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1 Previous definitions and results

Definition. A matrix A is said to be in reduced row echelon form up to the
column k if:

1. All rows consisting only of 0’s up to the position k appear at the bottom
of the matrix.

2. In any nonzero row up to the position k, the first nonzero entry is a 1.
This entry is called a leading entry.

3. For any two consecutive nonzero rows up to the position k, the leading
entry of the lower row is to the right of the leading entry of the upper row.

4. Any column that contains a leading entry has 0’s in all other positions.

Definition. A matrix A is said to be in reduced row echelon form if it is in
reduced row echelon form up to the last column. Equivalently, a matrix A is
said to be in reduced row echelon form if:

1. All rows consisting only of 0’s appear at the bottom of the matrix.

2. In any nonzero row, the first nonzero entry is a 1. This entry is called a
leading entry.

3. For any two consecutive rows, the leading entry of the lower row is to the
right of the leading entry of the upper row.

4. Any column that contains a leading entry has 0’s in all other positions.

Theorem. Let F be a field. Given any matrix A ∈ Fn×m, there exists an
invertible matrix P ∈ Fn×n such that G = P ∗ A, where G is in reduced row
echelon form (G is the reduced row echelon form of A).

2 Demonstration

Theorem. Given an invertible matrix A of dimension n (A ∈ Fn×n), its reduced
row echelon form is the identity matrix.

Proof. From here on, we abbreviate reduced row echelon form as rref. Let G
be the rref of A. G is invertible because it is a product of invertible matrices
(there exists an invertible matrix P such that G = P ∗A holds).
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To make easier the proof, we reformulate the result. We will prove that G
is an identity matrix up to any position (k, k). In particular, when k = n the
whole matrix will be the identity.

We make the proof by induction on k. Suppose that G contains the identity
matrix up to the position (k, k) included:



k k+1

1 0 0 * * . . . ∗
0 1 0 * . . . . . . ∗

k 0 0 1 * . . . . . . ∗
k+1 ∗ . . . . . . ∗ . . . . . . ∗

∗ . . . . . . . . . . . . . . . ∗
∗ . . . . . . . . . . . . . . . ∗


We want to prove that G contains the identity matrix up to the position

(k + 1, k + 1).
We know that G is in rref, so particularly it is in rref up to the columns k

and k + 1. We have to demonstrate two facts:

1. Gjj = 1 where j ≤ k + 1

2. Gij = 0 where i 6= j, i ≤ k + 1 and j ≤ k + 1.

We start with the first fact and applying cases on j:

• If j ≤ k the result is trivially proved by induction hypothesis.

• If j = k + 1, then the row k is the greatest nonzero row up to the position
k (included). Hence, the rows below it contain zeroes up to the position
k (included) due to the first condicion of rref up to k (G is in rref up to
the column k):



k k+1

1 0 0 * * . . . ∗
0 1 0 * . . . . . . ∗

k 0 0 1 * . . . . . . ∗
k+1 0 . . . 0 * . . . . . . ∗

0 . . . 0 * . . . . . . ∗
0 . . . 0 * . . . . . . ∗


Then, why Gk+1,k+1 = 1? We proceed by reductio ad absurdum. We
suppose that Gk+1,k+1 6= 1 and we apply once again cases.

– If Gk+1,k+1 6= 0 then we obtain a contradiction using the second
condition of rref up to k + 1 (the row k + 1 would have a leading
entry different to 1).

– If Gk+1,k+1 = 0 then we have:
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

k k+1

1 0 0 * * . . . ∗
0 1 0 * . . . . . . ∗

k 0 0 1 * . . . . . . ∗
k+1 0 . . . 0 0 . . . . . . ∗

∗ . . . . . . . . . . . . . . . ∗
∗ . . . . . . . . . . . . . . . ∗


and thanks to the first condition of rref up to k + 1 we know that:



k k+1

1 0 0 * * . . . ∗
0 1 0 * . . . . . . ∗

k 0 0 1 * . . . . . . ∗
k+1 0 . . . 0 0 . . . . . . ∗

0 . . . 0 0 . . . . . . ∗
0 . . . 0 0 . . . . . . ∗


But then we could write the column k + 1 as a linear combination
of the previous ones, which is a contradiction because G won’t be
invertible.

Thus Gjj = 1. Finally we have to prove the second fact (Gij = 0 where
i 6= j, i ≤ k + 1 and j ≤ k + 1). Applying cases:

• If i ≤ k and j ≤ k, the result is trivially proved by induction hypothesis.

• If i = k + 1 and j ≤ k then the result has been already demonstrated.
In the previous fact, we have proved that all rows below the k − th one
contain zeroes up to the position k (included).

• If i ≤ k and j = k + 1, then Gij = 0 making use of the fourth condition
of rref up to k + 1.

Then:



k k+1

1 0 0 0 * . . . ∗
0 1 0 0 * . . . ∗

k 0 0 1 0 * . . . ∗
k+1 0 0 0 1 * . . . ∗

0 . . . 0 0 * . . . ∗
0 . . . 0 0 * . . . ∗


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