Universidad de La RiojaCampus Iberus    
 
 
Principal Correo-web Directorio Mapa web Contacto
Información para
Estudiantes
Foreign students
Antiguos alumnos
Empresas
Visitantes
PDI/PAS
Información sobre
Universidad de La Rioja
Estudios
Campus Virtual
Investigación
Escuela Máster y Doctorado
Centro de Idiomas
Facultades y Escuelas
Departamentos
Administración y Servicios
Biblioteca
Fundación de la UR
Dialnet
Portal de transparencia
Defensoría Universitaria
Unidad de Igualdad
Oficina de Sostenibilidad
Sede electrónica
Actualidad
Noticias
Agenda
Congresos y jornadas
Nuevas plazas PDI/PAS
Perfil del contratante
Boletines y publicaciones
 
facebook Twitter You Tube Flickr
pinterest linkedin instagram
 
Dialnet
 
Sede Electrónica
Noticias

Tesis sobre técnicas estadísticas aplicadas a la propagación de órbitas
Iván Luis Pérez Barrón obtiene el grado de doctor

16 de julio de 2015
Iván Luis Pérez Barrón obtiene el grado de doctor con una tesis sobre técnicas estadísticas aplicadas a la propagación de órbitas.

Iván Luis Pérez Barrón ha obtenido el grado de doctor por la Universidad de La Rioja tras la defensa de su tesis doctoral Aplicación de técnicas estadísticas y de inteligencia computacional al problema de la propagación de órbitas.

Dirigida por Juan Félix San Juan Díaz y Montserrat San Martín Pérez, la tesis obtuvo la calificación de sobresaliente 'cum laude' por unanimidad del tribunal.

La propagación de órbitas se encarga de determinar la posición y velocidad de un satélite artificial para un instante determinado, a partir de su posición y velocidad en un instante inicial. Clásicamente el problema se ha abordado desde tres perspectivas distintas: la teoría general de perturbaciones, la teoría especial de perturbaciones, y la técnica semianalítica, que constituye una solución intermedia.

En su tesis doctoral, Iván Luis Pérez Barrón aborda el modo en el que las técnicas estadísticas y la inteligencia computacional contribuyen al perfeccionamiento de los métodos de propagación de órbitas, en el marco de la teoría híbrida de perturbaciones.

Esta metodología consta de dos etapas: una primera fase de integración, en la que se obtiene una aproximación inicial a la solución por medio de una de las tres técnicas clásicas; seguida por una fase de predicción en la que, una vez modelizada la dinámica no contenida en la aproximación inicial, se estima su valor para un instante futuro, con el objeto de complementar dicha aproximación y generar un resultado más preciso. De este modo, el método puede recoger no sólo el efecto de las simplificaciones introducidas en las expresiones matemáticas, sino también las diferencias entre los modelos y los fenómenos físicos reales.

A lo largo de la investigación realizada se ha comprobado que la combinación de una teoría analítica más un modelo estadístico de predicción de series temporales, ajustado para el caso de un satélite Quasi-Spot, es capaz de aproximar la perturbación causada por los armónicos zonales y teserales de cuarto grado y orden del potencial gravitatorio terrestre, partiendo de una aproximación de primer orden del primer armónico zonal J2. Asimismo, se ha verificado una mejora en la precisión de la teoría general de perturbaciones cuando se complementa con uno de los métodos más extendidos para la predicción de series temporales en el ámbito de la inteligencia computacional: las redes neuronales.

Según se ha mencionado, los propagadores híbridos están compuestos por una teoría de integración más una técnica de predicción. Esta última se desarrolla a partir de un conjunto de datos de control. Se ha mostrado un avance reciente en la teoría híbrida de perturbaciones, consistente en explorar la posibilidad de deducir la etapa predictiva directamente a partir de otros propagadores híbridos desarrollados para condiciones iniciales del entorno. Esta técnica evita la necesidad de disponer de datos de control, y permite contar con una malla de propagadores híbridos preparada con antelación para una región de condiciones iniciales de interés.

Finalmente, se ha ilustrado el desarrollo de una metodología para la validación de propagadores de órbitas mediante un análisis exploratorio de datos aplicado a dos teorías analíticas de posible incorporación en la etapa de integración de los propagadores híbridos: la normalización de Delaunay y el método de Krylov-Bogoliubov-Mitropolsky.

comunicacion@adm.unirioja.es


Iván Luis Pérez Barrón
Ampliar y descargar imagen
Noticias relacionadas

Montserrat San Martín obtiene el título de doctora por la UR

Congreso Internacional 'Aspectos clave en la propagación orbital aplicada a la gestión segura del espacio'

Investigadores logran ayudas en convocatoria Marie S. Curie

GRUCACI colabora con la Agencia Espacial Europea

Miguel Marañón obtiene el grado de doctor por la UR

Rosario López obtiene el grado de doctora por la UR

GRUCACI lidera un nuevo proyecto convocado por la ESA

Una tesis aborda el origen de las lunas irregulares

Ricardo Suanes colabora en el desarrollo de software aeroespacial
Sobre este web | © Universidad de La Rioja