Jose Divasón Mallagaray

July 24, 2013

1 Previous definitions and results

Definition. A matrix A is said to be in reduced row echelon form up to the column k if:

- 1. All rows consisting only of 0's up to the position k appear at the bottom of the matrix.
- 2. In any nonzero row up to the position k, the first nonzero entry is a 1. This entry is called a leading entry.
- 3. For any two consecutive nonzero rows up to the position k, the leading entry of the lower row is to the right of the leading entry of the upper row.
- 4. Any column that contains a leading entry has 0's in all other positions.

Definition. A matrix A is said to be in reduced row echelon form if it is in reduced row echelon form up to the last column. Equivalently, a matrix A is said to be in reduced row echelon form if:

- 1. All rows consisting only of 0's appear at the bottom of the matrix.
- 2. In any nonzero row, the first nonzero entry is a 1. This entry is called a leading entry.
- 3. For any two consecutive rows, the leading entry of the lower row is to the right of the leading entry of the upper row.
- 4. Any column that contains a leading entry has 0's in all other positions.

Theorem. Let \mathbb{F} be a field. Given any matrix $A \in \mathbb{F}^{n \times m}$, there exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ such that G = P * A, where G is in reduced row echelon form (G is the reduced row echelon form of A).

2 Demonstration

Theorem. Given an invertible matrix A of dimension $n \ (A \in \mathbb{F}^{n \times n})$, its reduced row echelon form is the identity matrix.

Proof. From here on, we abbreviate *reduced row echelon form* as *rref.* Let G be the *rref* of A. G is invertible because it is a product of invertible matrices (there exists an invertible matrix P such that G = P * A holds).

To make easier the proof, we reformulate the result. We will prove that G is an identity matrix up to any position (k, k). In particular, when k = n the whole matrix will be the identity.

We make the proof by induction on k. Suppose that G contains the identity matrix up to the position (k, k) included:

			$_{k}$	k+1			
	(1	0	0	*	*		*)
	0	1	0	*			*
$_{k}$	0	0	1	*			*
$k{+}1$	*			*			*
	*						*
	/ *				• • •	• • •	* /

We want to prove that G contains the identity matrix up to the position (k+1, k+1).

We know that G is in *rref*, so particularly it is in *rref* up to the columns k and k + 1. We have to demonstrate two facts:

- 1. $G_{jj} = 1$ where $j \leq k+1$
- 2. $G_{ij} = 0$ where $i \neq j, i \leq k+1$ and $j \leq k+1$.

We start with the first fact and applying cases on j:

- If $j \leq k$ the result is trivially proved by induction hypothesis.
- If j = k + 1, then the row k is the greatest nonzero row up to the position k (included). Hence, the rows below it contain zeroes up to the position k (included) due to the first condicion of *rref* up to k (G is in *rref* up to the column k):

			$_{k}$	k+1		
	(1	0	0	*	*	 *)
	0	1	0	*		 *
$_{k}$	0	0	1	*		 *
k+1	0		0	*		 *
	0		0	*		 *
	0		0	*		 *)

Then, why $G_{k+1,k+1} = 1$? We proceed by *reductio ad absurdum*. We suppose that $G_{k+1,k+1} \neq 1$ and we apply once again cases.

- If $G_{k+1,k+1} \neq 0$ then we obtain a contradiction using the second condition of *rref* up to k+1 (the row k+1 would have a leading entry different to 1).
- If $G_{k+1,k+1} = 0$ then we have:

			$_{k}$	$k{+}1$		
	/ 1	0	0	*	*	 *)
	0	1	0	*		 *
$_{k}$	0	0	1	*		 *
k+1	0		0	0		 *
	*				• • • •	 *
	/ *					 * /

and thanks to the first condition of rref up to k + 1 we know that:

			$_{k}$	k+1			
	/ 1	0	0	* * 0 0 0	*		*)
	0	1	0	*			*
$_{k}$	0	$ \begin{array}{c} 1\\ 0\\ \dots\end{array} $	1	*		· · · · · · ·	*
k+1	0		0	0			*
	0		0	0			*
	0		0	0			* /

But then we could write the column k + 1 as a linear combination of the previous ones, which is a contradiction because G won't be invertible.

Thus $G_{jj} = 1$. Finally we have to prove the second fact $(G_{ij} = 0$ where $i \neq j, i \leq k + 1$ and $j \leq k + 1$). Applying cases:

- If $i \leq k$ and $j \leq k$, the result is trivially proved by induction hypothesis.
- If i = k + 1 and $j \le k$ then the result has been already demonstrated. In the previous fact, we have proved that all rows below the k - th one contain zeroes up to the position k (included).
- If $i \leq k$ and j = k + 1, then $G_{ij} = 0$ making use of the fourth condition of *rref* up to k + 1.

Then: