

(x_i xa dimension)

∈ carrier (K_n dimension)"

proof (rule K_n_scalar_product_closed)

show "lin_comb x (indexing_X xa) ∈ carrier K"

using lin_comb_is_coefficients_function [OF x]

using indexing_X_n_in_carrier_V xa

unfolding coefficients_function_def by auto

show "x_i xa dimension ∈ carrier (K_n dimension)"

using x_i_closed xa by simp

qed
qed

202 Isomorphism

qed
qed

qed

lemma iso_K_n_V_Pi:

shows "iso_K_n_V ∈ carrier (K_n dimension) → carrier V"

proof -

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show ?thesis

proof
fix x assume x: "x ∈ carrier (K_n dimension)"

show "iso_K_n_V x ∈ carrier V"

proof (unfold iso_K_n_V_def)

show "(
⊕

Vi∈{..<dimension}. fst x i · indexing_X i)

∈ carrier V"

proof (rule finsum_closed)

show "finite {..<dimension}" by simp

show "(λi. fst x i · indexing_X i)

∈ {..<dimension} → carrier V"

using mult_closed

using indexing_X_n_in_carrier_V

using x

unfolding K_n_def K_n_carrier_def ith_def vlen_def

by auto

qed
qed

qed
qed

Thanks to the bijection that exists between the image of {.. < dimension}
by the function indexing X and X we can prove the following equivalence of
the finite sum of the elements of the basis:

lemma
lin_comb_fimsum_candidate:

assumes x: "x ∈ carrier (K_n dimension)"

shows "(
⊕

Vy∈X. fst x (preim2_comp y) · y) =

(
⊕

Vi∈{..<dimension}. fst x i · indexing_X i)"

proof (rule finsum_cong’’ [of _ "indexing_X"])

13.6 Defining the isomorphism between Kn and V 203

show "finite {..<dimension}" by simp

...

qed

The following lemma expresses how to write down the lin_comb of a finite
sum of the elements of the basis:

lemma
lin_comb_linear_combination_candidate:

assumes x: "x ∈ carrier (K_n dimension)"

shows "lin_comb (
⊕

Vi∈{..<dimension}. fst x i · indexing_X i) =

(λy. fst x (preim2_comp y))"

unfolding lin_comb_def

proof (rule the1_equality)

...

qed

With the previous lemmas, we can now prove that iso_V_K_n is a bijection
between the correspoding carrier sets (not a proper isomorphism, which also
requires linearity, previously proved):

lemma iso_V_K_n_bij: shows "bij_betw iso_V_K_n (carrier V)

(carrier (K_n dimension))"

proof (rule bij_betwI [of _ _ _ iso_K_n_V])

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show "iso_V_K_n ∈ carrier V → carrier (K_n dimension)"

by (rule iso_V_K_n_Pi)

show "iso_K_n_V ∈ carrier (K_n dimension) → carrier V"

by (rule iso_K_n_V_Pi)

fix x assume x: "x ∈ carrier V"

show "iso_K_n_V (iso_V_K_n x) = x"

...

next
fix y

assume y: "y ∈ carrier (K_n dimension)"

show "iso_V_K_n (iso_K_n_V y) = y"

proof -

...

qed
qed

The following lemma should not be needed, since the bijection has been

204 Isomorphism

already proved and it is bidirectional, but we present it for completeness.

lemma iso_K_n_V_bij:

shows "bij_betw iso_K_n_V (carrier (K_n dimension)) (carrier V)"

proof (rule bij_betwI [of _ _ _ iso_V_K_n])

interpret K_n: vector_space K "K_n dimension" "K_n_scalar_product"

using vector_space_K_n .
show "iso_V_K_n ∈ carrier V → carrier (K_n dimension)"

by (rule iso_V_K_n_Pi)

show "iso_K_n_V ∈ carrier (K_n dimension) → carrier V"

by (rule iso_K_n_V_Pi)

fix x assume x: "x ∈ carrier V"

show "iso_K_n_V (iso_V_K_n x) = x"

...

next
fix y

assume y: "y ∈ carrier (K_n dimension)"

show "iso_V_K_n (iso_K_n_V y) = y"

proof -

...

qed
qed

Now we can implement the notion of isomorphism between two vector spaces
in Isabelle/HOL following the definition 13.0.6 presented in the beginning of
this chapter:

definition vector_space_isomorphism :: "(’c => ’e) => bool"

where "vector_space_isomorphism f

== bij_betw f (carrier V) (carrier W) ∧ linear_map f"

Finally, the two following lemmas state the isomorphism (in both directions
actually) between field.K_n K dimension and V (i.e., between Kn and V
with n the cardinality of a basis of V):

lemma "V_K_n.vector_space_isomorphism iso_V_K_n"

using iso_V_K_n_bij using linear_map_iso_V_K_n

unfolding V_K_n.vector_space_isomorphism_def by rule

lemma "vector_space_isomorphism iso_K_n_V"

13.6 Defining the isomorphism between Kn and V 205

using iso_K_n_V_bij using linear_map_iso_K_n_V

unfolding vector_space_isomorphism_def by rule

206 Isomorphism

Chapter 14

Subspaces

In this chapter we present the concept of subspace (of a vector space) and
some properties about it. Firstly, we show the definition that appears in
Halmos:

Definition 14.0.1 A non-empty subset M of a vector space V is a subspace
(or a linear manifold) if along with every pair, x and y, of vectors contained
in M , every linear combination αx⊕V βy (α, β ∈ K) is also contained in M .

We can write literally this definition in Isabelle/HOL:

definition subspace :: "’b set => bool"

where "subspace M == ((M ⊆ carrier V) ∧ M 6= {}

∧ (∀α∈carrier K. ∀β∈carrier K. ∀ x∈M. ∀ y∈M.
α · x ⊕V β · y ∈ M))"

As a subspace is not empty, hence it contains some element x. Due to the
subspace definition, it also contains x	V x and hence 0V :
lemma
zero_in_subspace:

assumes s: "subspace M"

shows "0V ∈ M"

proof -

obtain x where x: "x ∈ M" using s

unfolding subspace_def by fast

hence xV: "x ∈ carrier V"

using s unfolding subspace_def by fast

have one: "1K ∈ carrier K"

208 Subspaces

and minus_one: "	 1K ∈ carrier K" by simp+

hence "1K · x ⊕V (1K · x) ∈ M"

using s x unfolding subspace_def by blast

thus ?thesis

unfolding mult_1 [OF xV] negate_eq [OF xV]

unfolding V.r_neg [OF xV] .
qed

We can also prove one important property: a subspace M in a vector space
V is itself a vector space.
lemma

subspace_is_vector_space:

assumes s: "subspace M"

shows "vector_space K (V(|carrier:= M |)) (op ·)"
proof (unfold_locales, auto)

show "0V ∈ M"

by (metis assms zero_in_subspace)

fix x and y and z

assume x_in_M: "x ∈ M"

and y_in_M: "y ∈ M"

and z_in_M: "z ∈ M"

hence x_in_V: "x ∈ carrier V"

and y_in_V: "y ∈ carrier V"

and z_in_V: "z ∈ carrier V"

by (metis assms mem_def subsetD subspace_def)+

show "x ⊕V y ∈ M"

proof -

...

qed
show "0V ⊕V x = x"

by (metis V.add.l_one assms mem_def

subsetD subspace_def x_in_M)

show "x ⊕V 0V = x"

by (metis V.add.r_one assms mem_def

subsetD subspace_def x_in_M)

show "x ⊕V y = y ⊕V x"

by (metis V.a_comm x_in_V y_in_V)

show "x ⊕V y ⊕V z = x ⊕V (y ⊕V z)"

using a_assoc[OF x_in_V y_in_V z_in_V] .
show "1 · x = x" using mult_1[OF x_in_V] .

209

show "x ∈ Units (|carrier = M, mult = op ⊕V, one = 0V|)"
proof -

...

qed
fix a and b

assume a_in_K: "a ∈ carrier K" and b_in_K: "b ∈ carrier K"

show "(a ⊗ b) · x = a · b · x"
using mult_assoc[OF x_in_V a_in_K b_in_K] .

show "a · x ∈ M"

proof -

...

qed
show "a · (x ⊕V y) = a · x ⊕V a · y"

using add_mult_distrib1[OF x_in_V y_in_V a_in_K] .
show "(a ⊕ b) · x = a · x ⊕V b · x"

using add_mult_distrib2[OF x_in_V a_in_K b_in_K] .
qed

Now we show two examples of subspaces: the set {0V } and the whole space:

lemma
subspace_zero:

shows "subspace {0V}"
unfolding subspace_def

by (simp, metis mult_zero_descomposition

scalar_mult_zeroV_is_zeroV)

lemma subspace_V:

shows "subspace (carrier V)"

unfolding subspace_def

by (simp, metis V.a_closed V.add.one_closed

ex_in_conv mult_closed)

As one would expect, a subspace is closed under addition:

lemma subspace_add_closed:

assumes s: "subspace S"

and x: "x ∈ S" and y: "y ∈ S"

shows "x ⊕V y ∈ S"

proof -

210 Subspaces

have xv: "x ∈ carrier V" and yv: "y ∈ carrier V"

using x y s unfolding subspace_def by auto

have "x ⊕V y = 1 · x ⊕V 1 · y"
using mult_1 [OF xv] mult_1 [OF yv] by simp

thus ?thesis

using s unfolding subspace_def by (metis one_closed x y)

qed

Now we show that a subspace is closed under finite sums (so under linear
combinations). First we present the proof in case that we are in a finite
subspace:

lemma subspace_finsum_closed:

assumes s: "subspace S"

and f: "finite S"

and y: "Y ⊆ S"

and c: "f ∈ Y → carrier K"

shows "finsum V (λi. f i · i) Y ∈ S"

proof -

have fY: "finite Y" by (rule finite_subset [OF y f])

show ?thesis

using fY y c proof (induct Y)

case empty

show ?case

using zero_in_subspace [OF s] by simp

next
— Nice Isabelle feature: we can even interpret the locale vector space with

the same vector space where only the carrier set has been modified. I thought that
this may not be possible because it could produce some problems, but it worked
smoothly:

interpret S: vector_space K "V(|carrier := S |)" "op ·"
using subspace_is_vector_space [OF s] .

case (insert x F)

have finsum_S: "(
⊕

Vi∈F. f i · i) ∈ S"

using insert.hyps (3) insert.prems by fast

have fxS: "f x · x ∈ S"

using insert.prems

using s using S.mult_closed by auto

have lambda: "(λi. f i · i) ∈ F → carrier V"

and fx: "f x · x ∈ carrier V"

211

using insert.prems

using insert.hyps

using s unfolding subspace_def using mult_closed by blast+

show ?case

unfolding finsum_insert [OF insert.hyps (1,2) lambda, OF fx]

by (rule subspace_add_closed [OF s fxS finsum_S])

qed
qed

Here the proof in case that the subspace is not finite but sums are over a
finite subset:

lemma subspace_finsum_closed’:

assumes s: "subspace S"

and f: "finite Y"

and y: "Y ⊆ S"

and c: "f ∈ Y → carrier K"

shows "finsum V (λi. f i · i) Y ∈ S"

using f y c

proof (induct Y)

case empty

show ?case

using zero_in_subspace [OF s] by simp

next
interpret S: vector_space K "V(|carrier := S |)" "op ·"

using subspace_is_vector_space [OF s] .
case (insert x F)

...

qed

As a corollary we can obtain that a linear combination of elements of a
subspace is in the subspace:

corollary subspace_linear_combination_closed:

assumes s: "subspace S"

and f: "finite Y"

and y: "Y ⊆ S"

and c: "f ∈ coefficients_function Y"

shows "linear_combination f Y ∈ S"

proof (unfold linear_combination_def,

212 Subspaces

rule subspace_finsum_closed’)

show "subspace S" using s .
show "finite Y" using f .
show "Y ⊆ S" using y .
show "f ∈ Y → carrier K"

using c unfolding coefficients_function_def by blast

qed

Chapter 15

Future Work

In the previous chapters we have shown the implementation in Isabelle/HOL
of the theorems presented in the first ten sections in Halmos. Once we have
finished them, we can present two lines of future work.
The first one is that it would be desirable to continue with the development
of the following sections in Halmos in order to achieve a good formalization of
the main results of linear algebra. In fact, the next five sections presented in
Halmos (sections 11 to 15) were going to be part of this work initially. As we
have said in the introduction, at first we had the objective of formalizing that
a vector space is isomorphic to the dual of its dual. We have not achieved
this result in time, but we have made the wording of the theorems and some
proofs (but not all) of these 5 sections can be found in: [2]. Furthermore,
a good idea would be to continue with the development, not only up to
complete such proof but at least up to the end of the chapter 1 of Halmos.
The second line of future work is to proof properties and facts of more ab-
stract algebra. Once we have proved that every finite-dimensional vector
space of dimension n is isomorphic to Kn, we could concentrate ourselves in
the study of matrices representing linear maps and transformations of vector
spaces. The study of some diagonalization algorithms could be also inter-
esting for the aims of the ForMath project. More specifically, the algorithm
computing the Smith normal form, which enables the computation of the
homology group of a chain complex, would be a very interesting result.

214 Future Work

Chapter 16

Conclusions

Once we have finished this project we can say some things about the devel-
opment of a formalization in Isabelle/HOL.
First comment that we have to say is that its learning curve is hardsteep,
much more than a programming language. As we have started from scratch
the main difficulty of this development at first was to understand and know
to cope with the proofs in Isabelle/HOL. I have never made nothing on
formalization before, I have never seen a formalized proof in Isabelle (neither
in any other theorem proving environment). However, I suspected how they
could be: one should reduce and cut up the proof into very small steps.
The first steps were hard, we tried to formalize easy proofs but we couldn’t.
If I see them now I would say that I was clumsy, but in those first periods to
write correctly a proof of 4 or 5 lines took me a lot of hard work. I managed
them in the end, but not without a struggle.
In fact, the first conclusion that I draw is that Isabelle was not as clever as I
thought: the proof methods that Isabelle has (simp, auto . . .) are not self-
sufficient to prove something not trivial: one has to usually provide explicitly
the candidates for the existentials, other theorems and results, premises . . . At
first I expected that by auto would be able to look for in the results that I
had demonstrated inside of the proof, look for theorems in the library and
sort them out the best it could to prove the result, that it is to say, something
similar than sledgehammer [39] to the task accomplished by.
After those first steps, I began to be at ease with the proofs, learning and
familiarizing with the language. Nevertheless, it was not all achieved: now
I was able to make easy proofs but either they would take up several lines
(we could make it shorter) or I wrote them not clearly: a reader was going

216 Conclusions

to have to pay attention with detail in the code to understand what I have
done (when, for example, doing them with calculations we can see with a
quick look the reasoning followed).
I improved gradually and I was bumped into proofs each time more compli-
cated that required demonstrations by induction (see chapter 10) or theorems
that at first were not easy to state due to the order of the sets (10.2.1). This
last matter was the first big problem where I was stuck and it derived to
result in the theory of indexed sets 10.1. Before developing this theory we
tried several attempts to tackle this proof (and in general, the development
that was after it) without giving an order to a set. Our first main objective
was to prove that a linearly independet set could be extended to a basis
(11.2.1). We did three attempts to demonstrate it before deciding to intro-
duce indexed sets in Isabelle/HOL. As we already said in 10.2, it took up
several code lines which finally were not useful and we counted with ideas of
Julio Rubio and Tobias Nipkow. We had to reject them because we found
that we were defining functions which were not commutative, and finally we
followed the development of the book, although it involved a great deal of
work and made a sudden stop to generate the theory of indexed sets.
The difficulties did’t finished here, because at that moment we found proofs
that demanded reasoning over complex iterative algorithms applied to in-
dexed sets and we had to define functions (remove ld), iterate them (iter-
ate remove ld) and shown that they verified the required properties using a
special kind of induction (see chapter 11).
We had even to define later the concept of the power of a function (see chapter
12). This is something that surprised us a lot because it is something very
useful and that appears in several books, it is a basic concept of mathematics.
In conclusion, not every basic definition and concept of math is implemented
in Isabelle/HOL. In addition, there are notions which aren’t implemented
exactly as we understand them in maths, for example the cardinality of a
set: Isabelle gives 0 as cardinality to an infinite set. In some cases this could
be an impediment to prove some result, for example an easy result: how
could we prove that a finite set has less cardinality than an infinite set? We
can’t.
Besides the difficulty of the proofs in Isabelle, another conlusion is that they
take up much more lines in comparation to the same proofs in a book. In
general, in a book they are not broken up step by step, several steps are made
at the same time or even there are trivial cases that in a book are omitted
(but in Isabelle we have to write all). There exists a rule that claims that a

217

line of a book should be formalized in four lines in Isabelle [15]. However, we
couldn’t fulfill it mainly because the algorithmic reasoning required functions
which must verify properties hard to be proved and in addition we had to
develop a whole theory to give orders to sets. Moreover, the notions of Kn or
canonical basis are concepts easy to define in paper but laborious in Isabelle.
In fact, the isomorphism between Kn and an n-dimensional vector space V
can be understood with a diagran with a quick look (see chapter 13), but
formalizing it takes some time.
The development of the ten first sections in Halmos (up to subspaces) took
up a total of 12387 lines, distributed of the following way:

File .thy Number of lines
Previous 55
Field2 326

Vector Space 42
Examples 57
Comments 329

Linear dependence 532
Linear combinations 1921

Basis 1962
Dimension 2235

Isomorphism 3465
Indexed set 1226
Subspaces 234
TOTAL 12387

As it can be observed, the first files (which correspond with the first sections
in Halmos) are actually short. This is because they contain algebraic proofs.
When we ran into proofs in which an algorithmic reasoning is used we had
to formalize much more results.
We have spoken about the length of the proofs in a book and in Isabelle. We
must say that the ten sections of Halmos that we have formalized take up
a total of 17 pages, when our development in Isabelle/HOL takes up about
300 pages. It is an abysmal difference.
I must say that formalizing a proof with a computer is not only something
beautiful to be done, but it also helps to understand the proofs better: several
times in the books there are omitted details, conditions and cases which are
taken into account or are not clear. When you are in front of the computer

218 Conclusions

formalizing a proof, it is not simply copying it line by line, you have to cut it
up into shorter proofs, separate in cases, study it and complete it in order to
achieve to finish the demonstration. Several times, when you think that you
have all done you realize that not, and you have to think how to break down
the proof in order to Isabelle understands it. There are proofs that Halmos
says that they are clear (and he doesn’t complete) and for us they took up
several lines (for example, the result that says that if a dependent set A is
contained in B, hence B is also dependent. See chapter 9).
To sum up, learning to formalize proofs is not something quick but it is a slow
process that requires its time. One demonstration or concept that appears in
a book can look like simple but its formalization could be very long and hard.
Another conclusion is that the logic used (HOL) has been able to formalize
our development.

16.1 Management conclusions

As we have said before in the introduction and in the management chapter,
our first objective was to formalize the first 16 sections in Halmos until prov-
ing the theorem that claims that a vector space is isomorphic to the dual of
its dual. At first, this project was going to be developed from November of
2010 to June of 2011 but it got longer up to September. We achieved the
formalization of the first 10 sections. We have already said that those 10
sections take up 17 pages in Halmos and our development of them take up
about 300. As a conclusion we can say that we underestimate the difficulty
and the length of the project: there were problems that we have already an-
ticipated but we couldn’t expect that they were going to be so hard. And, as
we have already said before, there appeared theorems which were in a quick
look simple but their formalization needed a lot of time in Isabelle/HOL.
In any way, we can say that we have demonstrated very important theorems,
such that every linearly independent set can be extended to a basis, two bases
have the same cardinality or a n-dimensional vector space over a field K is
isomorphic to Kn. Thanks to this last result, we can ensure that the first
objective (prove that a vector space is isomorphic to the dual of its dual) is
feasible and with more effort and time can be proved as a future work.
Taking into account that we haven’t finished the project in June of 2011
(after 8 months of work with 2-3 hours by day, which makes a total of about
450 hours) we decided to follow up to September fulltime (about 300 hours

16.1 Management conclusions 219

more if we don’t count holidays). It is clear that there wasn’t a realistic
planning: we worked more hours than we expected at first and we didn’t
formalize completely the first 16 sections.
There exist several reason which slowed down our development in such a way
we don’t reach what we want. As we have said before, this project is closer
to a research project than a common degree’s dissertation, and so the delay
arrives due to the unavoidable uncertainty which involves a project of this
kind.
First of all we have to say that we have not only proved the properties and
results presented in Halmos, but another ones which don’t appear in it but
are crucial (and not for this reason short) and also useful in several of our
demonstrations. Another concepts have been implemented, as the span or
the extended definition of linear independence, dependence and spanning set
which only appear named in the book. This work was necessary in order to
obtain a correct and complete formalization of vector spaces in Isabelle/HOL.
Nevertheless, the main reason of the delays were the difficulties that we find
during the development.
The first high block that we had was while we was trying yo prove the
theorem 10.2.1. As we have explained in the documentation of the project,
we looked for alternative ideas and another proofs without resorting to the
ordenations and the indexed sets 10.1. This theorem is a result that we had
already expected to be hard, but we didn’t expected to be so blocked in it.
Finally, and after several attempts in vain in which we spent lot of time and
code lines that finally we rejected, we had no other choice to implement the
indexed sets with the delay that it means.
The second reasong was that the iterative (algorithmic) reasonings that were
made in the proofs of 11.2.1 and 12.1.2 was more difficult of implementing
than we had expected. We have shown in the documentation a summary of
the results that we have had to prove until formalizing the theorem.
In addition, in the theorem 12.1.1 we made a mistake with the definition
of the swap function: we didn’t take into account the separation in cases
(Halmos doesn’t say anything about a multiset when we make the union in
the proof) and we can only prove that two disjoint basis had the same cardi-
nality, but not the result. We had to redo our work giving a step backwards
and changing the definition in order to formalize the theorem.
Another example of difficulties: the isomorphism in chapter 13, which takes
up a page in the book, it has turned into the longer proof of our development.
Furthermore, writting the documentation in English is not simple, I had

220 Conclusions

never written so much text in English and I didn’t use it in a habitual way
since several years, so the beginning was hard. In addition, it is clear that a
person doesn’t have the same fluency writing in English than in his mother
tongue. In fact, at first it was not planned to make it in English and a great
part of the code of our development was written in Spanish. We had to
translate it, with the loss of time that it caused. Moreover, I had to catch
up with LATEX because we had never used before.
To sum up, the reasons of they delay in our project are:

• The difficulty to estimate the length of this kind of project.

• Proofs longer and harder than we had expected (for example, to prove
that an n-dimensional finite vector space over a field K is isomorphic to
Kn, which in the book takes up only one page, we had to develop the
file ISOMORPHISM.THY which takes up 3500 code lines, i.e. about
100 pages).

• Need to create the theory of indexed sets.

• Documentation and code in English.

• Need to learn to write in LATEX.

Bibliography

[1] P. Halmos. Finite-dimensional vector spaces. Springer, 1974.

[2] http://www.unirioja.es/cu/jodivaso

[3] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
2011. http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/

Isabelle2011/doc/classes.pdf

[4] Clemens Ballarin. Tutorial to Locales and Locale Interpre-
tation. 2010. http://www.cl.cam.ac.uk/research/hvg/Isabelle/

dist/Isabelle2011/doc/locales.pdf

[5] Clements Ballarin. The Isabelle/HOL Algebra Library. 2010.
http://cl-informatik.uibk.ac.at/users/clemens/research/

algebra.pdf

[6] http://leccionesdemate.blogspot.com/2009/03/

que-es-una-estructura-algebraica.html

[7] G. Bauer, T. Nipkow. . . . Theory Rings of Isabelle/HOL http://

isabelle.in.tum.de/library/HOL/Rings.html

[8] Departamento de Matemáticas, CCIR/ITESM. Teoŕıa de la Dimensión
en Espacios Vectoriales. 2009. www.mty.itesm.mx/etie/deptos/m/

ma95-843/lecturas/l843-44.pdf

[9] http://planetmath.org/encyclopedia/

EveryVectorSpaceHasABasis.html

[10] http://afp.sourceforge.net/entries/Cauchy.shtml

[11] Sheldon Axler. Linear Algebra Done Right. Springer, 2004.

http://www.unirioja.es/cu/jodivaso
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2011/doc/classes.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2011/doc/classes.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2011/doc/locales.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2011/doc/locales.pdf
http://cl-informatik.uibk.ac.at/users/clemens/research/algebra.pdf
http://cl-informatik.uibk.ac.at/users/clemens/research/algebra.pdf
http://leccionesdemate.blogspot.com/2009/03/que-es-una-estructura-algebraica.html
http://leccionesdemate.blogspot.com/2009/03/que-es-una-estructura-algebraica.html
http://isabelle.in.tum.de/library/HOL/Rings.html
http://isabelle.in.tum.de/library/HOL/Rings.html
www.mty.itesm.mx/etie/deptos/m/ma95-843/lecturas/l843-44.pdf
www.mty.itesm.mx/etie/deptos/m/ma95-843/lecturas/l843-44.pdf
http://planetmath.org/encyclopedia/EveryVectorSpaceHasABasis.html
http://planetmath.org/encyclopedia/EveryVectorSpaceHasABasis.html
http://afp.sourceforge.net/entries/Cauchy.shtml

222 BIBLIOGRAPHY

[12] Gertrud Bauer. The Hahn-Banach Theorem for Real Vec-
tor Space http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/

library/HOL/Hahn_Banach/document.pdf

[13] Formath project http://wiki.portal.chalmers.se/cse/pmwiki.

php/ForMath/ForMath

[14] Top 100 theorems in Isabelle. http://www.cse.unsw.edu.au/~kleing/
top100/

[15] de Bruijn factor. http://www.cs.ru.nl/~freek/factor/

[16] http://en.wikipedia.org/wiki/Quotient_space_%28linear_

algebra%29

[17] Thomas C. Hales. Formal Proof.

[18] Roman Murawsky. The present state of mechanized deduction, and
the present knowledge of its limitations.

[19] Freek Wiedijk. Formal Proof-Getting Started.

[20] A. Wiles. Modular elliptic curves and Fermat’s Last THeorem, Annals
of Mathematics 141 (3) 1995, 443-551.

[21] http://www.cs.ru.nl/~freek/100/

[22] Jesús Maŕıa Aransay Azofra and César Doḿınguez Pérez.
Demostración asistida por ordenador.

[23] H. Hudson. No basta con cuatro colores, La Gaceta de la RSME 8 (2)
2005, 361-368.

[24] P. J. Miana and N. Romero. La historia de la conjetura de Kepler.
In Contribuciones cient́ıficas en honor a Mirian Andrés Gómez, 367-
374. L. Lambán, A. Romero y J. Rubio eds., Servicio de Publicaciones
de la Universidad de La Rioja, 2010.

[25] T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle/HOL: A proof
assistant for higher order logic, vol. 2283, Lecture Notes in Computer
Science, Springer (2002).

http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/library/HOL/Hahn_Banach/document.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/library/HOL/Hahn_Banach/document.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://www.cse.unsw.edu.au/~kleing/top100/
http://www.cse.unsw.edu.au/~kleing/top100/
http://www.cs.ru.nl/~freek/factor/
http://en.wikipedia.org/wiki/Quotient_space_%28linear_algebra%29
http://en.wikipedia.org/wiki/Quotient_space_%28linear_algebra%29
http://www.cs.ru.nl/~freek/100/

BIBLIOGRAPHY 223

[26] J.C. Blanchette, L. Bulwahn and T. Nipkow. Automatic Proof
and Disproof in Isabelle/HOL. Fakultät f”u Informatik, Technische Uni-
versität München.

[27] M. Wenzel with several contributions. The Isabelle/Isar Ref-
erence Manual. http://www.cl.cam.ac.uk/research/hvg/isabelle/
dist/Isabelle2011/doc/isar-ref.pdf 2011.

[28] M. Wenzel and Stefan Berghofer. The Isabelle System
Manual. http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/

Isabelle2011/doc/system.pdf 2011.

[29] S. Schulz. System Description: E 0.81. In: Basin, D.m Rusinowitch,
M. (eds.) IJCAR 2004. LNAI, vol 3097, pp. 223-228. Springer, 2004.

[30] C. Weidenbach. Combining superposition, sorts and splitting. Hand-
book of Automated Reasoning. pp. 1965-2013. Elsevier, 2001.

[31] A. Riazanov and A. Voronkov. The design and implementation of
Vampire. AI Comm., 91-110. 2002.

[32] C. Barrett, C. Tinello. CVC3. LNCS, vol. 4590, pp. 298-302.
Springer, 2007.

[33] B. Dutertre and L. de Moura. The Yices SMT solver (2006).
http://yices.csl.sri.com/tool-paper.pdf

[34] L. de Moura, N. Bjørner. Z3: An efficient SMT solver. LNCS, vol
4963, pp. 337-340. Springer, 2008.

[35] S. Böhme and T. Nipkow. Sledgehammer: Judgement Day. LNAI,
vol. 6173, pp. 107-121. Springer, 2010.

[36] Bauer and Wenzel. Calculational Reasoning revisited – An Is-
abelle/Isar Experience.

[37] A. Krauss. Defining recursive functions in Isabelle/HOL. http://

isabelle.in.tum.de/doc/functions.pdf

[38] A. Church. A formulation of the simple theory of types, The Journal
of Symbolic Logic 5 (2) (1940), 56–68.

http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/isar-ref.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/isar-ref.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/system.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/system.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf

224 BIBLIOGRAPHY

[39] J.C. Blanchette. A User’s Guide to Sledgehammer for Is-
abelle/HOl. http://www.cl.cam.ac.uk/research/hvg/isabelle/

dist/Isabelle2011/doc/sledgehammer.pdf

http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/sledgehammer.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/sledgehammer.pdf

	Introduction
	Management
	Mathematical Definitions
	Theorem proving: Isabelle
	Some ideas on theorem proving
	Isabelle introduction by example
	Locales and Abstract Algebra

	Fields
	Vector spaces
	Examples
	Comments
	Linear dependence
	Linear combinations
	Sets indexation
	Linear combinations

	Bases
	Definitions
	Theorems

	Dimension
	Theorems
	Definition and other dimension theorems

	Isomorphism
	Definition of Kn
	Canonical basis
	Bijection between basis
	Properties of Canonical Basis
	Linear maps
	Defining the isomorphism between Kn and V

	Subspaces
	Future Work
	Conclusions
	Management conclusions

