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Abstract. In this work we present the formalization of some well-known results in
Abstract Algebra with the proof assistant Isabelle/HOL. Our interest focuses in finite-
dimensional vector spaces, and our proposal is to closely follow the presentation made in a
popular book of the field by P. R. Halmos. The main result in this work proves that every
finite-dimensional vector space V over a field K is isomorphic to Kn, with n the dimension
of V . In the way to this result we had to make relevant choices on the representation of
algebraic structures in the theorem prover, from which we inform in the paper. We also
report on some informal “pen & pencil” proofs and arguments presented in Halmos, that
we had to turn into algorithms for the proof assistant to accept them. The work fills a
gap in our project of computing properties of generic finite-dimensional vector spaces by
means of matricial algebra over fields, since it formally proves that both constructions are
isomorphic.

Introduction

The Formath project [2] of the European Commission points out as one of its goals the
formalization of the computation of an invariant of topological spaces known as homology
groups. This involves computing the Smith Normal form of the incidence matrices of the
topological space. The simplification of the original problem to the computation of the
Smith Normal form relies on the possibility of representing finite-dimensional vector spaces
over a given field K by means of their isomorphic counterparts, Kn.

This result of Abstract Algebra has been used as a case study in the proof assistant
Isabelle/HOL [5] to improve the knowledge of the system features to cope with finite-
dimensional algebraic structures. At the same time, we wanted to learn about the diffi-
culties that could emerge when a mathematical textbook is chosen to accurately follow its
definitions, lemmas and proofs in a formalization project. In our work, the book chosen was
an undergraduate textbook (“Finite-Dimensional Vector Spaces” by P. R. Halmos [4]). The
reasons are that it almost does not assume previous facts and gives detailed proofs (from a
traditional point of view) of every result.

It is generally assumed by mathematicians that mathematical texts (ranging from research
papers to textbooks) are not always as precise (and sometimes even correct) as they should
be (see for instance [3]), and thus in our work we had to cope with such inaccuracies.

The article is divided as follows: Section 1 introduces Isabelle, with a remark in the HOL-
Algebra library. Section 2 presents our formalization of definitions, lemmas and proofs given
in Halmos. Simultaneously, we comment on the differences between both versions.
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1. Isabelle/HOL and algebraic structures

Isabelle is a generic theorem prover framework, since it permits the implementation of
different logical systems on top of it. From these logical settings, the most popular one
is Isabelle/HOL, which consists of an implementation of Higher-Order Logic (HOL). The
HOL type system is rather simple, based on inductive data types, functional types (between
already existing types), product types and type variables. Proofs are built by means of
logical rules; statements must be expressions of bool type, and proofs are carried out by
successive applications of rules or tactics, which are functions from type bool into bool.

Along the years Isabelle/HOL has evolved into a complex system including features which
greatly improve the user experience. Some milestones in mathematics (the prime number
theorem, the Fundamental Theorem of Algebra) have been reached, placing the feasibility
of our project out of discussion. Nevertheless, the different proving efforts carried out in the
system usually start from scratch and do not pay attention to code reusing. Even so, the
system offers a library, being one of its parts devoted to Algebra. One of our aims in this
work was to reuse previous definitions and results, that we briefly present in this section.

Algebraic structures in the HOL-Algebra library are implemented by means of record
structures (record types are implemented as product types in which fields are labeled),
where the domain of the algebraic structure and its operations are fields of the record. As
an example, monoids are represented in the system in the following way:

record ’a monoid =
carrier :: "’a set"
mult :: "[’a, ’a] ⇒ ’a" ( infixl "⊗ı" 70)
one :: ’a ("1ı")

The previous type represents every record with the aforementioned fields. Nevertheless,
some requirements over its operations must be satisfied. These are introduced by means of
a locale, a kind of module, which consists in a collection of conditions over terms of type
monoid giving place to a monoid predicate:

locale monoid =
fixes G (structure)
assumes " [[x ∈ carrier G; y ∈ carrier G ]] =⇒ x ⊗ y ∈ carrier G"
and " [[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G ]] =⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and "1 ∈ carrier G" and "x ∈ carrier G =⇒ 1 ⊗ x = x" and "x ∈ carrier G =⇒ x ⊗ 1 = x"

The previous representation is not the only one in the system for algebraic structures. This
one is particular in that it includes the carrier set of algebraic structures as an additional
field, allowing us to represent special subsets (like the kernel of a morphism) in the same
way algebraic structures are (just by replacing the carrier set by the corresponding one).

The HOL-Algebra library also provides definitions for abelian and multiplicative monoids,
groups, and then structures such as rings and fields. Additionally, it contains proofs of
properties over these structures and some additional tactics that automatize some proofs
about addition, substraction or distributivity of elements. The library is not so rich in
results relating these algebraic structures (for instance, it does not contain basic operations
on morphisms between algebraic structures).
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2. Implementation of Halmos’ textbook in Isabelle

In this section we closely follow the first chapter of [4]. The book starts with a subsection
where fields are introduced. Its Isabelle definition is already present in the HOL-Algebra
library, based on a “record + locale” structure. We proved in Isabelle some basic properties,
such as (−α)(−β) = αβ. Proofs were exclusively based on equational reasoning.

Next subsection of Halmos presents the notion of vector space, not present in the library.
We define a vector space V over a given field K by means of a locale which includes structures
K and V , multiplication by scalars ·V , and the assumptions of K being a field, V being
an abelian group, and ·V satisfying α(βx) = (αβ)x, 1x = x, α(x + y) = αx + αy and
(α + β)x = αx + βx, where α, β, 1 ∈ K and x, y ∈ V (no notion of finiteness has been
introduced yet). In addition to providing a locale which represents vector spaces, we proved
in Isabelle that any field K over itself is a vector space (with field multiplication as scalar
operation); we also proved that for any natural n, Kn is a vector space over K (with pointwise
multiplication as scalar product); we report later on the implementation of Kn.

The next relevant subsection in Halmos presents the notion of linear dependence. Quoting
Halmos, “a finite set {xi} of vectors is linearly dependent if there exists a corresponding set
{αi} of scalars, not all zero, such that

∑
i αi · xi = 0.”; accordingly “if

∑
i αi · xi = 0

implies that αi = 0 for each i, the set {xi} is linearly independent”. We must observe
that {xi} is not simply a set, the author implicitly assumes the existence of an indexation
among its elements. We preferred calling such structure an indexed set (or a sequence).
Our Isabelle implementation of indexed sets A = {xi}i∈{1...n} has been done by means of a
cartesian product of the underlying set of elements and a bijection between {0 . . . (n − 1)}
and {x1 . . . xn}. Accordingly, definitions for operations on sequences (insertion and removal)
had to be defined. Additionally, we had to make use of libraries for finite sums.

In a somehow surprising way, next subsection of Halmos introduces the notion of linear
combination. Prior to the notion of basis, a theorem claiming that “the set of non-zero vectors
x1 . . . xn is linearly dependent if and only if some xk, 2 ≤ k ≤ n, is a linear combination of
the preceding ones” is proved; the result will be useful later. Halmos introduces in a new
subsection the notions of basis and finite-dimensional vector spaces, as the ones containing
a finite basis. The next interesting result claims that, in any finite-dimensional vector space
V , “every linearly independent set can be extended to a basis”. The argument of the proof is
interesting; we consider any set {y1, . . . , ym} of linear independent vectors and let {x1 . . . xn}
be a finite basis of V . We build the set {y1 . . . ym, x1 . . . xn} (we can observe here that the
indexing function of the sequence has to be modified accordingly). The span of this set is
equal to V , and it is linearly dependent, so we can remove the least element being a linear
combination of the preceding ones (this element must be proven to be between x1 and xn).
We can either reach a linearly independent set or iteratively remove the following one. Being
this process terminating, a linear independent set whose span is V (thus, a basis) is reached.
The previous argument has an algorithmic nature that is implemented in Isabelle by means
of a tail recursive function. This fact is indeed relevant, since the previous algorithm is not
a total function (its result would be unexpected over ill-formed sequences), and the system
has facilities that allow to introduce tail recursion under adequate termination conditions.

The next subsection proves that every two basis of a finite-dimensional vector space V
have equal cardinality. The proof is based in a result which claims that for {x1 . . . xn} any
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linear independent set and {y1 . . . ym} any generating set (a set whose span is equal to V ),
n ≤ m. The proof is done by reductio ad absurdum: let us assume that m < n. A new set
{x1, y1 . . . ym} is defined, which is generating and linearly dependent. Thus, some element
yi can be removed preserving the generating property. Iterating this process m times, a
generating set {xm . . . x1} is obtained; thus, any element {xi|m+1 ≤ i ≤ n} is combination
of {x1 . . . xm}, but {x1 . . . xn} was independent by hypothesis, so we reach a contradiction.
Hence, n ≤ m. Consequently, given X,Y any two basis, by symmetry, they contain the
same number of elements. The previous artifact is implemented by means of a recursive
function which is then applied exactly m times.

Next subsection of Halmos proves that “every n-dimensional vector space V over a field
K is isomorphic to Kn”. The first concern is to produce a suitable representation of Kn,
being that Isabelle does not support dependent types. We came across the idea of defining
elements of Kn as functions from nat to the underlying type of K, that map every element
0 ≤ i < n to elements of K, and every element n ≤ i to 0K. This last condition allows
to compare elements of Kn through functions’ extensional equality. In addition to this, we
defined in Isabelle linear transformations, which are introduced in Halmos much later (even
if they are implicitly used in this proof); we defined an isomorphism between the elements of
the corresponding basis of V and Kn, and extended it to the remaining elements by linearity.

Conclusions

In this paper we have tried to describe a naive attempt of formalization of a textbook in
Abstract Algebra. Along the process of formalization we have had to face the lack of relevant
details in definitions (as the one of sequences) or proofs (as the proof of V and Kn being
isomorphic, which takes 5 lines in Halmos and ca. 3.500 in our Isabelle implementation,
including previous definitions and facts). The effort has been worth, since we have produced
interesting Isabelle libraries (a definition of finite vector spaces, a library for working with
sequences or the definition of Kn for any field K). We also have learned to implement
some loose mathematical arguments (the ones in the proofs about linearly independent sets
and the dimension of basis), in the form of recursive functions. These arguments pose a
computational (or constructive) content, that has emerged explicitly in their formalization.
Some of the definitions that we have formalized have been presented in other systems (for
instance, in the proof assistant Mizar [6]), but they did not focus on finite-dimensional vector
spaces and their dimension. The complete Isabelle development is available from [1].
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