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Abstract

In this paper, we present a formalisation in a proof assistant, Isabelle/HOL, of a naive version of the
Gauss-Jordan algorithm, with explicit proofs of some of its applications; and, additionally, a process
to obtain versions of this algorithm in two different functional languages (SML and Haskell) by
means of code generation techniques from the verified algorithm. The aim of this research is not
to compete with specialised numerical implementations of Gauss-like algorithms, but to show that
formal proofs in this area can be used to generate usable functional programs. The obtained programs
show compelling performance in comparison to some other verified and functional versions, and
accomplish some challenging tasks, such as the computation of determinants of matrices of big
integers and the computation of the homology of matrices representing digital images.
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1 Introduction

Computer Algebra systems are used nowadays in very different environments and, after
years of continuous improvement, with an ever increasing level of confidence. Despite
this, these systems focus intensively on performance, and their algorithms are subject
to continuous refinements and modifications, which can unexpectedly lead to losses of
accuracy or correctness. On the other hand, Theorem Provers are specifically designed
to prove the correctness of program specifications and mathematical results. This task is
far from trivial, except for standard introductory examples, and it has a significant cost in
terms of performance, paying off exclusively in terms of the simplicity and the insight of
the programs one is trying to formalise.

Fortunately, after years of continuous work, theorem proving tools have reduced this
well-known gap, and the technology they offer is being used to implement and formalise
state of the art algorithms and generate programs to, usually, functional languages, with
remarkable performance (see for instance (Esparza et al., 2013; Sternagel, 2013)). Code
generation is a well-known and admitted technique in the field of Formal Methods. Avigad
and Harrison in a recent survey about formally verified Mathematics (Avigad & Harrison,
2014), enumerate three different strategies to verify “mathematical results obtained through
extensive computations”; the third one is presented as “to describe the algorithm within the
language of the proof checker, then extract code and run it independently”.

In this work, following the third strategy quoted above, we present an experiment
to formalise a version of the Gauss-Jordan algorithm (Strang, 2009) over matrices in
the theorem prover Isabelle/HOL (Nipkow et al., 2002). The algorithm computes the
reduced row echelon form of a matrix, which is then proved to be applicable to solve
standard problems in Linear Algebra, such as computing the rank of matrices, computing
determinants and inverses, solving systems of linear equations, and computing bases of
fundamental subspaces of matrices. These verified algorithms are later code-generated
to the functional languages SML (Milner et al., 1997) and Haskell (Haskell, 2014). The
algorithm that we implement is neither specialised, nor obtained from a Computer Algebra
system, but is just a simple version of the Gauss-Jordan algorithm designed to ease its
formalisation. Nevertheless, the utility of our work is threefold.

http://www.unirioja.es/cu/jearansa
http://www.unirioja.es/cu/jodivaso
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First, it sets a framework in which formalisation of Linear Algebra results,
implementation of algorithms, and code generation to functional programs is achieved
with an affordable effort, by using well-established tools. Second, it shows that the
performance of the generated code is enough (even if it is not comparable to specialised
programs in Computer Algebra) to obtain interesting computations (such as determinants
with big integers that disclosed a bug in Mathematica R© (Durán et al., 2014) and relevant
properties of digital images). Finally, it shows that the ties between matrix algorithmics
and Linear Algebra can be established thanks to the Isabelle/HOL Multivariate Analysis
Library (HMA, 2014) infrastructure (a property that is harder to find in Computer Algebra
systems).

The paper will be divided as follows: in Section 2 we introduce the Isabelle/HOL
theorem prover and the infrastructure in such a system that is used in our work; we
distinguish among the parts which are already in the system, and the new components
that are product of our own work. In Section 3, we present a version of the Gauss-Jordan
algorithm over fields, as well as the different applications of it that we have formalised in
Isabelle/HOL. In Section 4, we present the code generation process from the formalised
Isabelle algorithm to the running versions in SML and Haskell. In Section 5 we introduce
some case studies in which the generated algorithms show their usefulness, and some
relevant related work. The source files of the development are available at (Aransay &
Divasón, 2014c); they have been developed under the Isabelle 2013-2 version. The previous
website also includes the SML and Haskell code generated from the Isabelle specifications,
an implementation of the algorithm in C++, which performance is compared to ours,
and some input matrices that have been used for profiling and benchmarking. Finally, in
Section 6, we draw some conclusions and possible research lines that follow from our
work.

2 Isabelle

2.1 Isabelle/HOL

Isabelle (Paulson, 1990) is a generic theorem prover which has been instantiated to support
different object-logics, from which higher-order logic (or briefly, HOL (Nipkow et al.,
2002)) is the one that offers a greatest number of facilities to the user, some of which
will be relevant to our work (such as code generation, see Section 2.3). The HOL type
system is based on non-empty types, function types (⇒) and type constructors of different
arities ( list, × ) that can be applied to already existing types (nat, bool) and type
variables (α,β ). Types can be also introduced by enumeration (bool) or by induction, as
lists (by means of the datatype command). Additionally, new types can be also defined
as non-empty subsets of already existing types (α) by means of the typedef command; the
command takes a set defined by comprehension over a given type {x :: α | Px}, and defines
a new type σ .

Isabelle also introduces type classes in a similar fashion to Haskell; a type class is defined
by a collection of operators (over a single type variable) and premises over them. For
instance, the HOL Multivariate Analysis Library has a type class field representing the
algebraic structure. Concrete types (real, rat) can be proven to be instances of a given type
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class (field in our example). Type classes are also used to impose additional restrictions
over type variables; for instance, the expression (x :: α :: field) imposes the constraint that
the type variable α possesses the structure and properties stated in the field type class, and
can be later replaced exclusively by types which are instances of that type class.

2.2 HOL Multivariate Analysis

The HOL Multivariate Analysis (or HMA for short) Library (HMA, 2014) is a set of
Isabelle theories which contains theoretical results in mathematical fields such as Analysis,
Topology and Linear Algebra. They are based on the impressive work of J. Harrison in
HOL Light (Harrison, 2013), which includes proofs of intricate theorems (such as the
Stone-Weierstrass theorem) and has been used as a basis for appealing projects such as
the formalisation of the proof of the Kepler conjecture by T. Hales (Hales & Ferguson,
2011). Among the fundamentals of the library, one of the keys is the representation of
n-dimensional vectors over a given type (Fn, where F stands for a generic field, or in
Isabelle jargon a type variable α :: field).

The idea (first presented by Harrison in (Harrison, 2005)) is to represent n-dimensional
vectors (type vec) over α by means of functions from a finite type variable β :: finite to
α , where card(β ) = n (the cardinal of a type can be interpreted as an abuse of notation; it
really stands for the cardinal of the universe set of such a type). For proving purposes, this
type definition is usually sufficient to support the generic structure Fn.

The Isabelle vec type definition is as follows; the functions vec-nth and vec-lambda are
the morphisms between the abstract data type vec and the underlying concrete data type,
functions with finite domain (additional restrictions over α and β are added only when
required for formalisation purposes):

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set

morphisms vec-nth vec-lambda ..

The previous type also admits in Isabelle the shorter notation α β̂ . The idea of using
underlying finite types for vectors indices has great advantages from the formalisation
point of view, as already pointed out by Harrison. For instance, the type system can be
used to guarantee that operations on vectors (such as addition and multiplication) are only
performed over vectors of equal dimension, i.e., vectors whose indexing types are exactly
the same (this would not be the case if we were to use, for instance, lists as vectors).
Moreover, the functional flavour of operations and properties over vectors is kept (for
instance, vector addition can be defined in a pointwise manner).

The representation of matrices is then derived in a natural way based on the
representation of vectors by iterating the previous construction (matrices over a type α

will be terms of type α m̂ n̂, where m and n stand for finite type variables).
A subject that has not been explored either in the Isabelle HMA Library, or in HOL

Light, is the possibility to execute the previous data types and operations. Another aspect
that has not been explored in the HMA Library is algorithmic Linear Algebra. One of the
novelties of our work is to establish a link between the HMA library and a framework
where algorithms can be represented and also executed.
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Our work also enhances the HMA Library by generalising some of the definitions and
mathematical results presented there over type classes representing real vector spaces and
euclidean spaces (such as for instance matrices, determinants and associated lemmas) to
more general type classes and locales representing vector spaces and finite dimensional
vector spaces over a generic field F (of any characteristic). This limitation had been pointed
out in some previous developments over this Library (see, for instance (Avigad et al.,
2014)). This will enable us to carry out computations over any field, such as Fp, Q, R
and C. This generalisation is thoroughly described in (Aransay & Divasón, 2015). It has
involved the introduction of new structures (locales and type classes), the reproduction of
some previous definitions and proofs in those structures, and also in some particular cases
the formalisation of different proofs for results that hold both in a generic field F and in
R, but whose previous proofs in R made use of specific properties of such a structure.
We present in Sections 4 and 5 further details involving computations over Z2, Q and R
matrices.

2.3 Code Generation

Another interesting feature of Isabelle/HOL is its code generation facility (Haftmann,
2013). Its starting point are specifications (in the form of the different kinds of definitions
supported by the system) whose properties can be stated and proved, and (formalised)
rewriting rules that express properties from the original specifications. From the previous
code equations, a shallow embedding from Isabelle/HOL to an abstract intermediate
functional language (Mini-Haskell) is performed. Finally, trivial transformations to the
functional languages SML, Haskell, Scala and OCaml are performed. The expressiveness
of HOL (such as for instance universal and existential quantifiers and the Hilbert’s ε

operator) is not that of functional programming languages, and therefore one must restrict
herself to use Isabelle “executable” specifications, if she aims at generating code from them
(or prove code equations that refine non-executable specifications to executable ones).

One weakness of this methodology is the different semantics among the source Isabelle
constructs and their functional languages counterparts; this gap can be narrowed to a
minimum, since the tool is based on a partial correctness principle. This means that
whenever an expression v is evaluated to some term t, t = v is derivable in the equational
semantics of the intermediate language, see (Haftmann & Nipkow, 2010) for further
details. Then, from the intermediate language, the code generation process can proceed
to the functional languages by means of the aforementioned trivial transformations,
or, in a broadly accepted way of working (Avigad & Harrison, 2014; Esparza et al.,
2013; Haftmann et al., 2013), ad-hoc serialisations to types and operations in the
functional languages library can be performed. These serialisations need to be trusted,
and, therefore, they are kept as simple as possible (in Section 4.1 we explicitly introduce
these transformations).

3 The Gauss-Jordan Algorithm and its Applications

In a previous work (Aransay & Divasón, 2014b), we formalised the Rank Nullity
Theorem of Linear Algebra. In our formalisation, it is established that, given V a finite-
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dimensional vector space over R, W a vector space over R, and τ ∈ L(V,W ) (a linear
map between V and W ), dim(ker(τ))+dim(im (τ)) = dim(V ) or, in a different notation,
null (τ)+ rk (τ) = dim(V ). We closely followed the proof in (Gockenbach, 2010), as
we follow here its notation. In our new development (Aransay & Divasón, 2014c), the
previous result has been generalised replacing R by a generic field F of any characteristic.
Unfortunately, having formalised the previous result does not provide us with an algorithm
that computes the dimension of the image and kernel sets of a given linear map.

As it has been formalised in (Aransay & Divasón, 2014c), every linear map between
finite-dimensional vector spaces over a field F is equivalent to a matrix Fm×n (once a pair
of bases have been fixed in both Fn and Fm), and, therefore, we can reduce the computation
of the dimensions of the range (or rank) and the kernel (or nullity) of a linear map to the
computation of the reduced row echelon form (Roman, 2008) (or rref ) of a matrix; the
number of nonzero rows of such matrix provides its rank, and the number of zero rows its
nullity. The Gauss-Jordan algorithm computes the rref of a matrix.

Algorithm 1 describes the Gauss-Jordan elimination process that inspired our Isabelle
formalisation. We must note that our Isabelle implementation of the algorithm differs from
Algorithm 1 since we have replaced side effects and imperative statements (such as for
loops) by standard functional constructs that are detailed below.

Algorithm 1 Gauss-Jordan elimination algorithm
1: Input: A, a matrix in Fm×n;
2: Output: The rref of the matrix A
3: l← 0; . l is the index where the pivot is placed
4: for k← 0 to (ncolsA)−1 do
5: if nonzero l (colk A) then . Check that col. k has a pivot over pos. l
6: i← index-nonzero l (colk A) . Let i be the such entry
7: A← interchange-rowsAi l . Rows i and l are interchanged
8: Al←mult-rowAl (1/Al k) . Row l is multiplied by (1/Al k)
9: for t← 0 to (nrowsA)−1 do

10: if t 6= l then . Row t is added row l times (−At k)
11: At← row-addAt l (−At k)
12: end if
13: end for
14: l← l +1
15: end if
16: end for

Algorithm 1 traverses the columns of the input matrix, finding in each column k an
element in the i-th row (the first nonzero element in a row greater than the index l);
if such an element (the pivot) exists, rows i and l are interchanged (if the matrix has
maximum rank, l will be equal to the column index, otherwise it will be smaller), and
the l-th row is multiplied by the inverse of the pivoted element; this row is then used to
perform row operations to reduce all remaining coefficients in column k to 0. If a column
does not contain a pivot, the algorithm processes the next column. The algorithm performs
exclusively elementary row operations.
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In our Isabelle specification, rows and columns are assigned finite enumerable (in the
sense that they admit an extensional definition) types, over which matrices are represented
as functions. We have replaced the operations in the previous algorithm that produce side
effects (for instance, interchange-rows, mult-row, row-add) by Isabelle functions whose
outputs are matrices. We have replaced the first (and outer) for loop ranging along the
columns indexes in the original algorithm by means of a fold operation of a list with the
desired indexes. The second (and inner) for loop, whose range is the rows of a given
column, is replaced by means of a lambda expression over the rows’ type (indeed, each
row is itself a function over this finite type).

Note that we have represented matrices by means of functions over the columns’ type
of a function over the rows’ type. The following Isabelle code snippets are presented
to provide a better understanding of the gap between Algorithm 1 and our Isabelle
implementation; additionally, they provide the complete Isabelle definition of the Gauss-
Jordan algorithm, in terms of elementary row operations.

The Isabelle definition Gauss-Jordan-in-pos shown below selects an index i greater than
l in the k-th column (line 6 in Algorithm 1), interchanges rows i and l (line 7), multiplies
the row l by the multiplicative inverse of the element in position (l,k) (line 8) and reduces
the rest of the rows of the matrix, by means of a lambda expression, which represents the
new created matrix (lines 9 to 13).

Gauss-Jordan-in-pos A l k =

(let

i = (LEAST n. A $ n $ k 6= 0 ∧ n ≥ l);

interchange-A = (interchange-rows A i l);

A’ = mult-row interchange-A l (1/interchange-A $ l $ k)

in

vec-lambda (λt. if t = l then A’ $ l

else (row-add A’ t l (-(interchange-A $ t $ k)))$ t))

The definition Gauss-Jordan-column finds a suitable pivot on column k of a matrix A,
starting from position i and then applies the previous operation Gauss-Jordan-in-pos (and
corresponds with line 5 in Algorithm 1).

Gauss-Jordan-column (i’, A) k’ =

(let

i = from-nat i’;

k = from-nat k’

in

if (∀m≥i. A $ m $ k = 0) ∨ (i = nrows A) then (i, A)

else (i+1, (Gauss-Jordan-in-pos A i k)))

The traversing operation over columns (line 4) is performed by folding the operation
Gauss-Jordan-column over the list containing the columns’ type universe, starting with a
pair given by the index 0 (line 3) and the input matrix A.

Gauss-Jordan-upt A k = snd (foldl Gauss-Jordan-column (0,A) [0..<Suc k])

Gauss-Jordan A = Gauss-Jordan-upt A ((ncols A) - 1)
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The algorithm admits several variants, both to speed up its performance and also to avoid
numerical stability issues with floating point numbers ((Gockenbach, 2010), Chap. 9), but
in order to reduce the complexity of its formalisation we chose the above presentation.

The rref of a matrix has indeed further applications than computing the rank. Since this
version of Gauss-Jordan is based on elementary row operations, it can be also used for:

• Computation of the inverse of a matrix, by “storing” the elementary row operations
over the identity matrix.
• Determinants, taking into account that some of the elementary row operations can

introduce multiplicative constants.
• Computation of bases and dimensions of the null (defined as {x ∈ Fm | A · x = 0}),

left null ({x ∈ Fn | xT ·A = 0}), column ({A · x | x ∈ Fm}) and row ({AT · x | x ∈ Fn})
subspaces (also known as fundamental subspaces) of a matrix.
• Solution of systems of linear equations ({x ∈ Fm | A · x = b}), both consistent (with

unique or multiple solutions) and inconsistent ones.

The formalisation of the Gauss-Jordan algorithm, together with numerous previous
results in Linear Algebra, and the different applications that are presented above, summed
up ca. 12000 lines of code (see Table 4); the proofs check that the defined objects
(determinant, inverse matrix, solution of the linear system, fundamental subspaces) are
preserved (or modified in a certain way) after each algorithm step (and more concretely,
after each elementary row operation). By using product types, we store an initial value for
the desired object, and the input matrix. In the case of determinants, the initial pair is (1,A).

Gauss-Jordan-upt-k-det-P A k =

(let step = foldl Gauss-Jordan-column-k-det-P (1,0,A) [0..<Suc k]

in (fst step, snd (snd step))))

Gauss-Jordan-det-P A =

Gauss-Jordan-upt-k-det-P A ((ncols A) - 1)

After each algorithm step, a corresponding modification is applied to the first
component. The previous function Gauss-Jordan-upt-k-det-P takes as inputs a matrix A
and a column k, performs Gauss-Jordan in the first k columns of A, and returns a pair whose
first component is the product of the coefficients originated when performing Gauss-Jordan
in the first k columns, and the second component contains the matrix obtained after
performing Gauss-Jordan in the first k columns.

In the computation of each of the previous pairs, there is a notion of invariant that
is preserved through the Gauss-Jordan algorithm steps. For instance, in the case of
determinants, given a matrix A, after n elementary operations the pair (bn,An) is obtained,
and it holds that bn × (detA) = detAn, and bn 6= 0. Since the algorithm terminates
(the elements indexing the columns are an enumerable type), after a finite number, m,
of operations, we obtain a pair (bm, rrefA) such that bm × (detA) = det(rrefA); since
we proved that the determinant of rrefA is the product of its diagonal elements, the
computation is completed.

lemma det-Gauss-Jordan-det-P:
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fixes A::α::field^n^n::mod-type

defines comp == Gauss-Jordan-det-P A

shows (fst comp) * det A = det (snd comp)

In a similar way, we perform the proof of the computation of the inverse of a matrix
(starting from an input square matrix A of dimension n, the pair (In,A) is built and after
every row operation, (P′,A′) is such that P′ ·A = A′), as long as A is invertible (in other
words, rrefA= In). When the Gauss-Jordan algorithm reaches rrefA, the first component of
the pair holds the matrix P (this matrix is indeed the product of every elementary operation
performed). The computations of the bases of the fundamental subspaces of linear maps are
also based on the computation of the matrix P generated from applying the Gauss-Jordan
algorithm to A (or AT ) and the same operations to In (Im). Their Isabelle definitions are
given as follows:

definition basis-null-space A =

{row i (P-Gauss-Jordan (transpose A)) |i. to-nat i ≥ rank A}

definition basis-row-space A =

{row i (Gauss-Jordan A) |i. row i (Gauss-Jordan A) 6= 0}

definition basis-col-space A = {row i (Gauss-Jordan (transpose A))

|i. row i (Gauss-Jordan (transpose A)) 6= 0}

definition basis-left-null-space A =

{row i (P-Gauss-Jordan A) | i. to-nat i ≥ rank A}

With respect to the solution of systems of linear equations, A · x = b, we prove that, if a
system is consistent, its set of solutions is equal to a single point plus any element which is
a solution to the homogeneous system A · x = 0 (or, in other words, the null space of A). In
order to solve the system, we start from the pair (In,A) and after applying the Gauss-Jordan
algorithm to A, and the same elementary operations to In, a new pair (P, rrefA) is obtained.
The vector b is then multiplied by P, and from its number of nonzero positions and the
rank of A (or rrefA) the system is classified as consistent or inconsistent. In the first case,
a single solution is computed by taking advantage of rrefA. The basis of the null space
is computed applying Gauss-Jordan elimination to AT in (Im,AT ), and performing similar
row operations to Im.

In order to consider inconsistent systems suitably, we have represented the solutions
as elements of the Isabelle option type (whose elements are of the form (Some x) and
None); the set of solutions of a system will be presented as a singular point (whenever the
system has solution), and the corresponding vectors forming a basis of the null space (or
the empty set). As an additional result, we have formalised in Isabelle that every solution to
a given system is of the previous form. Previous formalisations of the solution of systems
of linear equations through the Gauss-Jordan algorithm (see, for instance, (Nipkow, 2011))
and most Computer Algebra systems compute exclusively single solutions (even more, for
exclusively compatible systems with equal number of equations and unknowns).

In Section 1 we pointed out that the HMA library permitted us to keep the tie between
Linear Algebra and algorithmics. The crucial result to this aim consists in establishing and
formalising a link between linear forms and matrices.

The following result states that applying a linear map f to an element x of its source
vector space is equal to multiply the associated matrix to f by the vector x (the matrix
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represents the linear form with respect to some previously fixed bases). The generalisation
of this result to fields was formalised as part of this development, inspired by the result
over real vector spaces, already available in HMA. This result is available in the file
Generalizations.thy in (Aransay & Divasón, 2014c)).

lemma matrix-works:

assumes linear (op *s) (op *s) f

shows matrix f *v x = f (x::α::field^n)

Then, in file Linear-Maps.thy, several results have been proven based on this one, that
relate linear maps and properties of their associated matrices. For instance, the following
result proves that a linear map is bijective if and only if its associated matrix has full column
rank.

lemma linear-bij-rank-eq-ncols:

fixes f::α::field^n::mod-type ⇒ α^n

assumes linear (op *s) (op *s) f

shows bij f ←→ rank (matrix f) = ncols (matrix f)

The rank of a matrix is now a computable property (by means of the Gauss-Jordan
algorithm presented), as it is its number of columns.

4 Code Generation to Functional Languages

The presented Isabelle formalisation of the Gauss-Jordan algorithm can be directly
executed inside of Isabelle (by rewriting specifications and code equations) with some
setup modifications that we presented in a previous work (see Sect. 4 in (Aransay &
Divasón, 2014a)) obtaining, thus, formalised computations. Every operation performed in
Isabelle is itself executable, since we are dealing with enumerable types for representing
matrices columns and rows. For instance, the Isabelle function Gauss-Jordan-in-pos
presented previously, makes use of the LEAST operator (based itself on the Hilbert’s ε

operator and not executable in general), and is specified in our particular setting taking
advantage of the fact that its underlying type is enumerable, and, therefore, can be executed
to select a pivot.

Unfortunately, the performance obtained makes the algorithm unusable in practice,
except for testing purposes. Matrices represented as functions over finite domains are
reportedly impractical. More concretely, there are two sources of inefficiency in the results
obtained. First, Isabelle is not designed as a programming language, and execution inside
of the system offers poor performance. In Section 4.1 we present a solution to translate
our specifications to functional programming languages. Second, the data structures
(functions) that helped us to prove the correctness of the Gauss-Jordan algorithm and its
applications are optimal for formalisation, but not for execution. Section 4.2 describes a
verified refinement between the type used for representing matrices in our formalisation
(vec and its iterated construction) and immutable arrays, a common data structure in
functional programming.
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4.1 Code Generation and Serialisations

Since the Isabelle code is not suitable for computing purposes, the original Isabelle
specifications are translated to a programming (functional) language, as introduced in
Section 2.3. Our choices (from the available languages in the standard Isabelle code
generation setup) were SML (since the SML Standard Library includes a Vector type
representing immutable arrays) and Haskell (for a similar reason, with the Haskell IArray
class type and its corresponding instance IArray.Array, and also because there is a built-in
Rational type representing arbitrary precision rational numbers).

Additionally, we make use of serialisations, a process to map Isabelle types and
operations to the corresponding ones in the target languages. Serialisations are a common
practice in the code generation process (see (Haftmann, 2013) for some introductory
examples); otherwise, the source types and operations would be generated from scratch
in the target languages, and the obtained code would be less readable and efficient
(for instance, the nat type would be generated to an ad-hoc type with 0 and Suc as
constructors, instead of using the built-in representation of integers in the target language).
The advantage of applying serialisations to the target languages suitably is stressed by an
empirical result; profiling the computations carried out over matrices of rational numbers
in SML, we detected that the greatest amount of time was spent in reducing fractions
(operations gcd and divmod). Serialising these Isabelle operations to the corresponding
built-in Poly/ML (Poly/ML, 2014) and MLton (MLton, 2014) functions (which are not
part of the SML Standard Library, but particular to each compiler), decreased by a factor
of 20 the computing times.

The following Isabelle code snippet presents the serialisation that we produced from
the Isabelle type rat representing rational numbers (which is indeed based on equivalence
classes), to the Haskell type Rational. As it can be observed, it merely identifies operations
(including type constructors) from the source and the target languages.

code-printing
type-constructor rat ⇀ (Haskell) "Prelude.Rational"

| class-instance rat :: "HOL.equal" ⇒ (Haskell) -

| constant "0 :: rat" ⇀ (Haskell) "Prelude.toRational (0::Integer)"

| constant "1 :: rat" ⇀ (Haskell) "Prelude.toRational (1::Integer)"

| constant "Frct-integer" ⇀ (Haskell) "Rational.fract (_)"

| constant "numerator-integer ⇀ (Haskell) "Rational.numerator(_)

| constant "denominator-integer ⇀ (Haskell) "Rational.denominator(_)

| constant "HOL.equal :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "(_) == (_)"

| constant "op < :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "_ < _"

| constant "op ≤ :: rat ⇒ rat ⇒ bool" ⇀ (Haskell) "_ <= _"

| constant "op + :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) + (_)"

| constant "op - :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) - (_)"

| constant "op * :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) "(_) * (_)"

| constant "op / :: rat ⇒ rat ⇒ rat" ⇀ (Haskell) " (_) ’/ (_)"

| constant "uminus :: rat ⇒ rat" ⇀ (Haskell) "Prelude.negate"

The complete set of Isabelle serialisations that we used is shown in Table 1. The
Isabelle types rat, real and bit represent respectively Q, R and Z2. The SML type IntInf.int
represents arbitrarily large integers. It is worth noting that the Isabelle type real can be also
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Table 1. Type serialisations

Isabelle/HOL SML Haskell

iarray Vector.vector IArray.Array
rat IntInf.int / IntInf.int Rational
real Real.real Double
bit Bool.bool Bool

serialised to the types used for rat in SML and Haskell, preserving arbitrary precision and
avoiding numerical stability issues. Types presented in bold face identify serialisations that
were introduced by us as part of this work. We also contributed some improvements to the
Isabelle Library in the serialisation to the SML type Vector.vector.

The SML Standard Library lacks of a type representing arbitrary precision rational
numbers, and thus the proposed serialisation for rat is quotients of arbitrarily large integers.
In this particular case, Haskell takes advantage of its native Rational type to challenge SML
performance, which otherwise tends to be poorer.

We also explored the serialisation of Isabelle type real to double-precision floating
point formats (Double in Haskell, Real.real in SML) in the target languages, but the
computations performed present the expected round-off errors.

The bit type admits multiple serialisations, ranging from boolean values to subsets of
the integers (with either fixed or arbitrary size). Experimental results showed us that the
best performing option was to serialise bit and its operations to the corresponding boolean
types in the target languages.

4.2 Data Type Refinements

Some data types present better properties for specification and formalisation purposes. For
instance, specifying an algorithm over sets is easier than doing so over lists. However,
the latter data type is better suited for execution tests. Following this idea, the poor
performance presented by functions representing matrices can be solved by means of a
data refinement to a better performing data structure.

Data refinement (Haftmann et al., 2013) offers the possibility to replace an abstract
data type in an algorithm by a concrete type; in particular, our intention is to replace the
vec type representing vectors before applying code generation. In our development, we
have used the Isabelle type iarray as the target type of our refinement. Accordingly, we
define functions vec-to-iarray that convert elements of type vec to elements of type iarray
(an operation matrix-to-iarray will convert iterated vectors to iterated iarrays, the natural
representation for matrices in this setting).

definition vec-to-iarray::α^col::{mod-type} ⇒ α iarray

where vec-to-iarray v = IArray.of-fun (λi. v$(from-nat i)) (CARD(col))

Each function over elements of type vec needs to be replaced by a new function over
type iarray. This requires first specifying a function over the type iarray, and then proving
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that it behaves as the one over type vec. The following result is labeled as a code equation,
that will be later used in the code generation process.

lemma [code-unfold]:

fixes A::α::{field}^col::{mod-type}^row::{mod-type}

shows matrix-to-iarray (Gauss-Jordan A) =

Gauss-Jordan-iarrays (matrix-to-iarray A)

The code equation certifies that it is correct to replace the function Gauss-Jordan (de-
fined over abstract matrices, or elements of type vec) by the function Gauss-Jordan-iarrays.
As it can be observed, the code equation does not include premises; this is a requirement
from the Isabelle code generator. The label code-unfold instructs the code generation
tool to record the lemma as a rewriting rule, replacing occurrences of the left-hand side
in the execution and code generation processes by the right-hand side. From a broader
perspective, the function matrix-to-iarray has to be proved to be a homomorphism between
the original and the refined type.

The proving effort (ca. 2800 code lines, see Table 4) to prove the type refinement
is significantly smaller than the formalisation itself (ca. 12200). It must be noticed
that reproducing the formalisation over iarrays would presumably take more than the
aforementioned 12200 lines, since the type vec has particular properties that ease and
simplify the proofs. At least two features of this refinement from vec to iarray can
be identified that have an influence in the modest amount of work devoted to it. First,
the close relationship between the original data type vec and the new data type iarray,
since both of them share a similar interface that allows to easily identify operations
between them. Second, the fact that we preserved the original algorithm design, replacing
operations over the vec type by equivalent ones over the iarray type. Nevertheless, the
Isabelle code generator leaves the door open to algorithmic refinements (obviously, the
bigger the differences between the abstract and the concrete algorithms, the greater
the proving effort that has to be invested to fill such a gap). This effort pays off in
terms of reusability, since the lemmas proving the equivalence between abstract and
concrete operations for elementary row (or column) operations could be reused in future
developments (implementations of different algorithms over matrices).

lemma [code-unfold]:

fixes A::α::{semiring-1}^col::{mod-type}^row::{mod-type}

shows matrix-to-iarray (interchange-rows A i j) =

interchange-rows-iarray (matrix-to-iarray A) (to-nat i)(to-nat j)

Mapping some other operations on the type vec to the type iarray may involve
programming decisions. For instance, the LEAST operator, which in its Isabelle original
definition merely has a logical specification (a description of the properties that the least
element satisfying a predicate possesses), and has not an executable specification, needs to
be proved equivalent to a user provided operation on the data type iarray. The definition
below shows an operation on the type iarray, which is itself based on the operation find of
lists. The Isabelle corollary presented below proves that this operation successfully finds
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the least (with respect to the indexing order) nonzero element in a matrix column j over a
row i (if such an element exists, as expressed in the assumes clause).

definition least-nonzero-position-index v i =

the (List.find (λx. v!!x 6= 0) [i..<(IArray.length v)])

corollary
fixes A::α::zero^col::mod-type^row::mod-type and j::col

defines colj ≡ vec-to-iarray (column j A)

assumes ¬(vector-allzero-from-index (to-nat i, colj))

shows least-nonzero-position-index (colj) (to-nat i) =

to-nat (LEAST n. A$n$j 6= 0 ∧ i ≤ n )

5 The generated programs and related work

5.1 The generated programs

The Isabelle code generation facility is now applied to generate the SML and Haskell
code from the Gauss-Jordan algorithm specification. Note that in this process both the
serialisations and data type refinements presented in Section 4 are used. The automatically
generated code sums up 2300 lines in SML and 1300 in Haskell (see Table 4). The SML
and Haskell sources are available from (Aransay & Divasón, 2014c). They closely resemble
the definitions presented in Section 3 of the Gauss-Jordan algorithm.

It shall be clear that the programs pose a serious drawback, since the input matrices
are stored by means of immutable data types. Since we are using iarrays for representing
both vectors and matrices, every operation with side effects requires additional memory
consumption, whereas mutable data structures in imperative languages should avoid this
matter. Even so, the obtained programs were useful in at least a couple of interesting case
studies:

• The rank (computed, for instance, as the number of nonzero rows of the rref ) of a
Z2 matrix, permits the computation of the number of connected components of a
digital image; in Neurobiology, this technique can be used to compute the number
of synapses in a neuron (see (Heras et al., 2012) for details). With our programs, the
computations can be carried out on images at least of 2560×2560 px. size (which
are conventional ones in real life experiments). The running time to obtain these
computations was ca. 160 seconds.
• Varona et al (Durán et al., 2014) detected that Mathematica R©, at least in versions 8.0,

9.0 and 9.0.1, was erroneously computing determinants of matrices of big integers,
even for matrices of small dimensions (in their work they present an example of a
matrix of dimension 14×14). The same computation, performed twice, can produce
different results. The bug was reported to the Mathematica R© support service. The
error might be originated in the use of some arithmetic operations modulus large
primes (apparently, the prime numbers could be either not large enough or not
as many as required). With our verified program, the computation takes ca. 0.64
seconds (in MLton; Haskell and Poly/ML performance are also practically the same
over inputs of such sizes), and the result obtained is the same as in Sage (which
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requires 0.0 seconds) and MapleTM. Our algorithm relies on the arbitrarily large
integers as implemented in each one of the functional languages. The computing
time in Mathematica R© (of the wrong result) sums up 2.68 seconds.

In general, the applicability of the generated programs is widely possible. Linear Algebra
is well-known for being a central tool for graph theory, coding theory and cryptography,
among many others.

5.2 Related work

The formalisation of Abstract Algebra has been of recurrent interest for the Theorem
Proving community, and it would be difficult to provide here a complete survey on the
subject; even so, the formalisation of Linear Algebra algorithms has not received such
an attention from the community. This is somehow surprising, since new algorithms are
being continuously implemented in Computer Algebra systems in a search for better
performance.

Nevertheless, it is worth mentioning the CoqEAL (standing for Coq Effective Algebra
Library) effort (Dénès et al., 2012). This work is devoted to develop a set of libraries and
commodities over which algorithms over matrices can be implemented, proved correct,
refined, and finally executed. We try to compare our work with theirs in each of these
terms.

The implementation of algorithms is rather similar, except for the peculiarities of the
Isabelle and Coq systems; the algorithms in CoqEAL take advantage of the SSReflect
library and facilities, which indeed represents vectors and matrices as functions, and
therefore quite close to ours. The Coq type system is richer than the one of Isabelle; in
particular, it allows the definition of dependent types, enabling the use of submatrices and
some other natural constructions, that in our Isabelle implementation have been avoided.

In order to prove the correctness of algorithms, CoqEAL algorithms can take advantage
of the use of dependent types to extensively apply induction over the dimension of
matrices, whereas we chose to apply induction over the number of columns; there might
be algorithms where this fact really poses a difference, but we did not detect any particular
hindrance in the proof of the algorithm computing the rref.

Refinements in CoqEAL can be performed both on the algorithms and on the data
structures (Dénès et al., 2013) (as we also do in our development); data type refinements
in CoqEAL are made in a parametricity fashion, since algorithms are implemented and
proved over unspecified operations (by means of type classes) that are later replaced
with computational or proof oriented types. Then, some parametricity lemmas state
the equivalence between computational and proof oriented operations. These lemmas
sometimes introduce additional parameters (such as the size of matrices) that could be
unnecessary in some of the representations. In practice, the data type refinements in
CoqEAL are reduced to using either functions or lists for representing vectors (and
then matrices iteratively). Our approach is more flexible since it is based in proving the
equivalence (modulus type morphisms) of the operations in the computational and proof
oriented types (Haftmann et al., 2013). In Isabelle, there is no special requirement over
the proof type and the computational type, as long as a suitable morphism exists between
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both, and operations that are proven equivalent in both types. Type classes are thus avoided,
enhancing the flexibility of the refinements to be carried out.

Regarding execution, there is a crucial difference between CoqEAL’s approach and ours.
In the CoqEAL framework computations are carried out over the Coq virtual machine
(and thus “inside” the Coq system, avoiding code generation), a bundle of Coq libraries to
optimise computational times. Our approach is thought for code generation, and executions
are completed in Haskell or SML (they can be also performed “inside” of Isabelle, but
execution times are considerably slower). This provides us with a remarkable edge in
performance. For instance, the computation of the rank of a Z2 matrix of size 1000×1000
consumes 32 s. in Poly/ML but 121 s. in Coq (following the figures in (Dénès, 2013)),
even if their algorithm exclusively computes the rank of the matrix, without any additional
information, whereas ours produces the rref of the matrix. One potential source of
inefficiency in CoqEAL performance could be the use of lists, instead of arrays, to encode
vectors and matrices.

A different tempting approach would be to verify an imperative version of the algorithm
producing the rref of a matrix. The implementation of imperative programs and (mutable)
arrays in Isabelle/HOL has been studied in (Bulwahn et al., 2008), through the use of
suitable monads, giving place to a library called Imperative HOL. When applying code
generation, mutable arrays are refined to the SML Array.array type, which is also mutable
(whereas immutable arrays were refined in our work to the SML type Vector.vector).
The authors present two different case studies; in one of them the performance gain is
a 30% with respect to a purely functional implementation using balanced trees. The use of
monads introduces inherent intricacies both in the definitions and also in the consequent
formalisations.

As an experiment, we produced a (non-formalised) imperative implementation of the
Gauss-Jordan algorithm, inspired by Algorithm 1 and our functional representation (see file
Gauss-Jordan-Imp.thy in (Aransay & Divasón, 2014c)). Algorithm 1 involves numerous
matrix rows and column traversals that we have implemented by recursion (up to our
knowledge, there is not a suitable array traverse operator in Imperative HOL).

We generated SML code from this imperative version, and carried out some performance
tests between the functional verified version presented in Section 5.1 and the new
imperative one. Rather surprisingly, the functional and imperative versions performed
almost equally (with a little bias of a 10% for each version depending on the compiler
used, MLton or Poly/ML). Profiling both algorithms (see Table 2) it seemed clear that
the amount of time spent in the functional version of the algorithm in the construction of
new immutable arrays (operation of-fun) was greater than the amount of time devoted in
the imperative version (operation make.fn), but this amount of time was compensated by
the time spent in the imperative version performing updating and the remaining recursive
operations (operations sub and nth.fn represent both the array access operation).

Table 2 presents the result of profiling in MLton the computation of the rref of a
600×600 matrix with inputs in Z2 (profiling itself adds up an overhead of almost 20%
in the computing times).

Replacing some of the recursive operations used in the imperative version by traversals
may reduce computing times, but apparently by a low margin. An additional drawback
of using Imperative HOL is that the underlying types (used in arrays) have to be proven
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Table 2. Profiling of the “imperative” and verified versions of Gauss-Jordan.

“Imperative” version Verified version

Function Time perc. Function Time perc.
nth.fn 29.8% sub 33.4%
upd.fn.fn.fn 12.2% of fun 32.7%
IntInf.schckToInt64 12.1% IntInf.extdFromWord64 9.3%
make.fn 8.1% IntInf.schckToInt64 7.5%
plus nat.fn 7.9% row add iarray.fn 6.3%
. . . . . . . . . . . .

Total
9.42 seconds of CPU time 10.06 seconds of CPU time
(0.04 seconds of GC) (0.22 seconds of GC)

Table 3. C++ and verified of the Gauss-Jordan algorithm.

Matrix sizes C++ version Verified version

600×600 01.33s. 06.16s.
1000×1000 05.94s. 32.08s.
1200×1200 10.28s. 62.33s.
1400×1400 16.62s. 97.16s.

instances of the type class countable, since the heap is modeled as an injective map
from addresses to values. In our particular case, this limitation prevent us of using this
representation for the type real.

As an additional test of the performance of the obtained verified code, we implemented
the same algorithm as presented in Algorithm 1 in C++ (see file Gauss-Jordan.cpp
in (Aransay & Divasón, 2014c)), where vectors are represented by C++ arrays, and array
traversals are replaced by for loops. We produced some benchmarking to compare our
verified functional version, executed with the Poly/ML interpreter, against the C++ version,
that is presented in Table 3.

The obtained times with both versions are of the same order of magnitude, and grow
cubically with respect to the number of rows of the matrices (it is worth noting that the
Gauss-Jordan algorithm is of cubic order). Apparently, the use of immutable arrays in our
verified code does not pose a drawback, and both algorithms scale similarly.

6 Conclusions and Further work

In this work we have presented a formalisation of the Gauss-Jordan algorithm and its
principal applications in Linear Algebra. The algorithm has been proved in an environment
(the HMA Library) that allows to keep the mathematical meaning of the results (for
instance, the relation between matrices and linear maps) and over a representation of
matrices which simplifies the proving effort. Additionally, the algorithm has been refined
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to a more suitable data type, and generated to SML and Haskell, languages in which we
have been capable of executing the algorithm over matrices of remarkable dimensions
(in our case study with digital images) and inputs (in matrices with big coefficients, that
were erroneously computed in Mathematica R©). The infrastructure created can be certainly
reused; some of the serialisations introduced in Section 4 are already part of the Isabelle
Library. The mathematical results are proved over a well-established Isabelle Library
(HMA). Results on matrices include many basic operations. The data type refinement from
vectors as matrices to immutable arrays is also easily reusable, not only for Linear Algebra
purposes.

The number of lines of verified code generated in our work (ca. 2300 in SML, 1300
in Haskell) is considerable and covers a wide range of applications in Linear Algebra.
Both its formalisation and the refinement, available in (Aransay & Divasón, 2014c), took
15000 lines of Isabelle code. The HMA Library infrastructure was intensively reused,
reducing significatively the amount of mathematical results to be formalised. Isabelle/HOL
also provided powerful and efficient features to produce data type refinements. Table 4
shows the collection of files and their sizes produced in our work.

The design decisions that we are subject to (specially, the use of iarrays in the generated
code) does not seem to pose a real limitation, since the other options explored (use of
monads and use of imperative languages) do not provide a remarkable edge over our
verified version.

As a natural continuation to our work, and once we have observed that mutable data
types and imperative algorithms do not dramatically increase the performance of the
obtained code, we consider that the refinement of algorithms should be a sensible subject.
Refining our naive implementation of Gauss-Jordan to better performing algorithms shall
be an interesting task. Additionally, once we have solved the problem of computing the
solution of systems of linear equations, we could also explore the least squares problem
that allows to find the closest point to a solution in systems of linear equations with no
solution.
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Table 4. List of files in the formalisation and generated code.

File name Number of lines

Formalisation

Dual-Order 71
Mod-Type 527
Generalizations 2 519
Miscellaneous 535
Rref 412
Fundamental-Subspaces 263
Code-Set 40
Code-Matrix 82
Elementary-Operations 1 031
Dim-Formula 366
Rank 45
Gauss-Jordan 2 416
Linear-Maps 1 229
Gauss-Jordan-PA 457
Determinants2 502
Inverse 332
Bases-Of-Fundamental-Subspaces 214
System-Of-Equations 621
Code-Bit 62
Examples-Gauss-Jordan-Abstract 149

Subtotal 12 183

Refinement

IArray-Addenda 98
Matrix-To-IArray 415
Gauss-Jordan-IArrays 401
Gauss-Jordan-PA-IArrays 319
Bases-Of-Fundamental-Subspaces-IArrays 165
System-Of-Equations-IArrays 389
Determinants-IArrays 245
Inverse-IArrays 70
Examples-Gauss-Jordan-IArrays 193
Code-Generation-IArrays 103
Code-Generation-IArrays-SML 121
Code-Real-Approx-By-Float-Haskell 66
IArray-Haskell 111
Code-Rational 129
Code-Generation-IArrays-Haskell 59

Subtotal 2 884

Total Isabelle code 15 067

SML generated code (file Gauss-SML) 2 344

Haskell generated code (files Rational, IArray, Gauss-Haskell) 1 319
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Dénès, M., Mörtberg, A., & Siles, V. (2013). Refinements for Free! Pages 147–162 of: Gonthier,
G., & Norrish, M. (eds), Certified Programs and Proofs. Lecture Notes in Computer Science, vol.
8307. Springer.

Dénès, M. (2013). Étude formelle d’algorithmes efficaces en algèbre linéaire. Ph.D. thesis, INRIA
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